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The challenges of pervasive and mobile computing environments, which are highly dynamic and un-
predictable, have motivated the development of self-adaptive software systems. Although noteworthy
successes have been achieved on many fronts, the construction of such systems remains significantly
more challenging than traditional systems. We argue this is partially because researchers and practi-
tioners have been struggling with the lack of a precise vocabulary for describing and reasoning about
the key architectural characteristics of self-adaptive systems. Further exacerbating the situation is
the fact that existing frameworks and guidelines do not provide an encompassing perspective of the
different types of concerns in this setting. In this paper, we present a comprehensive reference model,
entitled FOrmal Reference Model for Self-adaptation (FORMS), that targets both issues. FORMS
provides rigor in the manner such systems can be described and reasoned about. It consists of a small
number of formally specified modeling elements that correspond to the key concerns in the design of
self-adaptive software systems, and a set of relationships that guide their composition. We demonstrate
FORMS'’s ability to precisely describe and reason about the architectural characteristics of distributed
self-adaptive software systems through its application to several existing systems. FORMS’s expressive
power gives it a potential for documenting reusable architectural solutions (e.g., architectural patterns)
to commonly encountered problems in this area.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures
General Terms: Design, theory

Additional Key Words and Phrases: Formal Methods, Self-Adaptation, Autonomic Computing

1. INTRODUCTION

Pervasive, mobile, and embedded computing environments are characterized by a high degree
of unpredictability and dynamism in the execution context. These environments call for a new
class of software systems, known as self-adaptive software system. Self-adaptability endows a
software system with the capability to adapt its behavior at runtime to changes in its execution
conditions and user requirements [Kephart and Chess 2003; Kramer and Magee 2007].

The development of self-adaptive software systems has shown to be significantly more chal-
lenging than traditional systems [Cheng et al. 2009]. Over the past decade numerous solutions
for alleviating the situation have been developed. In particular, researchers and practitioner
have proposed several frameworks for constructing such systems. Some have aimed to serve as
conceptual guidelines, such as IBM’s MAPE-K [Kephart and Chess 2003] (Monitor-Analyze-
Plan-Execute-Knowledge) that describes the different stages of self-adaptation, the work of
Mary Shaw [Shaw 1995] that recognizes the feedback-control loop as an essential process
within any self-adaptive system, and the architectural model of Kramer and Magee [Kramer
and Magee 2007] that puts component control, change management, and goal management
in three distinct layers. Others have adopted an implementation perspective, such as Arch-
studio [Oreizy et al. 1998], Rainbow [Garlan et al. 2004], and MUSIC [Geihs et al. 2009],
which advocate a software architecture-based approach for assessing the adaptation decisions
and making the changes.

All of the above models and frameworks have been intended to serve merely as guidelines,
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and provide significant leeway in how the engineer architects the software system. For instance,
given any one of these frameworks, the same functionality may be realized using starkly dif-
ferent architectures (e.g., centralized vs. decentralized, flat vs. hierarchical). Therefore, while
these frameworks have achieved noteworthy success in many domains, they are neither formal
enough to unambiguously describe and reason about the primary architectural characteristics
of self-adaptive systems, nor is that their intended use. At the same time, each framework
has targeted a particular set of concerns, which we informally refer to as perspective. None
of the frameworks provides a rich enough set of elements for describing the different types of
perspectives.

The hallmark of any established engineering field is the ability to precisely express and rea-
son about the architectural choices—a capability that is currently lacking in the domain of
self-adaptive software, as argued by us [Andersson et al. 2009b] as well as many others [Cheng
et al. 2009]. We have begun to address this issue in our previous work [Andersson et al. 2009a;
Weyns et al. 2010a] which led to the development of a preliminary reference model for self-
adaptation aimed at bringing the differences among such systems to the forefront of the design.
However, the reference model proposed in our earlier work [Weyns et al. 2010a] has several
limitations; most notably, it is not sufficiently expressive for describing the variations among
a large class of self-adaptive software systems that are distributed. This is an issue that has
been overlooked not only in our initial reference model, but also by other commonly employed
frameworks and guidelines [Weyns et al. 2010a]. One of the key contributions of this paper is
the extension of our initial reference model with additional constructs and relationships nec-
essary for describing distributed self-adaptive systems. For the first time, we also provide a
comprehensive and detailed description of the reference model, including a full formal specifi-
cation. Finally, we demonstrate its ability to precisely describe and reason about the primary ar-
chitectural characteristics of several self-adaptive systems developed in our respective research
groups.

The reference model, entitled FORMS, short for FOrmal Reference Model for Self-
adaptation, enables software engineers to rigorously describe and reason about the architectural
characteristics of distributed self-adaptive systems. FORMS builds on existing frameworks and
established principles of self-adaptation, such as computational reflection [Maes 1987], MAPE-
K [Kephart and Chess 2003], and architecture-based adaptation [Oreizy et al. 1998; Kramer and
Magee 2007]. The reference model offers a vocabulary that consists of a small number of prim-
itives and a set of relationships among them that delineates the rules of composition. The model
is formally specified, which enables the engineers to precisely define the key characteristics of
self-adaptive software systems, and reason about them.

Through applying FORMS to several existing systems we have confirmed its ability to il-
luminate the key characteristics of these systems. However, we do not argue FORMS is a
conclusive reference model. In fact, one of the key contributions of FORMS is its ability to
accommodate future extensions. To ensure extensibility, as well as technology and implemen-
tation independence, the primitives are intentionally high-level (i.e., remain at the architectural
level) and could be specialized for specific application domains. The primitives refined in this
manner enable the engineers to derive and document a catalog of known solutions (e.g., in the
form of architectural patterns) for different domains.

While FORMS offers a formally founded vocabulary for the key architectural constructs
comprising self-adaptive systems, it does not provide an implementation framework from
which self-adaptive applications can be derived. FORMS supports engineers with describing
the key concerns of their architectures and reason about important properties, via supporting
tools. FORMS can be useful in various scenarios, such as to understand the key architectural
decisions of a self-adaptive system in early design or in preparation for a system evolution, to
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document such decisions for developers, to specialize FORMS for describing and reasoning
about specific concerns of self-adaptive systems in particular domains, to employ FORMS as a
unifying vocabulary to study self-adaptive systems, etc.

The remainder of this paper is organized as follows. Section 2 presents an example to illus-
trate the issues and describe the FORMS concepts. Section 3 presents the integration of three
perspectives that form the basis of FORMS and describes the corresponding reference models.
Section 4 presents our experiences with using the FORMS reference model in a case study.
The paper concludes with an overview of related work, a discussion on applications and con-
tributions of FORMS, and future avenues of research in Sections 5, 6, and 7, respectively. The
complete formal specification of FORMS and its applications to two additional case studies is
provided in the Appendix.

2. ILLUSTRATIVE EXAMPLE

We consider a system from the robotics domain as our illustrative example. The illustrative
system is motivated by [Edwards et al. 2009]. The authors propose a layered approach for the
design and implementation of self-adaptive behavior of a robotic system. The self-adaptive
behavior in this application ensures that the system itself resolves failures of the control soft-
ware of the robots. This is a representative example for a small scale, distributed, self-adaptive
system, i.e., it will change its structure and behavior at run-time in response to changes in the
environment or the system itself.

In particular, the adaptive robotic software architecture consists of (1) a basic bottommost
layer with the application components that control the robot, and (2) one or more meta-layers
with adaptation logic that implement fault-tolerance, dynamic software updates (component
replacement), resource discovery, re-deployment, etc. In the proposed architecture, each layer
may adapt the layer beneath. The robot behavior (bottommost layer) provides the robot’s ap-
plication logic. In a common instance the system is distributed on two or more robots (nodes),
where follower robots trail a leader robot. On top of that, using meta-level components, there is
a distributed failure manager layer that, based on the collected data, detects and resolves fail-
ures in the application subsystem. The failure manager layer is the subject to a version manager
layer, which replaces the failure collector components on robot follower nodes whenever new
versions are available.

In this system, self-adaptation is a key factor for successful deployment of the system, which
requires the ability to precisely describe the system architecture, reason about the key design
decisions. The challenge is in providing a vocabulary that is sufficiently expressive and pre-
cise, while still accessible by and useful for developers. The current practice of expressing
the architectural design of self-adaption, and even more importantly documenting the known
solutions (e.g., architectural solutions to common problems), is often ad hoc. This is precisely
the motivation for our work. We continue this discussion, exemplified with concrete excerpts
of the illustrative example, as we present the details of FORMS next.

3. UNIFYING FORMAL REFERENCE MODEL

The work presented in this paper is based on the experience with constructing self-adaptive
systems in our research groups and a careful study of the existing literature, including [Kephart
and Chess 2003; Kramer and Magee 2007; Oreizy et al. 1998; Garlan et al. 2004; Edwards
et al. 2009; Dowling and Cabhill 2001; Geihs et al. 2009]). In [Andersson et al. 2009a] we
provided a classification of self-adaptive software systems, which helped us with identifying the
prominent concerns in self-adaptation. Our study indicates that each of the existing commonly
employed frameworks targets a particular set of concerns, referred to as perspective in this
paper, while ignoring some others. An exhaustive reference model covering all of the different
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perspectives found in the literature is beyond the scope of this paper, and perhaps infeasible
to achieve. Instead our intention has been to establish a reference model covering sufficiently
wide spectrum of perspectives, while remaining extensible for future refinements. To that end,
we found five key requirements for the specification of self-adaptation capabilities in a given
system. In particular, the reference model should have the ability to describe and reason about:

(1) How the system monitors the environment (i.e., context-awareness);

(2) How the system monitors itself (i.e., self-awareness);

(3) How the system adapts itself;

(4) How the system coordinates monitoring and adaptation in a distributed setting.

(5) In addition, the model should have the ability to extend and refine the FORMS primitives
for additional concerns and domain-specific concepts.

These requirements along with our previous survey of the field, helped us to identify three
commonly employed adaptation perspectives as the basis for FORMS: reflective computa-
tion [Maes 1987; Andersson et al. 2009b], distributed coordination [Malone and Crowston
1994; Wooldridge and Jennings 1995; Ossowski and Menezes 2006], and MAPE-K [Kephart
and Chess 2003].

While these three perspectives are representatives of radically different concerns, we do not
argue that they are the only plausible ones. However, we have strived to provide as comprehen-
sive reference model as possible by unifying the three aforementioned perspectives. We believe
a similar approach could be applied to further enrich FORMS with additional, potentially do-
main specific, concerns.

For readability purposes, we describe FORMS using semi-formal UML diagrams in the
paper. Though intuitive, the visual representation does not give a precise semantic descrip-
tion of the constructs, which is exactly why a formal representation of FORMS in Z nota-
tion is provided in the Appendix. Z is a standardized formal specification language (ISO/IEC
13568:2002) that builds on set theory and first order predicate logic to precisely specify the
primitives without delving into the implementation details. The formal specification is type
checked using Community Z Tools [CZT 2010]. We use excerpts of the Z specification to
illustrate how the model supports reasoning about a self-healing property of the example in
section 4.

3.1 Reflection Perspective

Computational reflection is an established and well-understood concept in programming-in-
the-small [Maes 1987]. It has traditionally been studied at the level of programming languages
and realized using compiler technologies. However, the principles of computational reflection
are also applicable to programming-in-the-large, which represents the complex self-adaptive
software systems we are interested in our research [Andersson et al. 2009b]. In fact, numerous
previously developed self-adaptation approaches (e.g., [Cazzola et al. 1999; Tisato et al. 2001;
Blair et al. 2004]) are based on the principles of reflection.

Figure 1 provides an overview of the FORMS’s primitives and their relationships to the re-
flection perspective. A Z specification of the perspective is provided in Appendix A. As shown
in Figure 1, a self-adaptive system is situated in an environment, and comprises one or more
base-level and reflective subsystems. The environment consists of attributes and processes. An
attribute is a perceivable characteristic of the environment. A process is an activity that can
change the environment attributes. For instance, attributes for a robot may correspond to the
location of an obstacle, while the movement of a robot is a process that changes the location of
that robot. The environment may correspond to both physical and logical entities. Therefore,
the environment of a computing system may itself be another computing system. For example,
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Fig. 1. FORMS primitives that are derived from the computational reflection perspective.

the environment of a robot includes the physical entities like obstacles on its path and other
robots, as well as an external mountable camera and the corresponding software drivers.

The reflection perspective is particularly suitable for determining what is part of the environ-
ment and what is part of the self-adaptive system. This distinction is made based on the extent
of control. For instance, in the robotic system, the self-adaptive system may interface with a
mountable camera sensor, but since it does not manage (adapt) its functionality, the camera is
considered to be part of the environment.

A base-level subsystem provides the system’s domain functionality (i.e., application logic).
For instance, in the case of robots, navigation of a robot is performed by a base-level subsystem.
A base-level subsystem comprises a set of domain models and a set of base-level computations.
Before we describe the meaning of these concepts, note that consistent with the reflection per-
spective, in FORMS we distinguish between models and computations. Intuitively, a model
comprises representations, which describe something of interest in the physical and/or cyber
world, while computation is an activity in a software system that manages its own states. Pre-
cise specifications of model and computation are provided using Z in Appendix A.

A domain model represents a domain of interest for the application logic (i.e., system’s main
functionality, referred to as base-level subsystem). The domain model in the robotic system
may incorporate a variety of information: a map of the terrain, locations of obstacles and other
robots, etc. A base-level computation perceives the environment, reasons about and acts upon a
domain model, and effects the environment. As an example, consider a base-level computation
of arobot dealing with battery usage. Given the current location and the remaining energy level
of the battery (both are representations of the domain model), the base-level computation may
select a new route, and thus change attributes of the environment.

