
An Architectural Approach to Support Online Updates of
Software Product Lines

Danny Weyns, Bartosz Michalik, Alexander Helleboogh, Nelis Boucké
DistriNet Labs, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven Belgium

{danny.weyns,bartosz.michalik,alexander.helleboogh,nelis.boucke}@cs.kuleuven.be

ABSTRACT
Despite the successes of software product lines (SPL), managing the
evolution of a SPL remains difficult and error-prone. Our focus of
evolution is on the concrete tasks integrators have to perform to up-
date deployed SPL products, in particular products that require run-
time updates with minimal interruption. The complexity of updating
a deployed SPL product is caused by multiple interdependent con-
cerns, including variability, traceability, versioning, availability, and
correctness. Existing approaches typically focus on particular con-
cerns while making abstraction of others, thus offering only partial
solutions. An integrated approach that takes into account the dif-
ferent stakeholder concerns is lacking. In this paper, we present
an architectural approach for updating SPL products that supports
multiple concerns. The approach comprises of two complementary
parts: (1) an update viewpoint that defines the conventions for con-
structing and using architecture views to deal with multiple update
concerns; and (2) a supporting framework that provides an extensi-
ble infrastructure supporting integrators of a SPL. We evaluated the
approach for an industrial SPL for logistic systems providing empir-
ical evidence for its benefits and recommendations.

Categories and Subject Descriptors
D.2.7 [Software]: Software Engineering—Maintenance

General Terms
Design

Keywords
Software product lines, online updates, viewpoint

1. INTRODUCTION
Over the last decade, many companies have successfully adopted

a software product line (SPL) approach. Clements and Northrop [7]
define a SPL as a set of software-intensive systems (products) that
share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and are developed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICSA ’11 Boulder, Colorado USA
Copyright 2011 ACM 0-12345-67-8/90/01 ...$10.00.

from a common set of core assets in a prescribed way. The key un-
derlying success factor of SPL is the integrated perspective on reuse
which includes all aspects of the company; from business strategy
to architecture, processes, and the organization structure. Reported
benefits of SPL adoption include [20]: improved productivity, en-
hancement of quality, and reduction of time to market.

Despite the success of SPL, managing the evolution of SPL
for large-scale distributed systems remains difficult and error-
prone [16]. Evolution of a SPL entails many aspects. A first aspect
is the strategic planning of how to evolve a SPL over time in terms
of scope. A second aspect is the concrete redesign and the develop-
ment of the updated product line assets1. A third aspect are the actual
update tasks integrators have to perform to update one or more de-
ployed products of a SPL. The research presented in this paper is
concerned with this third aspect. Our particular focus is on updating
SPL products that require online updates with minimal interruption.
Typical update scenarios are extending a deployed product with a
new feature, replacing an asset (or parts of it) to solve a particular
problem, etc. The complexity associated with performing update
tasks of deployed SPL products is caused by the many interrelated
concerns. From a literature study and our experience with SPL for
complex distributed systems, we identified the following important
concerns:

1. Variability. A key aspect of SPL is that products are derived
from a shared set of core assets. However, the combination
of assets is constrained, which captures the variabilities of the
product line.

2. Traceability. Traceability refers to the ability to link assets of
the SPL (documents, libraries, code, etc.). Tracing assets is
crucial to understand the relations and dependencies among
various assets of a SPL. This is particularly relevant for SPL
which comprises legacy assets with incomplete or outdated
documentation.

3. Versioning. SPL assets evolve over time to solve bugs, im-
prove performance, enhance security, etc. With each release
new versions of the assets can be added to the SPL. However,
new versions of assets may not directly be applied to all prod-
ucts. As a result, multiple versions of SPL assets typically
co-exist which are not always compatible.

4. Availability. Modern large-scale distributed software products
often have demanding availability requirements. Therefore,
the time (parts of) the deployed systems have to be shut down
during updates should be minimized.

1With asset we refer to both core assets (the reusable artifacts of a
SPL from which products are composed) and product-specific assets
(the additional artifacts developed for one particular product).

5. Correctness. A correct update requires a valid sequence of
update steps (adding/removing/replacing resources and stop-
ping/starting processes) that bring the deployed system to
the new configuration without compromising its consistency.
Faulty updates increase integration costs and harm the reputa-
tion of the SPL owner.