A reflective subsystem is a part of the computing system that manages another subsystem,
which can be either a base-level or a reflective subsystem. Note that a reflective subsystem
may manage another reflective subsystem. This would be the case when a self-adaptive system
includes multiple reflective levels. For instance, consider a robot that not only has the ability to
adapt its navigation strategy (e.g., fastest time, minimize collisions), but also adapt the way such
adaptation decisions are made (e.g., based on remaining energy level of the battery, particular
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environment conditions).

A reflective subsystem consists of two parts: reflection model and reflective computation. A
reflection model reifies the entities (e.g., subsystem elements, environment attributes) needed
for reasoning about adaptation. It is analogous to meta-level information in the area of computa-
tional reflection [Maes 1987]. In many self-adaptive systems, the reflection model corresponds
to the software system’s architectural models [Oreizy et al. 1998; Kramer and Magee 2007].
Analogous to a base-level computation, a reflective computation reasons about and acts upon
reflection models. For instance, a reflection model for the robot scenario may be a component-
and-connector view of the running software system, which is used at runtime by the robot’s
adaptation logic (i.e., reflective computation) to add/remove software components. A reflective
computation also monitors the environment to determine when/if adaptations are necessary.
For instance, the reflective computation in a robotic system may monitor the maneuverability
complexity of a terrain to determine the best navigation component (algorithm) for execution.
However, note that unlike the base-level computation, a reflective computation does not have
the ability to effect changes on the environment directly. The rationale is separation of con-
cerns (disciplined split [Maes 1987]): reflective computations are concerned with a base-level
subsystem, base-level computations are concerned with a domain.

The portion of FORMS described above is inspired by the concepts from computational
reflection, which as mentioned earlier have historically influenced the design of a large class
of self-adaptive software systems. As demonstrated in Section 4, applying this model to any
self-adaptive system naturally delineates the boundaries between various key elements of such
systems. In particular, the reference model helps to clearly distinguish between elements that
constitute the environment, the base-level (managed) subsystem, and the reflective (adaptation
reasoning) subsystem. However, this perspective does not allow for specification of several
other concerns that may arise in the architectural specification of a self-adaptive system. Next
we describe how the model is extended to incorporate distribution concerns.

3.2 Unification with Distribution Perspective

The reflection perspective of FORMS provides a modularization of self-adaptive systems in
the form of different layers that deal with different concerns. However, this perspective says
little about the modularization within each layer. The structure within each layer is particularly
important for self-adaptive systems that are distributed, as they make up the majority of real-
world systems.

In a distributed setting, the software systems deployed on different nodes require dedicated
coordination mechanisms [Ossowski and Menezes 2006] to realize the goals. In general, a
coordination mechanism allows resolution of coordination problems that arise from dependen-
cies [Malone and Crowston 1994], such as managing dependencies between multiple tasks and
multiple resources.

The choice for a coordination mechanism depends on the requirements of the system and
the characteristics of its environment. For example, coordination in a client-server sys-
tem may be fairly easily achieved by an explicit call-return protocol. However, for other
classes of distributed systems, such as ubiquitous systems [Weiser 1993] and multi-agent sys-
tems [Wooldridge and Jennings 1995] that are highly dynamic, more advanced coordination
mechanisms are required, since in such systems there is typically no central point of control.

Adding self-adaptation to a distributed system similarly requires proper support for coordi-
nation of the reflective computations that deal with the adaptations. Fig. 2 shows an overview
of the FORMS primitives and their relationships for the distribution perspective. The Z speci-
fication of the model is provided in Appendix B.

A distributed self-adaptive system consists of multiple local self-adaptive systems. In the
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Fig. 2. Unification of FORMS primitives derived from reflection perspective with those from
the distribution perspective.

robotic case, the software running on a collection of robots forms a distributed self-adaptive
system, while the software deployed on each robot constitutes a local self-adaptive system. A
local self-adaptive system comprises local managed systems and self-adaptive units. A local
managed system provides the system’s domain functionality, similar to a base-level subsystem.
A local managed system comprises domain models and local base-level computations. Local
base-level computation extends base-level computation with a coordination mechanism. In
the example case, the local base-level computations of the robots may have to coordinate for
collision avoidance. Such coordination may be achieved by different types of protocols. For
example, in a hierarchical approach, one master robot may control the allowed movements of
the slave robots. However, in a peer-to-peer approach, the robots may use a distributed locking
mechanism to avoid collisions.

A self-adaptive unit manages another part of the system, which can be either one or several
local managed systems or self-adaptive units, similar to a reflective subsystem. A self-adaptive
unit comprises a set of reflection models and a set of local reflective computations. A local
reflective computation extends a reflective computation with coordination mechanisms which
allow the computation to coordinate with other local reflective computations in the same layer.

FORMS’s coordination mechanism is a composite consisting of a coordination model, a
coordination protocol, and a coordination channel. This is a commonly accepted structure for
coordination mechanisms, see for example [Andrade et al. 2000] and [Arbab 2004].

A coordination model contains the data used by a local reflective computation to coordinate
with reflective computations of other self-adaptive units. It represents information such as the
current coordination partners and their roles, status information about the ongoing interactions,
etc. Robots that coordinate to deal with version management may keep track of the current
version of the local software running on its robot and probably other robots, the location where
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to download new versions, etc.

The coordination protocol represents the rules that govern the coordination among the partic-
ipating computations. Examples of protocols are master-slave in an organization-based coordi-
nation mechanism and an auction in a marked-based coordination mechanism. As an example,
robots may use heartbeat as a coordination protocol to detect possible failures.

A coordination channel is a semantic connector that acts as the means of communication
between the parties involved in a coordination. A coordination channel can be an abstraction for
direct interactions (regular communication channels for message exchange) as well as indirect
interactions (e.g. shared tuple spaces). Heartbeat for failure detection in the robotic case may
use broadcast as a coordination channel.

The distribution perspective emphasizes the modularization of self-adaptive system within
a layer. The perspective capture, among other aspects, the degree of autonomy of the self-
adaptive units, i.e. the degree to which reflective computations of a self-adaptive unit are able
to make local adaptation decisions. To realize the adaptation goals, the computations of self-
adaptive units in a distributed self-adaptive system have to coordinate. The high-level FORMS
primitives that support coordination are based on established work in the field of coordination.
Our experience shows that the distribution perspective supports the specification of a variety of
distributed self-adaptive systems. We give examples in section 4 and the Appendix.

3.3 Unification with MAPE-K Perspective

One of the most commonly employed frameworks for describing and understanding self-
adaptive systems is IBM’s framework for Autonomic Computing [Kephart and Chess 2003;
IBM 2006], which itself is inspired by the use of a feedback-control loop [Shaw 1995] in the
design of software systems. The framework is formed around the notion of autonomic man-
ager that implements a MAPE-K control loop. MAPE-K’s power is its intuitive structure of the
different computations that are involved in realizing the feedback-control loop in self-adaptive
software systems. On the other hand, MAPE-K is neither formalized, nor does it address some
of the other important self-adaptation concerns, such as those described in the previous two sec-
tions. Figure 3 shows the relationship among FORMS primitives inspired by MAPE-K with the
modeling primitives from other perspectives. In the process of unifying the MAPE-K perspec-
tive with FORMS, we identified several additional primitives that are not present in MAPE-K,
including a refinement of knowledge. The MAPE-K perspective is detailed in Appendix C.

As mentioned before, in FORMS a self-adaptive unit is a self-contained entity that adapts
the local managed system using several reflective computations, which use a set of reflection
models. The MAPE-K perspective allows us to describe the abstract notions of reflective com-
putation and reflection model more concretely.

In FORMS, we distinguish between four types of reflection models: subsystem model, con-
cern model, environment model, and MAPE working model.

A subsystem model represents (parts of) the sysfem that is managed by the self-adaptive
unit. The subsystem can be either a local managed system or a self-adaptive unit. The latter
is applicable to self-adaptive units that deal with higher level concerns (i.e., a meta-meta-level
model). In the robotic application, the architectural models representing the structure of the
managed software system correspond to the subsystem model.

A concern model represents the objectives or goals of a self-adaptive unit. In the robotic
system for example, a self-healing concern can be represented as rules of the form event—
condition—action set. Event is a failure of a software component, condition is a local depen-
dency on the failing component, and action set comprises a set of repair actions required to
recover from the failure.

An environment model reifies the relevant part of the environment at the reflective level. In
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Fig. 3. FORMS reference model derived from the unification of reflection and distribution
perspectives with those from the MAPE-K perspective.

the robotic example an environment model may for instance represent the physical environ-
ment, robot locations, and any other relevant environmental attributes.

A MAPE working model represents runtime data shared between the reflective computations.
These models are typically domain-specific. Examples of working models in a robotic system
are the temporary representations of candidate deployment architectures for adapting the do-
main logic (i.e., the base-level subsystems).

Reflective computations are the typical control loop computations found in self-adaptive
systems: monitor, analyze, plan, and execute. In addition, we introduce update computations.

An update computation perceives the state in the environment and reflect this in the envi-
ronment model. Update computations (in combination with analysis computations which we
describe below) provide for context-awareness [Schilit et al. 1994], which is an important prop-
erty in almost every self-adaptive system. In the example, a robot uses an update computation
that employs a camera to update the positions of other robots in its environment model.

A monitor computation monitors the subsystem that is managed by the self-adaptive unit.
The subsystem can be either a local managed system or another lower-level self-adaptive unit.
Monitor uses the observed data to update the subsystem model. Additionally, it may trigger
analyze computations when particular conditions hold. For example, in the robotic system,
the monitor computation collects data from the managed system to determine failures of the
software components, which trigger the adaptation process.

An analyze computation assesses the collected data to determine the system’s ability to sat-
isfy its objectives. Monitor and analyze computations provide for self-awareness [Hinchey and
Sterritt 2006], which is a key property of self-adaptive systems. A plan computation constructs
the actions necessary to achieve the system’s objectives. Analyze computations may trigger
plan computations, e.g., when a particular analysis determines a violation of the system’s ob-
jectives. In the robotic system, analysis and planning may determine a failure (based on the
data collected by monitor) and find a solution for mitigating the failure through adaptation
(e.g., re-instantiating a component).

Finally, triggered by plan, an execute computation carries out changes on the managed sys-
tem. In the robotic system, this would correspond to applying the repair actions necessary to
bring the managed system to a consistent state.
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The MAPE computations are enhanced with support for distribution through the coordination
primitives. The reference model explicitly separates coordination from computation. Each
reflective computation may need to coordinate with one or more other reflective computations.
The level of coordination among reflective computations determine the level of centralization
in the system. In fact, the interplay of reflective computations using coordination mechanisms
gives way to a variety of self-adaptation patterns.

4. APPLYING THE REFERENCE MODEL

We have applied FORMS to several case studies. To that end, we describe the concepts and
entities found within each case study via FORMS’s high-level primitives. The purpose of the
study is twofold: (1) to demonstrate the expressiveness and extensibility of the high-level ref-
erence model, and (2) to demonstrate the ability to reason about self-adaptive properties of the
modeled systems. This is demonstrated for both the graphical notation and for the Z speci-
fication. In this section, we study a distributed traffic monitoring application that includes a
coordination mechanism to support self-healing. Appendix E applies two FORMS perspec-
tives to model IBM’s autonomic computing framework [IBM 2006]. Finally, Appendix F uses
FORMS to model a complex sensor network system called MIDAS [Malek et al. 2007], which
utilizes multiple coordination mechanisms.

Traffic Monitoring System

The traffic monitoring system consists of a set of intelligent cameras which are distributed
evenly along the road. A simple example of a highway from this case study is shown in Fig-
ure 4(a). Each camera has a limited viewing range and cameras are placed to get an optimal
coverage of the highway with a minimum overlap. The task of the cameras is to detect and
monitor traffic jams on the highway in a decentralized way, avoiding the bottleneck of a cen-
tralized control center. Possible clients of the monitoring system are traffic light controllers,
driver assistance systems such as systems that inform drivers about expected travel time delays,
systems for collecting data for long term structural decision making, etc. Our particular focus
here is on self-healing of silent node failures, i.e., failures in which a failing camera becomes
unresponsive without sending any incorrect data. Such failures may bring the system to an
inconsistent state and disrupt its services.

Figure 4(b) shows the primary components of the software deployed on each camera, i.e., the
local camera system. The local traffic monitoring system provides the domain functionality,
i.e., the functionality to detect traffic jams and inform clients. The local traffic monitoring
system is conceived as an agent-based system consisting of two components. The agent is re-
sponsible for monitoring the traffic and collaborate with other agents to report a possible traffic
jam to clients. In normal traffic conditions, each agent belongs to a single member organization.
An example at TO is agent! of organization orgl. However, when a traffic jam is detected that
spans the viewing range of multiple neighboring cameras, organizations on these cameras will
merge in one organization. To simplify the management of organizations and interactions with
clients, the organizations have a master/slave structure. The master is responsible for managing
the dynamics of that organization by synchronizing with all of the slaves and masters of neigh-
boring organizations. At T1-2, two agents, agent2 and agent3, form the organization org23.
When the traffic jam resolves, the organization is split dynamically. The organization middle-
ware offers services for agents to set up and maintain organizations. To access the hardware
and communication facilities on the camera, the local traffic monitoring system can rely on the
services provided by the distributed communication and host infrastructure.

To support robustness to node failures, a self-healing subsystem is added to the system that is
responsible for dealing with camera failures, as shown in Figure 4(b). A self-healing subsystem
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Fig. 4. Traffic monitoring case study.

comprises the following components:

Dependency Model contains a model of the dependencies of the components of the local
traffic monitoring system with other cameras. The Query/Update interface provides access
for inspecting and updating the model. Dependencies include neighbor relationships, mas-
ter/slave relationships, etc.

Repair Strategy contains a set of repair actions to bring the main system to a consistent
state in case a failure of a camera is detected on which this node depends. Examples of
repair actions are: remove the slave of the failing camera from the list of slaves, remove the
reference to the communication link with the failing camera, etc.

Self-Healing Manager provides the logic to deal with self-healing. The self-healing manager
monitors the main system using the Monitor interface to maintain the dependency model. It
sends ping messages to the cameras with a dependency in the dependency model. When a
failure is detected (i.e., no echo message is received after a predefined wait time), the self-
healing manager executes the repair actions of the repair strategy using the Repair interface,
bringing the local traffic monitoring system back to a consistent state.

Figure 4(a) shows a failure of camera 2 at T3. The self-healing managers on the neighboring

nodes will detect this after the timeout of the ping messages and then apply the repair actions.
The self-healing manager on camera 1 will change its neighbor to camera 3 and visa versa,
the self-healing manager on camera 3 will also remove the slave from the organization, etc.
At T3’ the system has recovered from the failure and can continue its correct operation. The
decentralized approach for self-healing described above builds upon the MACODO model and
middleware platform. The interested reader may refer to [Weyns et al. 2010b].

Figure shows the specification of the traffic monitoring case using FORMS. By extending

the FORMS primitives we can precisely define the elements of the traffic monitoring system.

The traffic environment is refined and includes besides the attributes and processes of the
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Fig. 5. Specification of traffic monitoring systems via FORMS concepts. White boxes represent traffic monitoring
system constructs, gray boxes represent FORMS constructs.

traffic domain also a communication infrastructure. This infrastructure is used by the local
traffic computations to coordinate the agent organizations, and by the self-healing managers
to coordinate for failure management. A self-healing manager extends a local reflective com-
putation. It uses a peer-to-peer coordination mechanism to deal with the failure management
concern. The protocol used by self-healing managers is ping-echo which uses traditional mes-
sage passing as coordination channel. The dependent nodes model maintains the list of nodes
on which the local traffic monitoring system depends.

We now illustrate with excerpts of the Z specification how the FORMS model supports rea-
soning about the recovery of a camera in the failure scenario shown in Figure 4(a). We have
kept the specification as simple as possible. Adding parameters to the Z schemes would in-
crease their reusability, but at the cost of decreased readability. A complete Z specification of
the application with the failure scenario is provided in Appendix D.

Our focus will be on the self-healing subsystem of camera 1 that detects a failure of camera
2 and adapts the local traffic monitoring system to deal with the failure.

We define an environment as a non-empty set of attributes and a set of processes that can
modify the attributes:

__ Environment
attributes : P Attribute
processes : P Process

attributes # &

Changes of attributes in the environment are defined as follows:

‘ Change : P Attribute <> P Attribute
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Events are defined as changes generated by environment processes:
‘ Event : Process <+ Change

A traffic environment is defined as an environment with traffic attributes and traffic processes:

— TrafficEnvironment |
Environment

attributes C traffic_domain_attributes
processes C traffic_domain_processes

The traffic environment at time TO in the example (Figure 4(a)) is defined as:

— TrafficEnvironmentro
TrafficEnvironment

attributes = {cameray , cameray , cameras , freeflow_zone , freeflow_zoney ,
congested_zones}
processes = traffic_domain_processes

We consider the following set of events in the traffic environment:

events : P Event

events = {traffics — ({freeflow_zonez} — {congested_zonez}) ,
monitor_cameraz — ({cameraz} — {})}

A failure of camera 2 changes the traffic environment as follows:

— TrafficEnvironmentrs
A TrafficEnvironmentra
p? . Process
c?: Change
s?: shutdowns

p? = monitor_cameray

c? = {cameraz} — {}

(p?, c?) € events

s? = monitor_cameras

attributes’ = attributes \ first(c?) U second(c?)
processes’ = processes \ {s?}

|

The specification states that after the event, camera 2 is no longer available for traffic monitor-
ing, and consequently, the traffic monitoring process of camera 2 is shutdown.

The domain logic of the traffic application is realized by a local traffic monitoring system
deployed on each node:

— LocalTrafficMonitoringSystem
trafficModel : LocalTrafficModel
computation : Local TrafficComputation

dom computation.read = {(trafficModel, computation.state)} N
dom computation.write = {(computation.state, trafficModel)} A
dom computation.send = { computation.state}

|

A local traffic monitoring system consists of a traffic model that maintains a representation of
the local traffic context and a computation that interacts with other computations to provide
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traffic jam monitoring services. For details we refer the reader to the Appendix. The predi-
cate states that a local traffic computation is restricted to act upon the local traffic model, and
messages for coordination are produced based on the current state of the computation.

We now zoom in on the self-healing subsystem. A dependency model is defined as a mapping
of dependencies to names of cameras:

DependencyModel
dependencies : Dependency <+ Name |

The dependency model for camera 1 at T2 is defined:

— DependencyModelOners
DependencyModel

dependencies = {neighbor — 2, neighbormaster — 3, myslave — 0, mymaster — 0} |

Camera 1 has a dependency with camera 2 as neighbor and with camera 3 as neighbor master
of another organization. The number “0” indicates that camera 1 currently has no dependencies
with slaves or a master within its organization.

A repair strategy model is defined as a set of repair actions:

RepairStrategy
FrepairActions : RepairActions |

The repair strategies for the camera 1 at time T2 is defined as:

__ RepairStrategyOners
RepairStrategy

repairActions = {neighbor — (2, 3), neighbormaster — (3,2)} |

The predicate states that if camera 2 fails the new neighbor of camera 1 will be camera 3, and
if camera 3 fails, camera 2 will be the master its neighbor organization.
The coordination mechanism for fault detection is defined as:

— PeerToPeer
CoordinationMechanism[PingEcho, DependentNodes, MessagePassing]
pingTime : Name <> Time
wattTime : Time

dom pingTime = model.nodes A ¥ n : model.nodes ® 31 : channel.links o first(l) =n

|

Ping time maintains the points in time when the last ping messages were sent to each of the
cameras with a dependency. Wait time is a constant that indicates when an echo message should
arrive after a ping messages has been sent. The last part of the predicate states that there are
communication links available to each camera in the dependency model.

The concrete instance of the coordination mechanism for camera 1 at T2 is defined:

_ PeerToPeerOnersa
PeerToPeer

model.nodes = {2,3}

channel.links = traffic_communication_channel \ {1 — cam, }
pingTime = {2 — 4430, 3 — 4440}

wait Time = 40
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The predicate states that camera 1 has dependencies with camera 2 (its neighbor) and camera
3 (the master of its neighbor organization). The coordination mechanism has communication
channels available to all the other cameras in the system. The last ping message was sent to
camera 2 at time 4430 and to camera 3 at time 4440. Finally, the wait time for echo messages
is 40 time units.

A self-healing manager is defined:

—_SelfHealingManager
Computation
coordinationMechanism : PeerToPeer

read...

sense : Local TrafficMonitoringSystem x P State — P State

adapt : Local TrafficMonitoringSystem x P State — LocalTrafficMonitoringSystem

send : P State — Message

receive : Message — P State |

A self-healing manager is a computation extended with a peer-to-peer coordination mechanism.
Self-healing manager can read and write a dependency model and repair actions (omitted). It
can sense a local traffic monitoring system and adapt it when a failure of a dependent cam-
era is detected. Coordination with other self-healing managers is done using the exchange of
messages.

The self-healing manager of camera 1 at time T2 is defined:

SelfHealingManagerOnerpa
(SelfHealingManager

PeerToPeerOnersa |

A self-healing subsystem is than defined as:

—_SelfHealingSubsystem
dependencyModel : DependencyModel
repairStrateqy : RepairStrategy
selfHealingManager : SelfHealingManager

A self-healing subsystem comprises a dependency model, a repair strategy and a self-healing
manager. The omitted predicate defines the scope of the allowed actions of the self-healing
manager.

The concrete self-healing subsystem for camera 1 at T2 is defined:

SelfHealingSubsystemOners
SelfHealingSubsystem
DependencyModelOners
RepairStrategyOnera
SelfHealingManagerOnera

A timeout of a self-healing manager is defined as:
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— Timeout
=SelfHealingManager
Tick
n!: Name

In!: Name; t: Time o (n!,t) € coordinationMechanism.pingTime N
t + coordinationMechanism.wait Time > time’

|

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

_ Timeout,
Timeout
ESelfHealingManagerOners

time = 4470
n!=2

|

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:

— CameraOneRecoversFromFailure CameraTwo
A TrafficJamMonitoringSystemrs
TrafficEnvironmentrs
Timeouty
les1?, les1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) A
traffic_communication_channel = traffic_communication_channel \ {n — cam} A

les1?.myName = 1 A
les1!.context = les1?.context \ {camera} A
les1!.selfHealingSubsystem = updateSelfHealingSubsystem(les1?, camera, cam, n) A
les1!.local TrafficMonitoringSystem =

adaptLocal TrafficMonitoringSystem (lcs1?, camera, cam, n) A
localCamaraSystems’ = localCamaraSystems \ {lcs1?} U {lcs1!}

|

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
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5. RELATED WORK

We adopt a broad perspective in the review of the related literature. We consider research from
the pervasive and ubiquitous computing area as well as the research from the self-adaptive and
autonomic computing area. This is reasonable given that these systems are highly related, and
the ability to deal with the dynamic and unpredictable nature of ubiquitous and pervasive sys-
tems is generally considered as one of the primary motivations for autonomic computing [Ster-
ritt 2005] and self-adaptive systems.

The main influences on the work presented herein are computational reflection, feedback-
control loop pattern, and distributed coordination. We already discussed these influences,
and the contribution from frameworks and reference implementations in detail in Section 3,
mainly with examples from the self-adaptive and autonomic systems area. The contribution
of FORMS, with respect to these frameworks and reference applications, is the integrated view
aimed at encompassing different points of view represented by these and relating elements from
different perspectives to one another.

We have also found support for our modeling perspectives from works within the ubiquitous
and pervasive computing community. For instance, Capra et al. [Capra et al. 2001] advocate
the use of reflection and meta-data in middleware to support the construction of context-aware
applications. [Nahrstedt et al. 2001] describes how a control loop may be used to engineer QoS
based adaptations in ubiquitous environments. Sometimes the nature of pervasive computing
systems require that the control loop to be “opened”, involving humans-in-the-loop [Erickson
2002]. Adding to the problems in the distribution perspective is the fact that in a ubiquitous
system the distributed processes may run on mobile devices [Fok et al. 2004] and in some
instances the processes themselves are mobile [Carzaniga et al. 1997]. This calls for dedicated
techniques, in particular to enable coordination [Braione and Picco 2004; Murphy et al. 2006].
A problem is the lack of a, coherent, unifying model, with support for all three perspectives
and formal underpinnings that provide for the required precision and expressibility in industrial
scale software development projects.

Several formal approaches targeting specific aspects of self-adaptation exist. For in-
stance, [Zhang and Cheng 2006] present an approach to formally model the behavior of adap-
tive programs, automatically analyze them, and generate an implementation of the system.
[Wermelinger and Fiadeiro 1999] presents an algebra for formally specifying runtime reconfig-
urations of a system’s software architecture. Several formal approaches also target pervasive
and context-aware computing systems, e.g., process calculus approaches such as mobile ambi-
ents [Cardelli and Gordon 2000]. ASSL [Vassev and Hinchey ] provides support for a complete
development methodology of self-adaptive embedded systems, including specification and veri-
fication of self-adaption. These and other works demonstrate the usefulness of applying formal
modeling to this field. In comparison, FORMS provides an encompassing formally founded
vocabulary for describing and reasoning about different concerns of self-adaptive software ar-
chitectures which is a different, complementary focus.

Another challenge for these systems is to model key system aspects, for instance the en-
vironment and how it is perceived. In the pervasive and context aware domain, an impor-
tant focus has been on specifying, interpreting, recognizing and storing contextual informa-
tion [Ranganathan and Campbell 2003; Dey 2000; Henricksen et al. 2002; Roman et al. 2002]
using formal or semi-formal models. [Schmidt et al. 1999] proposes a layered architecture with
formal underpinnings for sensor based context recognition. [Brewington and Cybenko 2000]
discuss how to manage context monitoring when context information is transient. They pro-
vide a formal reasoning framework for deciding when to update context information via the
system’s sensors. This is an example of extended semantic description of the monitor con-
cept in the FORMS MAPE-K perspective. The semantic web has influenced several ontology
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based approaches [Roman et al. 2002; Ye et al. 2007], not just for modeling context, but also
other critical system aspects such as trust [Haque and Ahamed 2007] and even coordination of
application invocation [Roman et al. 2002].

6. DISCUSSION

The application of FORMS to the traffic monitoring system demonstrates the expressive power
and extensibility of the FORMS primitives. It also shows how the specification allows reason-
ing about a self-healing property of the system at the architectural level. The step-wise analysis
and refinement of the specification starting with the event of the failing camera up to the recov-
ery of the camera highlights the key design elements of this self-healing scenario. Describing
such reasoning steps can be a useful way to get better insight in the self-adaptive property,
to detect problems at early stages of system construction, or it can serve as documentation
for detailed design and system implementation. Beyond specification and reasoning about the
high-level architectural design of a self-adaptive system, the formalism affords numerous ca-
pabilities. For instance, existing tools could be used for: (1) type checking (e.g., CZT’s type
checker [CZT 2010]) to automatically obtain certain guarantees on the validity of the specifica-
tion of a self-adaptive system, such as conformance of architecture descriptions that are refined
iteratively, (2) executing and animating the schemas (e.g., CZT’s ZLive animator [CZT 2010])
to visually obtain a better understanding of the system’s properties, and (3) festing (e.g., CZT’s
ModelJUnit [CZT 2010]) to automatically generate test cases.