A number of methods and mechanisms have been proposed to
cope with SPL evolution, and updates in particular. However, these
approaches typically focus on particular concerns while making ab-
straction of others, thus offering only partial solutions. An inte-
grated approach that takes into account the various stakeholder con-
cerns is lacking. This paper contributes with a comprehensive ap-
proach for online updates of SPL that ensures consistent integration
of the changes in the affected SPL products. The approach takes an
architecture-centric perspective and supports multiple concerns of
SPL updates. It comprises two complementary parts: (1) an update
viewpoint, and (2) a supporting framework. The update viewpoint
defines the conventions for the construction and use of architecture
views to deal with concrete update concerns of the stakeholders. The
supporting framework provides a reusable and extensible infrastruc-
ture that assists integrators with product updates. The framework
offers support for harvesting relevant architectural knowledge, an-
alyzing the knowledge, constructing the view models, updating the
SPL products, and checking consistency.

We have applied the approach to support integrators with the up-
dates of an industrial SPL for logistic systems. This case study was
performed in a joint R&D project between Egemin2, an industrial
manufacturer of logistic systems, and DistriNet Labs at K.U.Leuven.
The case study is a representative example of a complex industrial
SPL which consists of multiple subsystems (automated guided vehi-
cles - AGVs, cranes, etc.). The different concerns with managing the
updates of SPL mentioned above apply to the case.

The remainder of this paper is structured as follows. In section 2,
we introduce the case study and describe the problems the company
faces with updating their SPL products. Next, we present the con-
stituent parts of our approach for updating product lines: the update
viewpoint (section 3), and the supporting framework (section 4). In
section 5, we report the results of an empirical evaluation of the ap-
proach. Section 6 discusses related work. Finally, we draw conclu-
sions and look at future work in section 7.

2. PROBLEM
In this section, we pinpoint the problems with online updating of

SPL products using a case study. We start by introducing the case.
Then we illustrate the concrete problems with online updates.

2.1 Case
Egemin is a leading company that provides full life cycle support

for logistic systems. Such systems are used for warehouse automa-
tion, e.g., for distributing manufactured products to storage locations
or as an interprocess system between various production machines.

A logistic system has a three-layered architecture. The bottom
layer is a distributed host infrastructure in .NET that provides ba-
sic support for sensor and actuator interfacing, network communica-
tion, etc. The logistic platform (middle layer) is a service framework
developed by Egemin that provides common middleware services
for logistic systems. The platform makes use of the distributed host
infrastructure, providing general support for system configuration,
communication, persistency, security, logging, visualization, and di-
agnosis. The logistic platform also offers basic support for dynamic

2http://www.egemin.com/

updates, including the (de-)activation of components, buffering of
messages, etc. Depending on the client-specific requirements, a lo-
gistic system typically integrates a number of logistic subsystems
(top layer) that make use of the logistic platform. These logistic sub-
systems are built from a common set of components that can be cus-
tomized and composed to the needs of the customers. Typical logis-
tic subsystems include a warehouse management system (E’wms R©)
that is responsible for managing tasks in the system, and various
transportation subsystems with control software such as automated
guided vehicles (E’tricc R© - Egemin transport intelligent control cen-
ter), cranes (E’car R© - Egemin crane automatic storage and retrieval
system), and conveyers (E’con R©).

Currently, Egemin’s SPL comprises around 200 deployed logistic
systems with 6 different subsystems to compose logistic systems.
Per year, Egmin deploys 20 to 30 new logistic systems.

2.2 Problems with SPL Updates
Logistic systems are long-lived systems (typically 10+ years).

During this lifespan, systems obviously have to evolve. On average,
a logistic system requires three update tasks during the first year after
deployment and an additional one per year afterwards.

Figure 1 shows a typical configuration of a logistic system. The
software is deployed on four hosts. Each logistic subsystem com-
prises a service and a client that makes use of the distributed logis-
tic platform. The service offers the functionality of the subsystem,
while the client provides a graphical interface to access the service.
In the scenario, there are services and clients for warehouse manage-
ment, and for controlling cranes and automated guided vehicles.

Some typical update scenarios are:

• The E’car service needs to be upgraded from version v10 to
version v12 which includes a new stacking algorithm that re-
duces the average retrieval time by 12%.

• An intermittent synchronization problem with database access
has been discovered. Solving this problem requires the re-
placement of the database access component of the logistic
platform.

• A new conveyer belt has been introduced in the factory and
its control software needs to be integrated with the logistic
system. The E’con service will be deployed on a new host,
while the client software will be added to Host 4.

Egemin faces various problems with such update scenarios. Be-
sides the intrinsic complexity of the logistic systems3, the problems
are caused by concrete instances of the main concerns of SPL up-
dates as we discussed in the introduction:

1. Variability. Logistic systems are built from a set of core assets.
Each system is unique in its composition and client-specific
extensions. However, core assets cannot be composed arbi-
trarily. The constraints between the SPL assets and their as-
semblies introduce a complex management problem.

2. Traceability. Egemin’s SPL comprises a lot of legacy software
components. Documentation of the deployed systems is often
incomplete or outdated. In addition, logistic subsystems are
developed by different teams that work relatively independent.
The lack of documentation and detailed knowledge makes it
difficult to trace the complex dependencies between the in-
stalled subsystems.

3The code base of a typical logistic system consists of several 100K
lines of code. The software is spread over hundreds of interdepen-
dent components (.NET assemblies) that are deployed on a network
of heterogenous computer systems.

Figure 1: Typical configuration of a logistic system

3. Versioning. Multiple, often incompatible versions of logistic
subsystems and their constituent components exist at the same
time. Obviously, this adds to the complexity of updating lo-
gistic systems.

4. Availability. Logistic systems typically have to operate 24/7.
Therefore, evolving the system with minimal interruption is
crucial. Determining which processes (services and clients)
have to be shut down and (re-)started and when is a complex
problem. Restarting an incorrect configuration may compro-
mise the consistency of the system.

5. Correctness. The lack of detailed information about deployed
systems causes uncertainty about the correct sequence of up-
date steps that have to be performed. As a result, only highly
skilled engineers perform update tasks. But even so, it is well-
known at Egemin that this approach does not guarantee that
updates can be completed correctly. The only option is than to
restore the system to the old version.

3. UPDATE VIEWPOINT
The central part of the approach we propose for updating deployed

SPL products is the update viewpoint. The ISO/IEC 42010 stan-
dard [12] defines an architecture viewpoint as “a work product estab-
lishing the conventions for the construction, interpretation and use of
architecture views to frame specific system concerns.” As such, the
update viewpoint establishes the conventions for defining and using
architecture views to deal with the update concerns of SPL.

To the best of our knowledge, no architecture viewpoint to sup-
port software updates exists, either for regular software systems or
for SPL. To define an update viewpoint for SPL, we combined a lit-
erature study on SPL evolution, including [16, 17, 20, 1, 3], with a
series of interviews with stakeholders of Egemin’s SPL. The focus
of the study and the interviews was on identifying the key stakehold-
ers involved in updating SPL and their main concerns, the relevant
models, and the required analysis for evolving a SPL. From the liter-
ature study and the interviews, we constructed the update viewpoint
for SPL. We documented the viewpoint using the template for archi-
tecture viewpoints proposed in the ISO/IEC 42010 standard [12] and
illustrated in [11]. The update viewpoint enables identification of the
concrete update concerns and discussion of the tradeoffs between the
concerns.

Table 1 shows an overview of the resulting viewpoint. For brevity,
we have omitted some details of the description. For the complete
description of the viewpoint we refer the interested reader to [22].

Overview. The overview gives a brief summary of the viewpoint
and its key features. The update viewpoint codifies reusable archi-
tecture knowledge to update SPL, independently of any particular
context or technology. The focus of the update viewpoint is on the

tasks integrators have to perform to update deployed products of a
SPL with minimal interruption. The viewpoint can be used to guide
stakeholders to construct a concrete update views for their particular
context.

Concerns. The viewpoint captures the five main concerns of SPL
updates as we discussed in the introduction and illustrated for
Egemin in section 2.2. The questions for each concern help the archi-
tect(s) to interact with the other stakeholders and apply the viewpoint
for their particular SPL. We illustrate this with two examples. Con-
sidering the question “On which locations are the assets deployed?”
in the context of Egemin’s SPL leads to the following clarifications
w.r.t. the traceability concern: (1) a logistic system is a distributed
system that is typically deployed on a heterogenous hardware and
network infrastructure; (2) a location for Egemin’s SPL is a direc-
tory on a particular host on which a part of the software of a logistic
system is deployed; (3) the configuration/deployment of a logistic
system is described in a project report. The deployment of a logis-
tic system is also known in detail by the system administrator of
the customer. Considering the question “How to perform the update
with minimal interruption of the system” in the context of Egemin’s
SPL clarified the availability concern as follows: (1) when a logistic
subsystem is shut down for an update, all ongoing transport tasks
(e.g. AGVs that are carrying a load) first have to be completed to
avoid inconsistencies, (2) as a result, shutting down a typical logistic
subsystem (e.g. the AGVs or the cranes) takes on average 15 min-
utes, (3) subsystems have dependencies to one another which may
imply that shutting down one subsystem for an update requires shut-
ting down and updating other subsystems as well.