In light of the above discussion, the contributions of FORMS can be summarized as follows.
First, FORMS establishes a shared vocabulary of primitives in this area that while simple and
concise can be used to precisely describe the essential aspects of complex self-adaptive sys-
tems. Second, FORMS enables engineers to specialize the primitives for their specific domain
and concerns of interest. Third, it enables engineers to reason about their early design decisions,
which are known to be the most difficult to make but have the most impact on system construc-
tion and evolution. Finally FORMS lays a foundation for a systematic method of developing a
pattern catalog of known solutions (i.e., architectural patterns).

However, the formal reference model is not without limitations. First, the primitives of
FORMS are coarse-grained. While the abstractions cover a wide variety of domains, from our
experiences we learned that in most cases the primitives need to be refined to be really use-
ful for an engineer. Second, reasoning about the description of a self-adaptive system is most
appropriate with a specification in Z. However, this implies that the engineer is familiar with
Z in general and the specification of the FORMS perspectives in particular. Moreover, such
specifications tend to be lengthy. Third, while excellent tools are available for the specification
of a system in Z, less support is available for reasoning about the system and automatic verifi-
cation of properties. Finally, currently, FORMS does not support consistency and trace-ability
between a specification and an implementation. While such support would be attractive from a
practical point of view, it was clearly not in the scope of the research presented in this paper.

7. CONCLUSIONS AND FUTURE WORK

The emergence of pervasive and ubiquitous computing environments, which are often highly
dynamic and unpredictable, have motivated the development of self-adaptive software systems.
However, building self-adaptive software systems has shown to be significantly more challeng-
ing than traditional software systems. There are numerous technical culprits, but we believe
the one that hinders progress the most is the lack of a precise vocabulary for describing and
reasoning about the primary architectural characteristics of self-adaptive systems.

This is exactly the challenge we have undertaken in this paper. We have presented FORMS,
a formal reference model for specifying self-adaptive software systems. Unlike existing guide-
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lines and frameworks proposed previously, FORMS aims to incorporate various points of view
into a unifying reference model. We presented unification of three perspective that have his-
torically influenced the majority of existing approaches employed in the construction of self-
adaptive systems: computational reflection, distributed coordination, and MAPE-K. We dis-
tilled the self-adaptation primitives from these three perspectives and related them to one
another, and provided a formal definition of them using Z notation. We have demonstrated
FORMS precision, expressiveness, and extensibility by applying it to several case studies.

While our experiences with FORMS have been very positive, several avenues of future work
remain. We intend to investigate new concerns in self-adaptation to further assess, and poten-
tially extend, FORMS’s perspectives. The formally defined reference model primitives form
the basis for a design language. A language we plan to use for documenting architectural pat-
terns in this setting. In turn, by studying the relationships between patterns and their quality
attributes, we intend to develop a catalog of reusable strategies and tactics for building systems
in this area.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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This document is the appendix to:

A Unifying Reference Model for Formal Specification
of Distributed Self-Adaptive Software Systems

Danny Weyns, Linnaeus University, Sweden
Sam Malek, George Mason University, USA
Jesper Andersson, Linnaeus University, Sweden

In this appendix, we first give a complete formal definition of FORMS in the Z language.
Subsequently, we present the reflection perspective (in section A), the unification with the
distribution perspective (in section B), and the unification with the MAPE-K perspective (in
section C). For each part of the formal model, we give a graphical overview of the specified
elements and relations, followed by the formal specification. Next, we give a complete formal
specification of a traffic monitoring example (in section D). In the last part of the appendix,
we discuss two additional case studies: IBM’s autonomic computing framework [IBM 2006]
(in section E), and a complex sensor network system called MIDAS [Malek et al. 2007] (in
section F). The complete Z specification is type checked using CZT tools [CZT 2010].

A. REFLECTION PERSPECTIVE

Fig. 6 shows a graphical overview of the FORMS elements and relations from the reflection
perspective.
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Fig. 6. FORMS: reflection perspective.
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A.1  Environment

To define environment, we first introduce attributes and processes. An attribute is a perceivable
characteristic of the environment. The set of attributes is defined:

[Attribute]

A process is an activity in the environment that can change attributes. The set of processes is
defined as:

[Process]

An environment comprises a non-empty set of attributes and a set of processes that can
modify the attributes. Environment is defined:

___ Environment
attributes : P Attribute
processes : P Process

attributes # @

We define context as a set of accessible attributes of the environment:

Context == P Attribute

Changes in the environment are defined as follows:
‘ Change : P Attribute < P Attribute
Events are defined as changes generated by processes:

‘ Event : Process <+ Change

A.2 Base-Level Subsystem

A base-level subsystem provides the system’s domain functionality, i.e., application logic. To
define a base-level subsystem, we first introduce models. A model comprises representations
that describes something of interest in the physical world and/or cyber world. Models are
defined:

— Model [Representation) ,
representations : P Representation

representations # & |

Representation is defined as a parameter to allow concrete models having different types of
representations.

An environment representation is a representation of attributes in the environment. The set
of environment representations is defined:

[EnvironmentRepresentation)]

A domain model describes a domain of interest for one or more stakeholders. Domain model
is defined:
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— DomainModel
Environment
Model[ EnvironmentRepresentation]

mapping : P Attribute <> EnvironmentRepresentation

dom mapping C {attrs : P Atiribute | attrs C attributes}
ran mapping = {r : EnvironmentRepresentation |
r € representations}

A domain model maps representations to attribute sets.
To define computations, we introduce the type state. State represents the current status of a
computation and is defined:

[State]

A computation is an activity in a software system that manages its own state. Computations
are defined:

— Computation
state : P State
compute : P State — P State

dom compute = {s : P State | s C state}

The computation operation is defined as:

— ComputationOp
A Computation
s?,s!: P State

s! = compute(s?) A
state’ = state \ s7 U s!

A base-level computation can act upon a set of domain models and can perceive a context in
the environment and effect this context.

BaseLevelComputation

Computation

read : P DomainModel X P State — P State

write : P State x P DomainModel — P DomainModel
perceive : P State X Context — P State

effect : P State x Context — Context

A base-level subsystem is a software system that provides some functionality for a stake-
holder or set of stakeholders. Base-level subsystem is defined:

ACM Journal Name, Vol. V, No. N, Month 20YY.

23



24 . Danny Weyns, Sam Malek, and Jesper Andersson

— BaseLevelSubsystem
models : P DomainModel
computations : P BaseLevelComputation

Y ¢ : computations e
dom c.read = {mdls : P DomainModel | mdls C models o
(mdls, c.state)} A
dom c.write = {mdls : P DomainModel | mdls C models o
(c.state, mdls)}

A base-level subsystem comprises a set of domain models and a set of base-level computa-
tions. The computations can act upon the domain models.

The read operation defines how a base-level subsystem computation reads a set of domain
models and updates its state:

__ReadOp
A BaseLevelSubsystem
c?, ¢! : BaseLevelComputation
ms? : P DomainModel

¢? € computations N\

ms? C models N\

cl.state = c?.read(ms?, c?.state) A
cl.compute = c?.compute N\

models’ = models N

computations’ = computations \ {c?} U {c!}

The compute operation defines how a base-level subsystem computation performs a compu-
tation on its state:

— ComputeOp
A BaseLevelSubsystem
c?, c!': BaseLevelComputation
s!: P State

c? € computations N\

sl = c?.compute(c?.state)

cl.state = sl A

cl.compute = c?.compute N\

models’ = models A

computations’ = computations \ {c?} U {c!}

The write operation defines how a base level computation acts upon a set of domain models:
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— WriteOp
A BaseLevelSubsystem
c? : BaseLevelComputation
ms? : P DomainModel
ms! : P DomainModel

c? € computations N\

ms? C models N\

ms! = c?.write(c?.state, ms?) A
models’ = models \ ms? U ms! A
computations’ = computations

A.3 Reflective Subsystem

A reflective subsystem is a part of the computing system that manages another part of it, which
can be either a base-level or a reflective subsystem. Note that a reflective subsystem may
manage another reflective subsystem. This would be the case when a self-adaptive system
includes multiple reflective levels. To define a reflective subsystem, we first introduce reflection
models and reflective computations.

A reflection model representation reifies the entities (e.g., subsystem constructs, environment
attributes) needed for reasoning about adaptation. It is analogous to meta-level information
from the domain of computational reflection [Maes 1987]. A self-adaptive system has a set of
reflection model representations:

[ReflectionModel Representation]

A reflection model comprises reflection model representations:

ReflectionModel
Model|ReflectionModelRepresentation] ‘

Reflection models are used by reflective computations.
A reflective computation is defined:

— ReflectiveComputation [Subsystem] ,
Computation
read : P ReflectionModel x P State — P State
write : P State x P ReflectionModel — P ReflectionModel
perceive : Context x P State — P State
sense : P Subsystem x P State — P State
adapt : P Subsystem x P State — P Subsystem
trigger : P State x P ReflectiveComputation[Subsystem] —
P ReflectiveComputation|[Subsystem)]

A reflective computation reasons and acts upon a subset of reflection models by reading
from, and writing to the models. It also perceives certain environmental context. However,
note that unlike a base-level computation, a reflective computation does not effect changes in
the environment. Moreover, reflective computation not only senses (monitors) and adapts the
subsystem, but also triggers other reflective computations.
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A reflective subsystem is composed of reflection models and reflective computations. This
is formally specified as follows:

— ReflectiveSubsystem [Subsystem) :
models : P ReflectionModel
computations : P ReflectiveComputation[Subsystem]

Y ¢ : computations e
dom c.read = {mdls : P ReflectionModel | mdls C models ® (mdls, c.state)} A
dom c.write = {mdlis : P ReflectionModel | mdls C models o (c.state, mdls)} A
dom c.trigger = {ct : P ReflectiveComputation|Subsystem] |
ct C computations \ {c} e (c.state, ct)}

A.4 Self-Adaptive System

The definition of self-adaptive system in the reflection perspective naturally delineates the
boundaries between various key elements of such systems. In particular, the specification
clearly distinguishes between elements that constitute the base-level (managed) subsystem, the
reflective (adaptation reasoning) subsystem, and the environment in which the self-adaptive is
situated (external to the self-adaptive system).

A self-adaptive system comprises a set of base-level and reflective subsystems. As an ex-
ample, we consider a self-adaptive system with two reflective levels. We model a meta-level
subsystem (i.e. a reflective systems on top of a base-level subsystem) as follows:

MetaLevelSubsystem == ReflectiveSubsystem|BaseLevelSubsystem)

Similarly, a meta-meta-level subsystem can be defined:

MetaMetaLevelSubsystem == ReflectiveSubsystem|MetaLevelSubsystem]

We can now model the self-adaptive system as follows:

__SelfAdaptiveSystem
baseLevelSubsystems : P BaseLevelSubsystem
metaLevelSubsystems : P MetaLevelSubsystem
metaMetaLevelSubsystems : P MetaMetaLevelSubsystem

F#baseLevelSubsystems > 1
#metaLevelSubsystems > 1
#metaMetaLevelSubsystems > 1
¥V mls : metaLevelSubsystems; cm, ce : ReflectiveComputation e
cm € mls.computations A ce € mls.computations N\
dom cm.sense = {bls : P BaseLevelSubsystem |
bls C baseLevelSubsystems e (bls, cm.state)} A
dom ce.adapt = {bls : P BaseLevelSubsystem |
bls C baseLevelSubsystems o (bls, cm.state)}
¥ mmils : metaMetaLevelSubsystems;
cm, ce : ReflectiveComputation e
cm € mmls.computations A ce € mmls.computations A\
dom cm.sense = {mls : P MetaLevelSubsystem |
mls C metaLevelSubsystems o (mls, cm.state)} A
dom ce.adapt = {mls : P MetaLevelSubsystem |
mls C metaLevelSubsystems o (mls, ce.state)}
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The specification states that meta-level subsystems can sense and adapt base-level subsys-
tems, while meta-meta-level subsystems can sense and adapt meta-level subsystems.
A self-adaptive system situated in an environment is specified:

—_ SituatedSelfAdaptiveSystem
Environment
SelfAdaptiveSystem
context : Context

context C attributes
Y bls : baseLevelSubsystems; c : BaseLevelComputation e
¢ € bls.computations N\
dom c.perceive = {attrs : Context |
attrs C context o (c.state, attrs)} A
dom c.effect = {attrs : Context |
attrs C context o (c.state, attrs)}
¥V mls : metaLevelSubsystems; cu : ReflectiveComputation e
cu € mls.computations A
dom cu.perceive = {attrs : Context |
attrs C context o (attrs, cu.state)}
¥ mmls : metaMetaLevelSubsystems;
cu : ReflectiveComputation e
cu € mmls.computations N\
dom cu.perceive = {attrs : Context |
attrs C context o (attrs, cu.state)}

The specification states that base-level subsystems can perceive and effect the context in
which the self-adaptive system is situated, while reflective subsystems can only perceive the
context.

Finally, we can now formally specify how a meta-level subsystem adapts a base-level sub-
system:

__ MetaLevel AdaptationOp
ASituatedSelfAdaptiveSystem
ZEnvironment
rc? : ReflectiveComputation|BaseLevelSubsystem]
bls?, bls! : BaseLevelSubsystem
mls?, mls! : MetaLevelSubsystem

bls? € baseLevelSubsystems N

mls? € metaLevelSubsystems A

rc? € mls?.computations N

{bls!} = rc?.adapt({bls?}, rc?.state) A

baseLevelSubsystems’ = baseLevelSubsystems \ {bls?} U {bls!}
metaLevelSubsystems’ = metaLevelSubsystems
metaMetaLevelSubsystems’ = metaMetaLevelSubsystems

The specification states that self-adaptation changes the self-adaptive system, but does not
effect the environment. The adaptation is performed by one of the meta-level reflective compu-
tations (rc?) which adapts one or more base-level subsystems.
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B. UNIFICATION WITH DISTRIBUTION PERSPECTIVE

Fig. 7 shows a graphical overview of the FORMS elements and relations for the unification of
the reflection and the distribution perspective.
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B.1

Coordination Mechanism

We define a coordination mechanism as follows:

CoordinationMechanism [Protocol, Model, Channel]

protocol : Protocol
model : Model
channel : Channel

A coordination mechanism comprises a coordination protocol, a coordination model, and a

coordination channel.

B.2 Local Managed System

Local base-level computation extends base-level computation with a coordination mechanism,
enablinmg it to exchange messages with other base-level computations:

LocalBaseLevelComputation [ Protocol, Model, Channel]

BaseLevelComputation

coordinationMechanism : CoordinationMechanism|[Protocol, Model, Channel]

A local managed system is defined as:
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— LocalManagedSystem [Protocol, Model, Channel] ,
models : P DomainModel

computations :
P LocalBaseLevel Computation|Protocol, Model, Channel]

Y ¢ : computations e
dom c.read = {mdls : P DomainModel | mdls C models o
(mdls, c.state)} A
dom c.write = {mdls : P DomainModel | mdls C models ®
(c.state, mdls)}

A local managed system is a base-level subsystem comprising a set of domain models and a
set of local base-level computations.

B.3 Self-Adaptive Unit

A local reflective computation is a reflective computation that comprises a coordination mech-
anism:

— LocalReflective Computation [Subsystem, Protocol, Model, Channel] :
Computation
coordinationMechanism :

CoordinationMechanism[Protocol, Model, Channel]
read : P ReflectionModel x P State — P State
write : P State x P ReflectionModel — P ReflectionModel
perceive : Context x P State — P State
sense : P Subsystem x P State — P State
adapt : P Subsystem x P State — P Subsystem
trigger : P State x P LocalReflectiveComputation|

Subsystem, Protocol, Model, Channel] —

P LocalReflective Computation[Subsystem, Protocol, Model, Channel]

The self-adaptive unit is defined as:

— SelfAdaptiveUnit [Subsystem, Protocol, Model, Channel] ,
models : P ReflectionModel
computations : P LocalReflective Computation|

Subsystem, Protocol, Model, Channel]

Y ¢ : computations e

dom c.read = {mdls : P ReflectionModel | mdls C models o
(mdls, c.state)} A

dom c.write = {mdls : P ReflectionModel | mdls C models o
(c.state, mdls)} A

dom c.trigger = {ct : P LocalReflective Computation|
Subsystem, Protocol, Model, Channel] |

ct C computations \ {c} e (c.state, ct)}

A self-adaptive unit is a reflective subsystem comprising reflection models and local reflec-
tive computations.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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B.4 Distributed Self-Adaptive System

A local self-adaptive systems comprises a set of local managed systems and a set of self-
adaptive units. As an example, we consider a local self-adaptive system with one reflective
layer in which all base level computations use a particular coordination mechanism and all
reflective computations use a particular coordination protocol:

— LocalSelfAdaptiveSystem [BCP, BCM , BCC, ACP, ACM, ACC] :
localManagedSystems : P LocalManagedSystem[BCP, BCM , BCC]
selfAdaptive Units :

P SelfAdaptive Unit| LocalManagedSystem, ACP, ACM , ACC]

V sau : selfAdaptive Units; lres, lrca : LocalReflective Computation e
lres € sau.computations A lrca € sau.computations N
dom Ircs.sense = {Ims : P LocalManagedSystem |
Ims C localManagedSystems o (Ims, lrcs.state)} A
dom Irca.adapt = {lms : P LocalManagedSystem |
Ims C localManagedSystems o (Ims, Irca.state)}

The abbreviations BCP, BCM, and BCC refer respectively to the coordination protocol, co-
ordination model, and coordination channel for the base level system. ACP, ACM, and ACC
are similar abbreviations for the coordination elements of the self-adaptive unit.

The specification states that self-adaptive units can sense and adapt the local managed sys-
tems of the local self-adaptive system.

A situated local self-adaptive system is a local self-adaptive system situated in some context
of the environment:

— SitutatedLocalSelfAdaptiveSystem [BCP, BCM, BCC, ACP, ACM, ACC] .
FEnvironment
LocalSelfAdaptiveSystem| BCP, BCM, BCC, ACP, ACM, ACC]
context : Context

context C attributes
YV lms : localManagedSystems; c : LocalBaseLevelComputation e
¢ € lms.computations N\
dom c.perceive =
{attrs : Context | attrs C context o (c.state, attrs)} A
dom c.effect =
{attrs : Context | attrs C context o (c.state, attrs)}
V sau : selfAdaptiveUnits; lrc : LocalReflectiveComputation e
lrc € sau.computations N
dom lrc.perceive =
{attrs : Context | attrs C context o (attrs, lrc.state)}

A distributed self-adaptive system comprises a set of local self-adaptive systems:

localSelfAdaptiveSystems :

DistributedSelfAdaptiveSystem [BCP, BCM, BCC, ACP, ACM, ACC| :
T P LocalSelfAdaptiveSystem[ BCP, BCM, BCC, ACP, ACM, ACC]
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C. UNIFICATION WITH MAPE-K PERSPECTIVE

Fig. 8 shows a graphical overview of FORMS elements and relations integrated with the MAPE
perspective.

C.1 Reflection Models

We distinguish between four types of reflection models: environment model, concern model,
mape working model, and subsystem model. To describe reflection models, we first introduce
a number of additional types of representations:

[ConcernRepresentation, MapeRepresentation]

A concern representation is a representation of a particular concern of interest. Mape repre-
sentations are used to describe working models used by reflective computations.

A subsystem representation is a representation of (a part of) a subsystem which can be either
a base-level subsystem or a reflective subsystem. Subsystem representations are defined:

F SubsystemRepresentation [Subsystem] i

A environment model comprises representations of attributes in the environment relevant for
a particular concern of interest. Environment models are defined:

—_ EnvironmentModel
Environment
Model| EnvironmentRepresentation]

mapping : P Attribute <> EnvironmentRepresentation

dom mapping C {attrs : P Attribute | attrs C attributes}
ran mapping = {r : EnvironmentRepresentation | r € representations}
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A concern model models a particular concern of interest. Concern models are defined:

ConcernModel
FModel[ConcernRepresentation] ‘

A mape working model is a model used by reflective computations to deal with a concern of
interest. Mape working models are defined:

Mape WorkingModel
Model[ MapeRepresentation|

To define a subsystem model we first introduce the concept of feature. Features describe
perceivable characteristics of software systems:

[Feature]

We define a function reify that returns the features for a given subsystem:

F [Subsystem]

reify : Subsystem — P Feature

A subsystem model is a model of a subsystem (either a base-level system or a reflective
subsystem). Subsystem models are defined:

— SubsystemModel [Subsystem] :
subsystem : Subsystem
Model[SubsystemRepresentation|[Subsystem]]
mapping : P Feature +» SubsystemRepresentation|[Subsystem)

dom mapping C {features : P Feature | features C reify(subsystem)}
ran mapping = {r : SubsystemRepresentation|Subsystem] |
r € representations}

A base-level subsystem model is defined:

BaseLevelSubsystemModel
SubsystemModel[ BaseLevelSubsystem] ‘

We introduce reflection models which groups the sets of models used by a set of reflective
computations:

ReflectionModels [Subsystem) ,
environmentModels : P EnvironmentModel

concernModels : P ConcernModel

mape WorkingModels : P Mape WorkingModel

subsystemModels : P SubsystemModel[Subsystem)

ACM Journal Name, Vol. V, No. N, Month 20YY.



Unifying Reference Model for Formal Specification of Distributed Self-Adaptive Systems

C.2 Reflective Computations

We define five types of reflective computations for self-adaptive system: update, monitor, anal-
yse, plan and execute.

Update
Computation

read : P EnvironmentModel x P State — P State

write : P State x P EnvironmentModel — P EnvironmentModel
perceive : Context x P State — P State

Update computations perceive the environment and update the environment models accord-
ingly.

— Monitor [Subsystem) ,
Computation
read : P Mape WorkingModel x P SubsystemModel[Subsystem] x P State
— P State
write : P State x P Mape WorkingModel x P SubsystemModel[Subsystem)|
— P MapeWorkingModel x P SubsystemModel[Subsystem]
sense : P Subsystem x P State — P State
trigger : P State x P Analyse[Subsystem] — P Analyse[Subsystem]

Monitor computations monitor the underlying subsystem and maintain the subsystem models
and possibly mape working models. Monitor computations can trigger analyse computations
in particular states.

Analyse [Subsystem)] :
Computation
read : P EnvironmentModel x P ConcernModel x P Mape WorkingModel x
P SubsystemModel[Subsystem] x P State — P State
write : P State x P Mape WorkingModel — P Mape WorkingModel
trigger : P State x P Plan[Subsystem] — P Plan[Subsystem]

— Plan [Subsystem] :
Computation
read : P EnvironmentModel x P ConcernModel x P Mape WorkingModel x
P SubsystemModel[Subsystem] x P State — P State
write : P State x P ConcernModel x P Mape WorkingModel
— P ConcernModel x P Mape WorkingModel
trigger : P State x P Ezecute[Subsystem] — P Ezecute[Subsystem]

Analyse and plan computations reason about and act upon the reflection models in order
to deal with the concerns of the self-adaptive system. Analyse computations can trigger plan
computations in particular states, while plan computations can trigger execute computations.
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— Ezecute [Subsystem] ,
Computation
read : P EnvironmentModel x P Mape WorkingModel x
P SubsystemModel[Subsystem] x P State — P State
write : P State x P Mape WorkingModel x P SubsystemModel[Subsystem)
— P Mape WorkingModel x P SubsystemModel[Subsystem)
adapt : P Subsystem x P State — P Subsystem

Execute computations use environment models and mape working models to adapt the un-
derlying subsystem.

We define the sets of computations of a reflective subsystem for each type of reflective com-
putation.

— Updating [Subsystem)] ,
updates : P Update
ReflectionModels|[Subsystem)]

Y u : updates o
dom u.read = {eModels : P EnvironmentModel |
eModels C environmentModels ® (eModels, u.state)} A
dom u.write = {eModels : P EnvironmentModel |
eModels C environmentModels o (u.state, eModels)}

Update computations act upon (a subset of) the environment models.

— Monitoring [Subsystem] .
monitors : P Monitor
ReflectionModels[Subsystem]

V'm : monitors e
dom m.read = {mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
mModels C mape WorkingModels N\
sModels C subsystemModels o
(mModels, sModels, m.state)} A
dom m.write = {mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
mModels C mape WorkingModels N\
sModels C subsystemModels o
(m.state, mModels, sModels) }

Monitor computations act upon subsystem models and mape working models.
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— Analyzing [Subsystem] ,
analyses : P Analyse
ReflectionModels[Subsystem]

Y a : analyses o
dom a.read = {eModels : P EnvironmentModel;
cModels : P ConcernModel;
mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
eModels C environmentModels N\
cModels C concernModels N
mModels C mapeWorkingModels N
sModels C subsystemModels o
(eModels, cModels, mModels, sModels, a.state)} N
dom a.write = {mModels : P Mape WorkingModel |
mModels C mape WorkingModels o (a.state, mModels)}

Analyse computations read the different kinds of reflection models and write its analysis
results to the mape working models.

— Planning [Subsystem] ,
plans : P Plan
ReflectionModels[Subsystem]

Vp: plans e
dom p.read = {eModels : P EnvironmentModel,;
cModels : P ConcernModel;
mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
eModels C environmentModels N\
cModels C concernModels N
mModels C mape WorkingModels N\
sModels C subsystemModels o
(eModels, cModels, mModels, sModels, p.state)} A
dom p.write = {cModels : P ConcernModel;
mModels : P Mape WorkingModel |
cModels C concernModels N
mModels C mape WorkingModels o
(p.state, cModels, mModels)}

Plan computations use the different reflection models to update the concern models and mape
working models.
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— Ezecuting [Subsystem] ,
ezxecutes : P Ezecute
ReflectionModels[Subsystem]

Ve : executes ®
dom e.read = {eModels : P EnvironmentModel;
mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
eModels C environmentModels N\
mModels C mape WorkingModels N
sModels C subsystemModels o
(eModels, mModels, sModels, e.state)} A
dom e.write = {mModels : P Mape WorkingModel;
sModels : P SubsystemModel[Subsystem] |
mModels C mapeWorkingModels N
sModels C subsystemModels o
(e.state, mModels, sModels)}

To perform adaptations, execute computations use the information of the different reflection
models. An execute computation can maintain a subsystem model while performing adapta-
tions of the corresponding subsystem.

The reflective computations schema groups the computations of a reflective subsystem:

— ReflectiveComputations [Subsystem] ,
Updating[Subsystem] !
Monitoring[Subsystem]

Analyzing[Subsystem]

Planning[Subsystem]

Ezecuting[Subsystem)

¥'m : monitors e

dom m.trigger = {as : P Analyse | as C analyses o (m.state, as)}
Y a : analyses o

dom a.trigger = {ps : P Plan | ps C plans e (a.state, ps)}
Vp: plans e

dom p.trigger = {es : P Execute | es C ezecutes  (p.state, es)}

Triggers are restricted to (the subsets of ) the respective computations of a reflective subsys-
tem.