Stakeholders. The key stakeholders of the update viewpoint are the
architect(s), integrators, and the costumer system administrator. At
Egemin there are a number of architects and senior engineers that are
responsible for the different types of logistic systems. Update tasks
are typically performed by the senior engineers.

Model Kinds. The viewpoint defines four model kinds that deal with
the various stakeholder concerns. Models M1 and M2 allow stake-
holders to browse the locations and structure of the deployed product
(as-is) and the future product (to-be) respectively. These models deal
with the variability, traceability and versioning concerns. Model M3
shows the update steps that integrators have to perform to update a
deployed product, dealing with the availability and correctness con-
cerns. Finally, model M4 shows inconsistencies of the product, deal-
ing with the correctness concern.

The four model kinds are based on an integrated meta-model that
defines the conceptual entities, their attributes and the relationships
that comprise the vocabulary of the model kinds. For a detailed
discussion of the individual meta-models of the four model kinds,
we refer the interested reader to [22]. Defining an integrated meta-

Table 1: Update viewpoint for SPL

Name Viewpoint for online updates of SPL products
Overview The viewpoint deals with the main stakeholder concerns related to online updates of SPL, (i.e., variability, ver-

sioning, traceability, availability, and correctness) and defines models for updating deployed SPL products and
capturing decisions pertaining to the product updates. The models show the relevant architectural information
to the stakeholders dealing with their update concerns. The decisions delineate the policies and mechanisms to
correctly update deployed products with minimal service interruption, including policies and mechanisms for
managing variants of assets, versions of the products, assets, and the resources that correspond to the assets.

Concerns C1 - Variability: Which are the core assets and product-specific assets that are currently installed/should be
present in the system after the update? Is the combination of assets a valid one?
C2 - Traceability: On which locations are the assets deployed? Which assets map to the installation bundles?
Which resources map to which assets? Which development teams have the ownership of the assets?
C3 - Versioning: Which are the versions of the core assets and product-specific assets that are currently in-
stalled? Which are the versions of the deployed resources for each asset? Which are the versions of the assets
and resources that should be present for each asset after the update?
C4 - Availability: How to perform the update with minimal interruption of the system? Which processes are
shut down and (re-)started during an update?
C5 - Correctness: What is the procedure to perform a correct update? Which resources have to be replaced
to perform a correct update? Which processes have to be shut down and (re-)started and when? Is the update
correct? Which inconsistencies still reside in the as-is product?

Stakeholders Architect(s): prepare the update (primary interested in concerns C1 to C4).
Integrators: perform the update (C1 to C5)
Customer admin: maintains and operates the product (C1, C3, C4).

Model Kinds M1 - As-Is Product Deployment (deals with concerns C1, C2, C3): A browsable model of the current product
that shows locations, assets, owners, asset constraints, deployed resources, and resource dependencies.
M2 - To-Be Product Deployment (deals with concerns C1, C2, C3): A browsable model of the future ver-
sion of the product that includes installation bundles, assets, owners, asset constraints, resources, and resource
dependencies.
M3 - Update Procedure (deals with concerns C4, C5): A model showing the activities to perform the update,
such as the resources that must be replaced/removed for the update, and the processes that have to be shut down
and restarted during the update. M3 shows the outcome of Analysis A1 (see below).
M4 - Update Inconsistencies (deals with concern C5): A model showing the inconsistencies in the updated
product. M4 shows the outcome of Analysis A2.

Meta-Model

Key: UML; dotted elements are examples
Modeling elements per model kind:

M1: Product, Asset, Owner, Asset Constraint, Location, Process, Resource, Resource Dependency
M2: Product, Asset, Owner, Asset Constraint, Installation Bundle, Resource, Resource Dependency
M3: Product, Asset, Location, Process, Installation Bundle, Resource
M4: Product, Asset, Asset Constraint, Owner, Location, Resource, Resource Dependency

Analyses A1 - Identify differences between as-is and to-be product:
- Resources to be added (present in to-be, absent in as-is)
- Resources to be removed (present in as-is, absent in to-be)
- Affected processes (to shut down and (re-)start)

A2 - Identify inconsistencies of the as-is and to-be product:
- Violations of asset constraints
- Dependencies between resources that cannot be resolved
- The presence of multiple versions of the same asset/resource in the product
- An incomplete/inconsistent set of resources for a particular asset

Figure 2: Integrated meta-model customized for Egemin

model has three motivations. First, the as-is product deployment
model (M1) and to-be product deployment model (M2) are strongly
related with several common concepts. Second, the analysis of the
as-is and to-be product to determine the required update steps (M3)
and the update inconsistencies (M4) are based on M1 and M2. Third,
the integrated meta-model offers the basis for an architectural repos-
itory that we use to harvest the architectural relevant information
from which the models are derived (we further discuss this in sec-
tion 4). Note that the integrated meta-model includes the relations
between elements of different models (i.e. model correspondences
in terms of ISO/IEC 42010 [12]).

We briefly explain the main concepts of the meta-model in gen-
eral. Then, we illustrate the customized concepts for Egemin’s SPL.
A SPL contains a set of products. A product has a version. Products
consist of assets that are maintained in the SPL asset base. An asset
has a version and an owner. The assets may have asset constraints
that constrain the compositions of assets supported by the SPL. Ex-
amples of constraints are an asset requires another asset or set of
assets, an asset excludes another asset, etc. A product can already be
deployed on a set of locations (i.e., a deployed as-is product), or it
can be ready for deployment with a set of installation bundles that
have to be installed on locations (deployable to-be product). Each
location on which a product is deployed contains a set of resources
that correspond to particular assets. A resource has a version. Ex-
ample resources are an assembly, a database, and a config file. A
resource may have resource dependencies to other resources. A de-
ployed assembly that is executable can be started as a process that
runs on a location. A process uses one or more resources.

Figure 2 shows how the meta-model is customized for Egemin’s
SPL. Product is a logistic system, owner is an Egemin developer,
asset is a logistic subsystem (E’wms, E’tricc, etc.), asset constraint
is a constraint of a logistic subsystem to other logistic subsystems
(e.g., the combination of E’tricc and E’can requires the installation of
E’wms, or a particular version of E’tricc excludes particular versions
of the logistic platform), installation bundle is a MSI file (Microsoft
Installer), location is a directory on a host, process is a windows pro-
cess, and assembly is a DLL file (Dynamic Link Library) or an EXE
file (Executable).

Analysis. Finally, the update viewpoint defines two types of anal-
ysis. We give an overview of the algorithms of both analysis. For
a detailed discussion, we refer the reader to [23]. The first analy-
sis determines the differences between the as-is and to-be product
determining the update procedure model (M3). Figure 3 shows an

overview of the algorithm to generate the update procedure model.

Figure 3: Overview of the update script generation algorithm.

The algorithm consists of four main steps (S1 - S4). Step S0
is a preparatory step in which architecture knowledge is harvested
from the deployed system and the installation bundles (we explain
the practical aspects of harvesting in the next section).

In the first step, S1, the resource operations are determined (ADD,
REPLACE, REMOVE). The set of operations is derived from a com-
parison of knowledge of the as-is and to-be system. For example, if
there is a resource in the to-be system that is not in the as-is, a new
ADD operation is defined for this resource. In the second step, S2,
all the STOP and START operations for processes are determined.
The set of affected processes consists of all the processes with a
direct or indirect dependency on a resource for which a REMOVE
or REPLACE operation exists. Determining the minimal set of re-
sources that have to be updated not only ensures a minimal downtime
of services of the updated product, it also minimizes the recertifica-
tion costs for updated resources.

The third step, S3, consists of three sub-steps: S3.1 to S3.3. In
each sub-step a particular change set is computed. A change set
consists of a sequence of update operations that migrate the system
from one consistent state to another. In step S3.1, the change set
of ADD operations is determined. The ADD operations can be ex-
ecuted without shutting down any process of the deployed system.
Next, in step S3.2, the change sets with REPLACE operations are
determined. Each change set consists of the subset of REPLACE
operations that are applicable to a set of resources that have depen-
dencies with one another. The REPLACE operations will be pre-
ceded by STOP operations and followed by START operations for
all processes with dependencies to any of the resources that have to
be replaced. The services associated with the interrupted processes
are not available during the execution of the REPLACE change sets.
Finally, in step S3.3, the change set of REMOVE operations is deter-
mined. The REMOVE operations will be preceded by STOP opera-
tions for all processes that have to be terminated, i.e. the processes
with only dependencies to resources that have to be removed. As
such, REMOVE operations do not require a shutdown of active ser-
vices of the deployed system.