C.3 IBM’s Autonomic Manager Framework

To conclude the MAPE-perspective, we formally describe an example of a hierarchical self-

adaptive autonomic system.
The base-level subsystem in an autonomic self-adaptive system is a managed resource and is

defined as:

ManagedResource
BaseLevelSubsystem

Knowledge is defined as:
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Knowledge
FReﬂectionModel ‘

An autonomic manager is abstractly defined as:

AutonomicManager
knowledge : Knowledge |

Autonomic manager computation manages a managed element (i.e. either a managed re-
source or an autonomic manager) and is defined as:

AutonomicManagerComputation [ManagedElement| !
{:ReﬂectiveComputation[ManagedElement} |

We distinguish between two types of autonomic managers: orchestrating autonomic manager
and resource manager, defined as follows:

__ OrchestratingAutonomicManager
AutonomicManager
mapeComputations :

P AutonomicManagerComputation[AutonomicManager]

— ResourseAutonomicManager
AutonomicManager
mapeComputations :

P AutonomicManagerComputation| ManagedResource]
manage : Knowledge x P ManagedResource — P ManagedResource

IBM’s autonomic manager framework considers four different types of resource managers
that deal with different types of concerns: self-healing, self-optimizing, self-healing, and self-
protecting, These managers are defined as:

__SelfConfiguringAutonomicManager
Resourse AutonomicManager |

__ SelfOptimizing AutonomicManager
Resourse AutonomicManager |

__SelfHealingAutonomicManager
Resourse AutonomicManager |

—SelfProtecting AutonomicManager
Resourse AutonomicManager |
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For the example, we define a concrete type of orchestrating autonomic managers that manage
resource autonomic manager for a single concern:

SingleConcernAutonomicManager

OrchestratingAutonomicManager

manage : Knowledge x P ResourseAutonomicManager
— P ResourseAutonomicManager

Finally, we can specify a concrete self-adaptive autonomic system:

— SelfAdaptive AutonomicSystem
Environment

context : Context

resources : P ManagedResource
endpointManagers : P Resourse AutonomicManager
systemManager : P SingleConcernAutonomicManager

server, clientl, client2, network : ManagedResource
serverOptimizer, networkOptimizer : ResourseAutonomicManager
systemOptimizer : Single ConcernAutonomicManager

resources = {server, clientl, client2, network}
endpointManagers = {serverOptimizer, networkOptimizer}
systemManager = {systemOptimizer}
dom serverOptimizer.manage = {(serverOptimizer.knowledge, { server})}
ran serverOptimizer.manage = {{server}}
dom networkOptimizer.manage = {(networkOptimizer.knowledge, { network})}
ran networkOptimizer.manage = {{network}}
dom systemOptimizer.manage =
{(systemOptimizer.knowledge, { serverOptimizer, networkOptimizer})}
ran systemOptimizer.manage = {{serverOptimizer, networkOptimizer}}

In this example, one resource manager is managing a server, another one is managing a
network. In addition, there is the system manager who serves as an orchestrating autonomic
manager, managing the two resource managers. The specification describes a hierarchy of au-
tonomic managers and specifies the scope of adaptations of the execute computations (i.e. man-
age) of the autonomic managers in the self-adaptive autonomic system.

D. TRAFFIC MONITORING CASE STUDY

Figure 5 shows the FORMS model of the traffic monitoring case study. By extending the
FORMS abstractions, we can precisely define the elements required to support self-healing.

Subsequently, we specify the elements of the traffic environment, the local traffic monitoring
system that instantiates a local base-level subsystem, the self-healing manager that instantiates
a local reflective computation, and the integrated traffic monitoring system. Then we declara-
tively specify how one of the cameras is healed after the failure of a neighboring camera.

For brevity, we limit the specification to the essence of what is needed to specify the self-
healing scenario. For a complete specification of the FORMS model of the traffic monitoring
system and the scenario, we refer the interested reader to [Weyns et al. 2010b].

D.1 Traffic Environment
We define the following attributes of the traffic environment:
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Fig. 9. FORMS model of the traffic - monitoring case.

cameray , cameray , cameras , freeflow_zoney , congested_zone, freeflow_zones ,
congested_zones , freeflow_zones , congested_zones , congested_zoney ,
ping_messageiz , echo_messagez1 : Attribute

For brevity, we only define the attributes that we use further in the document. We introduce a

name to group the attributes:

traffic_domain_attributes == {camera: , cameras , cameras , freeflow_zone ,
congested_zone, , freeflow_zones , congested_zoney , freeflow_zones , congested_zones }

We consider the following traffic

processes:

traffici , traffica , traffics , monitor_camera: , monitor_cameras , monitor_cameras ,

transmit : Process

traffic_domain_processes == {traffic1 , traffica , traffics , monitor_camera; ,

monitor_cameraz , monitor_

camerag , transmit }

Traffic processes represent the ongoing traffic in different monitored zones of the highway. A
monitor camera process allows the observation of the traffic conditions in the viewing range
of a camera. The transmit process provides the distributed communication service to transmit
messages between cameras. This process is used by the local traffic monitoring systems to
coordinate the agent organizations, and by the self-healing managers to coordinate for failure
management.

A traffic environment is defined as an environment with traffic attributes and traffic processes:
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— TrafficEnvironment
Environment

attributes C traffic_domain_attributes
processes C traffic_domain_processes

The traffic environment at TO in the example (Figure 0?7?) is defined as:

— TrafficEnvironmentro
TrafficEnvironment

attributes = {camera: , camerag , cameras , freeflow_zones , freeflow_zones |
congested_zones}
processes = traffic_domain_processes

We introduce the type shutdown to model terminations of processes in the traffic environment:

‘ Shutdown : P Process

Similarly, we introduce the type startup to model the initiation of new processes in the environ-
ment:

‘ Startup : P Process

‘We consider one shutdown event in the traffic environment:

‘ shutdowns : P Shutdown

‘ shutdowns = {monitor_cameraz}

We consider the following set of events in the traffic environment:

‘ events : P Event

events = {traffics — ({freeflow_zonez} — {congested_zonez}) ,
monitor_cameraz — ({cameraz} — {})}

The change of the traffic state in zone 2 at T1 is defined as:

— TrafficEnvironmento
A TrafficEnvironmentro
p? . Process
c?: Change

p? = traffice

c? = {freeflow_zones } — {congested_zones}
(p?, c?) € events

attributes’ = attributes \ first(c?) U second(c?)
processes’ = processes

|

The specification states that the traffic state is changed from free-flow to congested by the traffic
process in zone 2 (i.e. the zone monitored by camera 2).
From T1 to T2, the traffic environment does not change:

TrafficEnvironmentra
= TrafficEnvironmentr

A failure of camera 2 changes the traffic environment as follows:
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— TrafficEnvironmentrs
A TrafficEnvironmentra
p? : Process
¢? : Change
s?: shutdowns

p? = monitor_cameras

c? = {cameraz} — {}

(p?, c?) € events

s? = monitor_cameras

attributes’ = attributes \ first(c?) U second(c?)
processes’ = processes \ {s?}

The specification states that after the event, camera 2 is no longer available for traffic monitor-
ing, and consequently, the traffic monitoring process of camera 2 is shutdown.

D.2 Local Traffic Monitoring System

We consider the following traffic environment representations:

camy , camg , cams , fflow_zone; , congst_zone; , fflow_zonez, congst_zones ,
fflow_zones , congst_zones , pingi2 , echoz1 : EnvironmentRepresentation

traffic_environment_representations == {cam , cama , camg , fflow_zonex , congst_zone; ,
flow_zones , congst_zones , fflow_zones , congst_zones , pingi2 , echoz1 }

Attribute sets and environment representations in the traffic monitoring case are mapped as
follows:

traffic_attribute_representation_mapping ==
{{camerai} — cami ,{cameraz} — camy ,{cameraz} — cams ,
{freeflow_zone, } — fflow_zone, , {congested_zone1} — congst_zone ,
{freeflow_zonez} — fflow_zones , { congested_zones} — congst_zones ,
{freeflow_zones} — fflow_zones , { congested_zones} — congst_zones}

A local traffic model is defined as follows:

—LocalTrafficModel
TrafficEnvironment
Model| EnvironmentRepresentation]
mapping : P Attribute < EnvironmentRepresentation

representations C traffic_environment_representations
dom mapping C {attrs : P Attribute | attrs C attributes}
ran mapping = {r : EnvironmentRepresentation | r € representations}

Local traffic model represents attributes of the traffic environment and maps the attributes to
traffic environment representations.
The local traffic model of camera 1 at time T2 is defined:

ACM Journal Name, Vol. V, No. N, Month 20YY.



42 . Danny Weyns, Sam Malek, and Jesper Andersson

—LocalTrafficModelOners
TrafficEnvironmentra
Model[ EnvironmentRepresentation]
mapping : P Attribute <> EnvironmentRepresentation

representations = {fflow_zoner , camz, camz} A
mapping = {{freeflow_zone1 } — fflow_zone; ,
{cameraz} — camg, {cameraz} — cams}

The local traffic model for camera 2 at time T1 is defined:

— LocalTrafficModel Twors
TrafficEnvironmentra
Model| EnvironmentRepresentation)
mapping : P Attribute <> EnvironmentRepresentation

representations = {congst_zonez , cami , camsg} N\
mapping = {{congested_zonez} — congst_zones ,
{camera,} — camy ,{cameras} — cams}

And for camera 3:

— LocalTrafficModel Three 2
TrafficEnvironmentra
Model| EnvironmentRepresentation|
mapping : P Attribute <> EnvironmentRepresentation

representations = {congst_zones , congst_zones , cami , cama} A

mapping = {{congested_zones} — congst_zone, ,
{congested_zones} — congst_zones ,{camerar} — cami ,
{cameraz} — cama}

To define local traffic computations, we first introduce abstract types for the coordinating
elements used by the computations. Local traffic computations can play two types of roles:

Role ::= master | slave
The protocol used for coordination by the local traffic computations is defined:

MasterSlave
lee : Role }
To define the coordination model, we introduce a simple type of names:

Name == N

As we will define below, the names are associated with local camera systems. For brevity in
the explanation, sometimes we associate names with cameras.
The model used for coordination by the local traffic computations is defined:

OrganizationPartners

partners : P Name ‘
neighborOrganizations : P Name
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Partners are the names of members in the organization in which a camera currently is involved.
A slave has only one partner, i.e. its master. The partners of a master are its slaves. Neighbor
organizations are the names of the masters of the organizations at neighboring nodes. Only
masters maintain references to their neighbor organizations. For slaves, the set of neighbor
organizations is empty.

The coordination channel uses for coordination by the local traffic computations is defined:

MessagePassing
links : Name <> EnvironmentRepresentation }

A communication link maps a name of a camera to its representation. In the example, we
consider three concrete communication channels:

traffic_communication_channel == {1 — cami ,2 — cama ,3 — camg}

To define messages, we first introduce an abstract type to represent the content of messages:

[Content]

Messages are defined as:

Message
from : Name
to : P Name
content : Content

A message contains the name of the sender, the names of the addressees, and a content.
With the above specified types we can define the coordination mechanism that is used by
local traffic computations:

— DynamicAgentOrganizations
orgProtocol : MasterSlave
orgModel : OrganizationPartners
channel : MessagePassing

¥ p : orgModel.partners @ 31 : channel.links o first(l) = p A
Y norg : orgModel.neighborOrganizations @ 31 : channel.links e first(l) = norg |

The predicate states that there is a communication link with every partner in the organization,
and for the masters, with the masters of neighbor organizations.
The organization of camera 1 at T2 is defined:

— DynamicAgentOrganizationOners
DynamicAgentOrganizations

orgProtocol.role = master

orgModel.partners = @

orgModel.neighborOrganizations = {3}

channel.links = traffic_communication_channel \ {1 — cam, } |

At T2, camera 1 is the master of a single member organization (see Figure 0??). The master
of the neighbor organization is camera 3. Camera 1 has communication channels with the two
other cameras in in the traffic monitoring system.

The other organizations are defined as follows:
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— DynamicAgentOrganization Twors

DynamicAgentOrganizations

orgProtocol.role = slave

orgModel.partners = {3}

orgModel.neighborOrganizations = @

channel.links = traffic_communication_channel \ {2 — cama}

— DynamicAgentOrganizationThreers

DynamicAgentOrganizations

orgProtocol.role = master

orgModel.partners = {2}

orgModel.neighborOrganizations = {1}

channel.links = traffic_communication_channel \ {3 — cams}

Finally, a local traffic computation is defined as:

— LocalTrafficComputation
Computation

read : LocalTrafficModel x P State — P State

write : P State x Local TrafficModel — Local TrafficModel
perceive : P State x Context — P State

effect : P State x Context — Context
trafficCoordinationMechanism : DynamicAgentOrganizations
send : P State — Message

receive : Message — P State

|

A local traffic computation can act upon a local traffic model. It can perceive and effect the
context in which the camera is situated. Local traffic computations use dynamic agent orga-
nizations as a coordination mechanism to detect traffic jams in continues monitored zones.

Coordination is done by means of exchanging messages.
The local traffic computation of camera 1 at T2 is defined:

Local TrafficComputationOners

DynamicAgentOrganizationOners

(Local TrafficComputation

For the other cameras:

— LocalTrafficComputation Twor2
LocalTrafficComputation
DynamicAgentOrganization Twors

— LocalTrafficComputation Threers

Local TrafficComputation
DynamicAgentOrganization Threers
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Using local traffic model and local traffic computations, we can now define local traffic
monitoring system:

— LocalTrafficMonitoringSystem
trafficModel : Local TrafficModel
computation : Local TrafficComputation

dom computation.read = {(trafficModel, computation.state)} N
dom computation.write = {(computation.state, trafficModel)} A
dom computation.send = {computation.state} |

The predicate states that a local traffic computation is restricted to act upon the local traffic
model, and messages for coordination are produced based on the current state of the computa-
tion.