In the final step, S4, the update script is built using the various
change sets. The update script defines the sequence of update steps.

We illustrate the different steps of the algorithm with a simplified
update scenario of the logistic system shown in Figure 1. The initial

setting of the scenario is shown Figure 4.
The figure shows the resources and processes with there depen-

dencies deployed on two hosts of the system. In reality, several hun-
dreds of resources are deployed on each host of a logistic system.
The installation bundles with the resources of a new version of E’car
and the logistic platform are also shown. The arrows indicate on
which locations the installation bundles have to be deployed.

Figure 4: Example scenario to illustrate the update procedure

Listing 1 shows the update script for the example scenario. The
update operations are grouped in three blocks that represent the dif-
ferent sets of resource operations. The first block contains a single
ADD operation for resource D at host H1. The second block con-
tains REPLACE operations for resources B and C at host H1, and
resources B and D at host H4. These operations are proceeded by
STOP operations and followed by START operations for the depen-
dent processes P1 and P2 at both hosts. The third block contains a
single REMOVE operation for resource E at host H4 with a STOP
operation for process P3 that has to be terminated.

UPDATE SCRIPT:

ADD change set
ADD(Dv10,H1)

REPLACE change set
STOP(P1,H1) STOP(P2,H1)
STOP(P1,H4) STOP(P2,H4)
REPLACE(Cv9,Cv12,H1) REPLACE(Bv5,Bv10,H1)
REPLACE(Bv5,Bv10,H4) REPLACE(Dv5,Dv10,H4)
START(P1,H1) START(P2,H1)
START(P1,H4) START(P2,H4)

REMOVE change set
STOP(P3,H1)
REMOVE(Ev5,H4)

Listing 1: Update script for the example scenario

The second analysis identifies inconsistencies of the updated prod-
uct (M4). Inconsistencies may refer to conflicting versions of assets
and resources of assets and errors with respect to the resources of
each asset, including errors related to versioning and dependencies.
Figure 5 shows an overview of the algorithm to determine the update
inconsistencies model.

After the preparatory harvesting step S0, the algorithm determines
asset and resource inconsistencies in parallel. In the first step, S1,

Figure 5: Overview of the algorithm to determine update inconsistencies.

the asset inconsistencies are computed. First, the asset constraints
are read (S1.1). Next, violations of asset constraints are identified by
analyzing the assets of the deployed product and checking whether
they violate any of the asset constraints (S1.2). For example, if one
asset excludes another asset, but both are present in the product, this
is a violation. Violations are collected in the asset inconsistency set.

In the second step, S2, resource inconsistencies are computed. A
distinction is made between two types of inconsistencies. Resource
dependency inconsistencies are identified by resolving each resource
dependency. Each identified failure leads to a resource dependency
inconsistency that is added to the resource inconsistency set. Re-
source version inconsistencies are identified by comparing the avail-
able versions of each asset and resource of a product. In case mul-
tiple versions co-exist there is a resource version inconsistency. As
an example, assume that an integrator performs the update steps as
shown in Listing 1, but forgets to deploy the updated logistic plat-
form at host H1. This will result in two inconsistencies as shown in
Listing 2.

INCONSISTENCIES:

(R1) if (E,carv12, Hi) then (LPv10, Hi)
¬ R1 : i = 1

(R2) if (Rvx, Hi) ∧ (Rvy, Hj) then x = y
¬ R2 : (Rv5, H1) ∧ (Rv10, H4)

Listing 2: Inconsistencies after incorrect update for the scenario

The first rule expresses an asset inconsistency between E’car and
the logistic platform. In particular, it states that the updated E’car
software with version 12 requires the deployment of the logistic plat-
form of version 10 at the same host. This constraint is violated for
host H1. The second rule expresses a resource version inconsistency
that states that only the same version of each resource can be de-
ployed in the system. This constraint is violated for resources B at
host H1 (version 5) and host H4 (version 10). Deployment of the in-
stallation bundle of the logistic platform at host H1 will resolve the
inconsistencies.