The local traffic monitoring systems at T2 are:

Local TrafficMonitoringSystemOners
Local TrafficMonitoringSystem

Local TrafficModelOnera

Local TrafficComputationOners

LocalTraffic MonitoringSystem Twors
Local TrafficMonitoringSystem

Local TrafficModel Two 2

Local Traffic Computation Twors

Local TrafficMonitoringSystem Threero
Local TrafficMonitoringSystem
LocalTrafficModel Three s

LocalTraffic Computation Threers

D.3 Self-Healing Subsystem

We define two types of reflection models in the traffic monitoring case: dependency model and
repair strategy.
To define a dependency model, we introduce the dependency type:

Dependency ::= neighbor | neighbormaster | mymaster | myslave

For the example, we limit the dependencies to neighboring nodes, masters of neighboring or-
ganizations (only for masters), and master-slave dependencies.
A dependency model maps dependencies to names of cameras and is defined:

DependencyModel
dependencies : Dependency <+ Name |

The dependency model for camera 1 at T2 is defined:
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— DependencyModelOners
DependencyModel

dependencies = {neighbor — 2, neighbormaster — 3,
myslave — 0, mymaster — 0}

|

Camera 2 has a dependency with camera 2 as neighbor and with camera 3 as neighbor master
of another organization. We use “0” to indicate that camera 2 currently has no dependencies
with slaves or a master.

The dependency models for the other cameras are defined as:

— DependencyModel Twor2
DependencyModel

dependencies = {neighbor — 1, neighbor — 3,
myslave — 0, mymaster — 3}

— DependencyModelThreers
DependencyModel |

dependencies = {neighbor — 2, myslave — 2, mymaster — 0} |

To model a repair strategy in the traffic monitoring application, we introduce a simple type of
repair actions:

RepairActions == Dependency <> (Name X Name)

Repair actions map dependencies to tuples of names. The first name in a tuple refers to the
camera in the dependency, the second name indicates the new dependency in case the camera
in the dependency fails.

A repair strategy model is defined as a set of repair actions:

RepairStrategy
FrepairActions : RepairActions ‘

The repair strategies for the traffic case are defined as:

— RepairStrategyOners
RepairStrategy

repairActions = {neighbor — (2, 3), neighbormaster — (3,2)}

|

The predicate states that if camera 2 fails the new neighbor of camera 1 will be camera 3, and
if camera 3 fails, camera 2 will be the master its neighbor organization.

— RepairStrategy Twor2
RepairStrategy

repairActions = {neighbor — (1,0), neighbor — (3,0),
mymaster — (3,0)}
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— RepairStrategy Threers
RepairStrategy

repairActions = {neighbor — (2, 1), neighbor — (1,0),
myslave — (2,0)}

The coordination model used for fault detection in the traffic monitoring application is de-
fined as:

DependentNodes

Fnodes : P Name }

To define the coordination protocol used for fault detection, we introduce a simply type to
represent time:

Time ==

The coordination protocol for fault detection is defined as:

F PingEcho |
|

The above definitions enable us to define the coordination mechanism for fault detection:

— PeerToPeer
CoordinationMechanism[PingEcho, DependentNodes, MessagePassing]
pingTime : Name <> Time

wattTime : Time

dom pingTime = model.nodes N\
V' n : model.nodes 31 : channel.links o first(l) = n |

Ping time maps names to times. The domain of ping time are the nodes (cameras) in the

dependency model. Ping time maintains the points in time when the last ping messages were

sent to each of the cameras with a dependency. Wait time is a constant that indicates when an

echo message should arrive after a ping messages has been sent. The last line of the predicate

states that there are communication links available to each camera in the dependency model.
The concrete instance of the coordination mechanism for camera 1 at T2 is defined:

___PeerToPeerOners
PeerToPeer

model.nodes = {2,3}

channel.links = traffic_communication_channel \ {1 — cami}

pingTime = {2 — 4430, 3 — 4440}

wattTime = 40 |

The predicate state that camera 1 has dependencies with camera 2 (its neighbor) and camera
3 (the master of its neighbor organization. The coordination mechanism has communication
channels available to all the other cameras in the system. The last ping message was sent to
camera 2 at time 4430 and to camera 3 at time 4440. Finally, the wait time for echo messages
is 40 time units.

The instances of the coordination mechanisms for the other cameras at T2 are defined:
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_ PeerToPeerTworo

PeerToPeer

model.nodes = {1,3}

channel.links = traffic_communication_channel \ {2 — cams}
pingTime = {1 — 4432,3 — 4434}

waitTime = 40

_ PeerToPeerThreers

PeerToPeer

model.nodes = {1,2}

channel.links = traffic_communication_channel \ {3 — cams}
pingTime = {1 — 4436, 3 — 4440}

waitTime = 40

We can now define self-healing manager:

—_SelfHealingManager

Computation
coordinationMechanism : PeerToPeer
readDM : DependencyModel x P State — P State
writeDM : P State x DependencyModel — DependencyModel
readRS : RepairStrategy x P State — P State
writeRS : P State X RepairStrategy — RepairStrategy
sense : Local TrafficMonitoringSystem x P State — P State
adapt : Local TrafficMonitoringSystem x P State

— Local TrafficMonitoringSystem
send : P State — Message
receive : Message — P State

|

A self-healing manager is a computation extended with a peer-to-peer coordination mechanism.
Self-healing manager can act upon a dependency model and repair actions. It can sense a
local traffic monitoring system and adapt it when a failure of a dependent camera is detected.

Coordination with other self-healing managers is done using the exchange of messages.

The self-healing managers at T2 are defined:

SelfHealingManagerOnera
(SelfHealingManager

PeerToPeerOners

SelfHealingManager Twors

(SelfHealmgManager

PeerToPeerTwors

SelfHealingManagerThreers

(SelfHealmgManager

PeerToPeerThreers
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A self-healing subsystem is defined as:

—_SelfHealingSubsystem
dependencyModel : DependencyModel
repairStrategy : RepairStrategy
selfHealingManager : SelfHealingManager

dom selfHealingManager.readDM =
{(dependencyModel, selfHealingManager.state)} A
dom selfHealingManager.write DM =
{(selfHealingManager.state, dependencyModel)} A
dom selfHealingManager.readRS =
{(repairStrategy, selfHealingManager.state)} N
dom selfHealingManager.writeRS =
{(selfHealingManager.state, repairStrategy)} A
dom selfHealingManager.send = {selfHealingManager.state} A
Y dependency : dependencyModel.dependencies e 31 :
selfHealingManager.coordinationMechanism.channel.links;
d : Dependency; n : Name e dependency = (d,n) A first(l) = n A
Y repairAction : repairStrategy.repairActions e 3 ol, nl :
selfHealingManager.coordinationMechanism.channel.links;
d : Dependency; on,nn : Name e
repairAction = (d, (on, nn)) A first(ol) = on A first(nl) = nn |

The predicate states that a self-healing manager can only act upon the local dependency model
and repair strategy. Messages for coordination are produced based on the current local state
of the computation. Furthermore, the predicate states that there is a communication link with
every camera with a dependency and with every camera in any of the repair actions.

The concrete self-healing subsystem for camera 1 at T2 is defined:

SelfHealingSubsystemOners
SelfHealingSubsystem
DependencyModelOners
RepairStrategyOners
SelfHealingManagerOners

The self-healing sybsystems for the other cameras at T2 are defined:

SelfHealingSubsystem Tworz
SelfHealingSubsystem
DependencyModel Twor2
RepairStrategy Twor2
SelfHealingManager Twors

SelfHealingSubsystem Threers
SelfHealingSubsystem
DependencyModelThreers
RepairStrategy Threers
SelfHealingManagerThreers

Finally, we model a timeout of a ping message. First, we introduce a simple clock:
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Clock

Ftime : Time }

The clock at T2 is defined:

—_ ClOCkT;g
Clock ‘

time = 4444

Time passes by as follows:

_ Tick
AClock ‘

time' = time + 1 |

A timeout is defined as:

— Timeout
=SelfHealingManager
Tick
n!: Name

dn!: Name; t: Time o
(n!, t) € coordinationMechanism.pingTime A
t + coordinationMechanism.wait Time > time’ |

The schema tells us that a timeout of a self-healing manager does not change its state. A timeout
happens when the clock makes a tick. The predicate states that a timeout for a particular camera
is reached when the time after the tick exceeds the last ping time for that camera plus the wait
time.

The timeout for self-healing manager 1 after the crash of camera 2 is defined as:

__ Timeout,
Timeout
ESelfHealingManagerOners
Tick
n!: Name

time = 4470
n! =2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

D.4 Traffic Jam Monitoring System
To define a traffic jam monitoring system, we first define a local camera system:
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— LocalCameraSystem

local TrafficMonitoringSystem : Local TrafficMonitoringSystem
selfHealingSubsystem : SelfHealingSubsystem
myName : Name

dom selfHealingSubsystem.selfHealingManager.sense =

dom selfHealingSubsystem.selfHealingManager.adapt =

{(localTrafficMonitoringSystem, selfHealingSubsystem.selfHealingManager.state) } A

{(localTrafficMonitoringSystem, selfHealingSubsystem.selfHealingManager.state) }

|

A local camera system consists of a local traffic monitoring system that deals with traffic jam
monitoring, and a self-healing subsystem that deals with failure management. A local camera

system has a unique name that is used for communication.
The concrete local camera systems at T2 are defined:

—LocalCameraSystemOners

LocalCameraSystem
Local Traffic MonitoringSystemOners
SelfHealingSubsystemOnera

myName = 1

— LocalCameraSystem Twora

LocalCameraSystem
Local TrafficMonitoringSystem Twors
SelfHealingSubsystem Twor2

myName = 2

— LocalCameraSystem Threers
LocalCameraSystem
LocalTrafficMonitoringSystem Three 2
SelfHealingSubsystem Threers

myName = 3

A situated local camera system is defined as:

___SituatedLocalCameraSystem

TrafficEnvironment
LocalCameraSystem
context : Context

context C attributes A

dom(local TrafficMonitoringSystem.computation.perceive) =
{attrs : Context | attrs C context o
(localTrafficMonitoringSystem.computation. state, attrs)} A

dom (local TrafficMonitoringSystem.computation.effect) =
{attrs : Context | attrs C context o
(localTrafficMonitoringSystem.computation. state, attrs)}

|
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A situated local camera system is a local camera system that is situated in a traffic environment.
A situated local camera system’s access to the environment is restricted to the context in which
the camera is situated.

The concrete situated local camera 1 in the example is defined at T2 as:

—SituatedLocalCameraSystemOnera
TrafficEnvironmentrs
LocalCameraSystemOnerpa
context : Context

context = {cameray , cameras , freeflow_zone, } |

The context of camera 1 consists of the two other cameras in the system and the traffic in its
viewing range.
The other concrete situated local cameras are defined:

—_SituatedLocalCameraSystem Twor2
TrafficEnvironmentra
LocalCameraSystem Twors
context : Context

context = {camem1 , camerag , congested,zoneg}

SituatedLocal CameraSystem Threero
TrafficEnvironmentra
LocalCameraSystem Threers

context : Context

context = {cameml , cameray , congested,zoneg}

We can now define a traffic jam monitoring system:

— TrafficJamMonitoringSystem
localCamaraSystems : P SituatedLocalCameraSystem

Vlcs : localCamaraSystems; msgs : P Message; addressees : P Name o
msgs = ran (les.local TrafficMonitoringSystem.computation.send) A
addressees = {n : Name; msg : msgs | n = msg.from e n} A
addressees = dom (les.local TrafficMonitoringSystem.computation.

trafficCoordinationMechanism.channel.links) N\

Vlcs : localCamaraSystems; d : Dependency; n : Name o
(d,n) € les.selfHealingSubsystem.dependencyModel.dependencies N
n # les.myName A

Vlcs : localCamaraSystems; shmsgs : P Message; shaddressees : P Name e
shmsgs = ran (lcs.selfHealingSubsystem.selfHealingManager.send) A
shaddressees = {n : Name; msg : msgs | n = msg.from e n} A
shaddressees = dom (lcs.selfHealingSubsystem.selfHealingManager.

coordinationMechanism.channel.links) |

A traffic monitoring system consists of a set of situated local camera systems. The first part
of the predicate defines the scope of communication of the base-level subsystems. The second
part defines the dependencies in the system and states that a local camera system cannot depend
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on itself. The third part of the predicate defines the scope of communication of the self-healing
subsystems.
At T2 the state of the traffic jam monitoring system is:

TrafficJamMonitoringSystemo
TrafficJamMonitoringSystem
SituatedLocal CameraSystemOners
SituatedLocal CameraSystem Twors
SituatedLocalCameraSystemThreera

|

Note that we have not provided the specification of the situated local camera system of cameras
2 and 3 in this document. For the omitted part of the specification, we refer the interested reader
to [Weyns et al. 2010b].