4. FRAMEWORK
The update viewpoint is supported by a framework built in Java.

This framework provides a reusable and extensible infrastructure for
updating deployed products of a SPL. The key functionalities sup-
ported by the framework are: (1) harvesting relevant architecture
knowledge; (2) storing the harvested knowledge, (3) querying and
analyzing architectural knowledge, (4) visualizing the architectural
models in a comprehensive way for the stakeholders.

Figure 6 shows the primary components of the framework that we
developed to support online updates of SPL products. We discuss
each of the components in more detail and indicate how we have
tailored the framework for Egemin’s SPL.

Figure 6: General overview of the supporting framework

4.1 GUI and Workflow Controller
System integrators interact with the framework through a stan-

dard GUI (Graphical User Interface). The GUI allows integrators to
configure the update setting, harvest architecture knowledge, build
models (as-is, to-be, update procedure, and update inconsistencies),
and browse the models. To configure the update setting, the integra-
tor has to import a specification of the different locations where the
system is deployed, as well as the location of the installation bun-
dles. To execute the actions of the integrator, the GUI triggers the
workflow controller which activates the architecture knowledge col-
lector, architecture knowledge repository, and the analyzer & model
builder in the right sequence. The typical workflow is to (1) prepare
the architecture repository for new input; (2) trigger the harvesters
to populate the repository; (3) trigger the analyzer & model builder
to query the repository and perform the necessary analysis, and (4)
update the visual models.

4.2 Harvesters
The architecture knowledge collector comprises a number of plug-

in harvester components that perform the actual knowledge gather-
ing. Architecture knowledge can be harvested from run-time system
components, resource files, system configurations, etc. The knowl-
edge collector provides a control interface that allows the workflow
controller to invoke the harvesting process and to check its progress.
Harvested knowledge in stored in the architecture knowledge repos-
itory. Internally, a harvester component can use any technology to
gather architecture knowledge. Three example harvesters that we
used to harvest knowledge for Egemin’s SPL are:

• Assembly Harvester: gathers knowledge about the assemblies
of the deployed system per location, including assemblies’
version and compile time dependencies. Technically, this har-
vester includes a C# program based on the Mono.Cecil li-
brary4 that supports inspection of programs and libraries.

4http://www.mono-project.com/Cecil

• Config File Harvester: gathers configuration knowledge about
dynamically loaded assemblies and the run-time dependencies
between assemblies. Two examples of configuration files har-
vested this way are the .Net App.config file and the ProfileCat-
alog.xml for SmartClients in .Net.

• MSI files Harvester: gathers knowledge about the to-be de-
ployed product. This harvester uses the two previous har-
vesters to collect knowledge of the assemblies from a MSI
file, including versions and dependencies.

4.3 Architecture Knowledge Repository
The architecture knowledge collected by the harvesters is used

to populate the architecture knowledge repository. The repository
stores architecture knowledge that complies to the integrated meta-
model described in the update viewpoint. We used the Eclipse Mod-
eling Framework (EMF) as a basis for implementing the reposi-
tory. EMF supports specifying a meta-model, and generating a Java
implementation along with set of adapter classes that enable basic
viewing and command-based editing. The meta-model specification
can be customized to suit the need of a particular SPL. For Egemin,
we customized the meta-model as shown in Fig. 2.

4.4 Analyzer & Model Builder
Finally, the analyzer & model builder queries the architecture

repository and generates on demand the requested architecture mod-
els. The analyzer & model builder consists of a query engine and a
set of model components, one for each model kind.

Query Engine. The query engine offers a customizable applica-
tion programming interface (API) that enables harvesting knowledge
from the architectural repository for the model components. Inter-
nally the query engine relies on the EMF Query library to perform
basic queries on the architecture repository. For the as-is and to-be
deployment models, the API offers methods that uses simple queries
to retrieve knowledge from the architecture knowledge repository.
For example, the following example method returns all the assem-
blies that depend on a given assembly:

Collection<Assembly>
findDependentAssemblies(Assembly assembly)

For the update procedure model and the update inconsisten-
cies model, the API offers methods that use series of queries re-
trieve knowledge and perform the necessary analysis to generate the
knowledge required for representing the models. For example, the
following method computes all the assemblies that exist in the to-be
system but that are not present in the as-is system for a given host:

Collection<Assembly>
computeToADDAssemblies(Host host)

The query engine supports the definition of new built-in queries.

Model Components. The model components take care of the vi-
sualization of the architecture models in a way convenient for the
stakeholders. As the framework supports interactive architectural
models, the model component also handles model-specific user in-
teractions with the system, such as browsing the resources deployed
at a particular location and the dependencies of the resources.