At T3 when camera 2 fails, the state of the traffic camera system is changed as follows:
— TrafficJamMonitoringSystemrs

A TrafficJamMonitoringSystemra ‘
les2? . SituatedLocalCameraSystem

les2? € localCamaraSystems A
lcs2?.myName = 2 N\
localCamaraSystems’ = localCamaraSystems \ {lcs27}

|

To conclude, we formalize how camera 1 recovers from the failure of camera 2 that happens
after the time out of the ping message. First we define two helper functions to update the
different parts of the camera system:

adaptLocal TrafficMonitoringSystem : SituatedLocalCameraSystem x Attribute x
EnvironmentRepresentation x Name — Local TrafficMonitoringSystem

V sles : SituatedLocalCameraSystem; ultms : Local TrafficMonitoringSystem;
camera : Attribute; cam : EnvironmentRepresentation; n : Name e
ultms.trafficModel.representations =
sles.local TrafficMonitoringSystem.trafficModel.representations \ {cam} A
ultms.trafficModel.mapping =
sles.local TrafficMonitoringSystem.trafficModel.mapping \ {{camera} — cam} A
ultms.computation.trafficCoordinationMechanism.orgProtocol.role =
sles.local TrafficMonitoringSystem.computation.
trafficCoordinationMechanism.orgProtocol.role A
ultms.computation.trafficCoordination Mechanism.orgModel.partners =
sles.local TrafficMonitoringSystem.computation.
trafficCoordinationMechanism.orgModel.partners \ {n} A
ultms.computation.trafficCoordination Mechanism.orgModel.neighborOrganizations =
sles.local TrafficMonitoringSystem.computation.
trafficCoordinationMechanism.orgModel.neighbor Organizations A
ultms.computation.trafficCoordinationMechanism.channel.links =
sles.local TrafficMonitoringSystem.computation.
trafficCoordinationMechanism.channel.links \ {n — cam} A
adaptLocal TrafficMonitoringSystem(slcs, camera, cam, n) = ultms

The first helper function takes a situated local camera system and the data of a camera that fails
and returns the adapted local traffic monitoring system of the camera system. The function is
applicable for situations in which a neighboring camera fails that plays the role of slave. The
adaptation includes:

—The representation of the camera is removed from the set of representations;
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—The mapping of the representation to the real camera is removed;

—The role of the traffic monitoring system is not changed;

—The failing camera is removed from the list of partners;

—The neighbor organizations are not changed (the failing camera is a slave of a neighbor
organization);

—The communication link to the failing camera is removed.

updateSelfHealingSubsystem : SituatedLocalCameraSystem x Attribute x
EnvironmentRepresentation X Name — SelfHealingSubsystem

V slcs @ SituatedLocalCameraSystem; ushs : SelfHealingSubsystem;
camera : Attribute; cam : EnvironmentRepresentation; n : Name e
J newneighbor : Name o sics.selfHealingSubsystem.repairStrategy.
repairActions > {(n, newneighbor)} = {neighbor — (n, newneighbor)} A
ushs.dependencyModel.dependencies =
sles.selfHealingSubsystem.dependencyModel.dependencies
@{neighbor — newneighbor} A
ushs.repairStrategy.repairActions =
slcs. selfHealingSubsystem.repairStrategy.repairActions\
{neighbor — (n, newneighbor)} A
ushs.selfHealingManager.state =
sles.selfHealingSubsystem.selfHealingManager.state N
ushs.selfHealingManager.coordinationMechanism.protocol =
sles.selfHealingSubsystem.selfHealingManager. coordinationMechanism.
protocol N
ushs.selfHealingManager.coordinationMechanism.model.nodes =
sles.selfHealingSubsystem.selfHealingManager. coordinationMechanism.
model.nodes \ {n} A
ushs.selfHealingManager. coordinationMechanism.channel.links =
sles.selfHealingSubsystem.selfHealingManager. coordinationMechanism.
channel.links \ {n — cam} A
Ipt : Time o {n} < slcs.selfHealingSubsystem.selfHealingManager.
coordinationMechanism.pingTime = {(n — pt)} A
ushs.selfHealingManager.coordinationMechanism.ping Time =
sles.selfHealingSubsystem. selfHealingManager. coordinationMechanism.
pingTime \ {n — pt} A
ushs.selfHealingManager.coordinationMechanism.wait Time =
sles.selfHealingSubsystem. selfHealingManager. coordinationMechanism.
waitTime N
updateSelfHealingSubsystem (slcs, camera, cam, n) = ushs

The second helper function updates the self-healing system after a camera fails. This function
is applicable for the same type of situations as the first helper function. The update includes:

—The dependencies are updated with the new neighbor;

—The repair actions related to the crashed camera are removed.

—The computation state of the self-healing manager is not changed;
—The coordination protocol is not changed;

—The node of the failing camera is removed from the coordination model;
—The communication link to the failing camera is removed;

—The ping time to the failing camera is removed;
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—The wait time for ping messages is not changed.
Finally, the recovery is defined as:

__ CameraOneRecoversFromFailure CameraTwo
A TrafficJamMonitoringSystemrs
TrafficEnvironmentrs

Timeouty

les1?, les1! @ SituatedLocalCameraSystem
camera : Attribute

cam : EnvironmentRepresentation

n : Name

{camera} = first(c?) A
traffic_attribute_representation_mapping =
traffic_attribute_representation_mapping \ {{camera} — cam} A
traffic_communication_channel =
traffic_communication_channel \ {n — cam} A
les1? € localCamaraSystems A
les1?.myName =1 A
les1!.myName = lcs1?.myName A
les1l.context = lcs1?.context \ {camera} A
les1!.selfHealingSubsystem =
updateSelfHealingSubsystem(lcs1?, camera, cam,n) A
les1!.local TrafficMonitoringSystem =
adaptLocal TrafficMonitoringSystem (lcs1?, camera, cam, n) A
localCamaraSystems’ = localCamaraSystems \ {lcs1?} U {lcs1!} |

The specification declaratively specifies what state of the local camera system is adapted after
the failure of the camera. The first part of the predicate assigns the attribute, representation,
and name of the failing camera to the variables camera, cam, and n, using the camera failure
event. Next, the attribute representation mappings and communication channels are updated;
the recovering local camera system is selected (with myName = 1) and the failing camera is
removed from its context. Then adaptation is specified, consisting of two parts: an update of
the state of the self-healing subsystem and the actual adaptation of the local traffic monitoring
system (using the helper functions defined above). From an operational point of view, the self-
healing manager will update its state and apply the adaptation of the local traffic monitoring
system using various read and write operations. An analogous specification can be defined for
the recovery of camera 3 in the scenario.

E. I1BM AUTONOMIC MANAGER FRAMEWORK

In this section, we study the model for IBM’s autonomic manager framework [IBM 2006],
which advocates a hierarchical composition of autonomic managers. This case illustrates mod-
eling with the primitives from FORMS’s Reflection and MAPE-K perspectives. The basic
building block is the autonomic manager that implements a control loop (MAPE-K). The auto-
nomic control loop consists of four basic activities: monitor, analyze, plan, and execute. The
activities share knowledge that typically includes a model of the managed element(s) and a
description of goals [Huebscher and McCann. 2008]. An autonomic manager provides sen-
sors and effectors for other autonomic managers to use. As further detailed below, this enables
hierarchical composition of autonomic managers.

Figure 10 describes the autonomic manager using the basic FORMS’s primitives. The auto-
nomic manager corresponds to a self-adaptive unit from FORMS. An autonomic manager com-
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Fig. 10. MAPE-K’s computations and knowledge in relation to FORMS primitives. White boxes represent IBM’s
autonomic manager constructs, gray boxes represent FORMS constructs.

prises four types of autonomic manager computations, which instantiate four concrete types of
reflective computation from FORMS: monitor, analyze, plan, and execute. Autonomic manager
components can reason about and act upon the shared knowledge, which instantiates reflection
model from FORMS. Monitor requires a sensor to monitor the managed element, which can be
either a managed resource (corresponding to FORMS’s base-level subsystem) or an autonomic
manager (corresponding to FORMS’s self-adaptive unit). In the former case, the sensor is pro-
vided by the manageability endpoint of the managed resource. Execute requires an effector to
adapt the managed element according to the plans constructed by the plan component.

While there is a shared understanding on the different types of computations in a MAPE-
K autonomic manager, the role of knowledge is less clear. According to [Kephart and Chess
2003], knowledge refers to the data collected from managed resources, models for analysis such
as queueing network models, policy information, and action plans. [Miller 2005] groups the
different forms of knowledge in three distinct types: topology knowledge, policy knowledge,
and problem determination knowledge.

We now briefly explain how hierarchies of autonomic systems are constructed using auto-
nomic managers and modeled in FORMS. Figure 11(a) shows some different types of auto-
nomic managers [Kephart and Chess 2003], arranged in a hierarchy.

Figure 11(b) depicts how FORMS primitives are used to model the hierarchy in Figure 11(a).
A resource autonomic manager manages a managed resource. Four concrete types are dis-
tinguished: managers for self-configuring, self-healing, self-optimizing, and self-protecting.
Orchestrating autonomic managers on the other hand manage groups of resource autonomic
managers. In particular, a single concern orchestrating autonomic manager manages a group
of resource autonomic managers of the same type, while a multiple concern orchestrating au-
tonomic manager manages a group of resource autonomic managers of different type. Orches-
trating autonomic managers themselves can be managed by higher-level autonomic managers,
just like a self-adaptive unit in FORMS that can be reflected upon by another self-adaptive unit
from the level above. A hierarchy of autonomic managers thus corresponds to the reflective
levels in FORMS. In a hierarchy of autonomic managers, data can be obtained and shared via
knowledge sources. According to [Miller 2005], a knowledge source is an implementation of
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Fig. 11. Autonomic manager hierarchies in FORMS. White boxes represent autonomic manager constructs, gray boxes
represent FORMS constructs.

a registry, dictionary, database or other repository that provides access to knowledge that need
to be shared among autonomic managers. Appendix C.3 provides a formal specification of the
elements shown in Figure 11(b) and uses them to describe a simple example of a self-adaptive
autonomic system.

F. SENSOR NETWORK SYSTEM

The final self-adaptive software system that we study in light of FORMS is MIDAS [Malek
et al. 2007], which is an application family developed in collaboration between one of the au-
thors and Bosch engineers. MIDAS is a security monitoring distributed application composed
of a large number of wirelessly connected sensors, gateways, hubs, and PDAs. The sensors are
used to monitor the environment around them, and communicate their status to one another and
to the gateways. The gateway nodes are responsible for managing and coordinating the sensors.
Furthermore, the gateways translate, aggregate, and fuse the data received from the sensors, and
propagate the appropriate data (e.g., events) to the hubs. Hubs, in turn, are used to evaluate and
visualize the sensor data for human users, as well as to provide an interface through which a
user can send control commands to various sensors and gateways in the system. Hubs may also
be configured to propagate the appropriate sensor data to PDAs, which are used by the mobile
users of the systems.

MIDAS has several QoS requirements that need to be satisfied in tandem, in particular re-
sponse time and energy consumption. The engineers found the deployment of software com-
ponents to hardware devices (i.e., deployment architecture) to have a significant impact on
these two QoS requirements. For instance, the availability of local communication on a sensor
platform reduces the response time, but would potentially increase the rate at which the sen-
sor’s battery power is drained. As a result, a self-adaptation framework was developed that in
response to changes in system properties (e.g., changes in remaining battery, fluctuations in net-
work bandwidth) looks for the near-optimal deployment architecture at runtime and improves
the system’s QoS through redeployment of its software components.

Figure 12 shows the framework’s distributed instantiation. Each host runs an instance of
the framework that consists of the following components: Deployment Analyzer— maintains
a representation of the system’s deployment architecture, such as the hardware hosts, software
components, component dependencies, various system parameters of interest (e.g., network
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Fig. 12. Deployment self-optimization approach in MIDAS case study.

bandwidth, frequency of interactions), and uses this model to assess the system’s current QoS
attributes. QoS Planner—searches for a deployment architecture that improves the QoS at-
tributes and performs a trade-off analysis to ensure that the cost of redeployment (e.g., resource
overhead and temporary unavailability of components) does not exceed the benefits (e.g., im-
provements in QoS) of it. Monitor—collects data on changes in system parameters and iden-
tifies patterns of change to initiate adaptation. Effector—adapts the system through migration
of its component. User Input—used by the system’s user to input their QoS preferences in
the form of a utility function, as well as the information about system parameters that may
not be easily monitored (e.g., security of a network link). The framework described above has
been realized using an integration of several tools; the interested reader may find more details

at [Malek et al. 2007].
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Fig. 13. Precise specification of MIDAS through FORMS constructs. White boxes represent MIDAS constructs, gray
boxes represent FORMS constructs.

Environment Computation

Figure 13 shows the specification of MIDAS using FORMS. Similar to the previous two
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case studies we are able to precisely define the elements of MIDAS by extending the FORMS
constructs. Unlike the traffic monitoring case study that has a single concern, in MIDAS we
have two QoS objectives (concerns), energy consumption and response time, which extend
FORMS'’s concern model. MIDAS’s deployment model, which represents the allocation of
software components to hardware platforms, extends FORMS’s system model . Deployment
model is used by MIDAS’s reflective computations for making adaptation decisions.

Another important difference in this case study is the existence of two different types of
reflective computations, QoS planner and deployment analyzer, which are accompanied by two
types of coordination mechanism, market-based and peer-to-peer. As shown in Figure 12, QoS
planner runs on every MIDAS platform and coordinates with other QoS planners via an auction
protocol, which as specified in Figure 13, corresponds to FORMS’s coordination protocol.
In this protocol, each planner periodically initiates an auction for one of its locally deployed
components, which allows other planner components to participate by placing bids. Each bid
contains a utility value that corresponds to the improvements in system’s overall QoS as a result
of redeploying the auctioned component to the bidding device. Bid collection represents the
coordination model and consists of tuples of form (bidder id, utility value) maintained by each
QoS planner. The format of tuples maintained may change depending on the type of auction
(e.g., Vickrey, Dutch, English).

Deployment analyzer is another type of reflective computation that just like QoS planner
exists on every MIDAS platform. In order to quantitatively estimate the current QoS obtained
for the system’s deployment, each deployment analyzer needs to first augment its local model
with the information available from the neighboring deployment analyzers. For this purpose,
each Deployment analyzer uses a peer-to-peer coordination mechanism in which each peer
multi-casts (FORMS’s coordination protocol) changes in its local model to the peers within its
group membership (FORMS’s coordination model).

As depicted in Figure 13 we were able to use FORMS to precisely specify other architectural
facets of MIDAS (e.g., separation of reflective subsystem from managed subsystem) that for
brevity are not discussed further here.

ACM Journal Name, Vol. V, No. N, Month 20YY.

59