Model components are designed according to the Model-View-
Controller (MVC) architectural pattern. The content provider com-
ponent (i.e. the model of the MVC pattern) manages the interactions
with the query engine and notifies the viewer component when that
information changes. The viewer renders the content into a form
suitable for interaction with the stakeholders, typically a user inter-
face element. The controller is responsible for handling user actions

by instructing the content provider and the viewer to execute the
actions. Technically, the user interface is built on top of Eclipse’s
Standard Widget Toolkit (SWT). The MVC pattern enables adding
new model components or altering the content and the presentation
of an existing model.

Figure 7 shows a snapshot of a update procedure model for one of
the products of Egemin’s SPL. The box top left shows the different
locations on which the product is deployed. The box on the right
hand side shows the installation bundles (product installers) that have
to be deployed on the selected location. The box at the bottom shows
the update script that resulted from the analysis. The update script
shows the subsequent update steps the integrator has to perform to
realize the update.

5. EVALUATION
We performed an empirical evaluation of the approach for updat-

ing deployed SPL products in the context of Egemin’s SPL. The
focus of the empirical evaluation is on two key concerns of online
updates of SPL: correctness and availability. In addition we evalu-
ated a number of properties related to the use of the framework. The
study is based on a comparison between Egemin’s current practice to
update products of their SPL (denoted as the baseline approach) and
the use of the new proposed approach (denoted as architectural ap-
proach). In this section, we summarize the evaluation setup and the
most important results of the evaluation. For a detailed description
of the empirical evaluation, we refer the interested reader to [13].

5.1 Hypotheses
The experiment is used to empirically verify the following hypoth-

esizes:

H1. The architectural approach improves the correctness of updat-
ing a product. More specifically, integrators will make less er-
rors when updating a product with the architectural approach.

H2. The architectural approach improves the availability of the
system during a product update. More specifically, using the
architectural approach requires less shutdowns of processes
during a product update.

To verify the hypothesis, professionals were asked to perform a num-
ber of realistic update scenarios to existing logistic systems in a con-
trolled setting. Additionally, we used questionnaires to probe the
integrators’ confidence in the correctness of the updates.

5.2 Empirical procedure
Technically, the evaluation is a supervised experiment with a

paired comparison design [24]. In total 17 professionals served as
subjects. The experience of the test persons with updating logistic
systems is mixed. To reduce the learning curve, each test person
started with two introductory scenarios, using both the baseline ap-
proach and the architectural approach. Subsequently, the test persons
performed four update scenarios in a random order, with a randomly
selected approach. The test persons were asked to perform the up-
dates correctly and with minimal process shutdowns.

To ensure objectivity, test persons cannot perform the same update
scenario with the two approaches. Therefore, we defined two sets of
pairwise scenarios with comparable complexity. One set contains
two simple scenarios requiring an update to a single logistic system
(both the client/server). The other set contains two complex scenar-
ios, where an update propagates to multiple servers and clients. In
total 68 updates were performed (#test persons × #scenarios), evenly
distributed over both approaches.

Each update scenario was monitored by a supervisor who took
notes of particular events. All the user actions were logged using a

set of tools. After each scenario, the test person filled out a question-
naire assessing his/her level of confidence in the correctness of the
update. After performing all scenarios, the test person filled out a
second questionnaire with questions concerning his experience, the
overall assessment of both approaches, etc.

5.3 Update Scenarios
We give a brief description of one of the update scenarios as il-

lustration. The interested reader is referred to [13] for a detailed
description of all the scenarios.

Setting. The update is performed on the Kimberly Clark (KC)
project. The system is installed in the standard location (Program
Files/Egemin) and the system is operational. The following subsys-
tems are running:

• E’tricc server (control software AGV system)

• E’wcs server (warehouse management system)

• E’pia server (logistic platform)

• Shell (clients)

Update Scenario. A new version of the EPIA platform is available
and should be installed on the KC system. The new installation files
of the KC system can be found in a directory called InstallationFiles
on the Desktop. This directory contains the installation files of the
complete updated system. It contains both the compressed MSI files
and a directory with the unpacked installation files.

Assignment. Perform an update of the KC system for the above de-
scribed scenario. The customer expects the update to be performed
with minimal interruption of services.

5.4 Summary of Results
The results of the study are based on a statistical analysis with a

95% confidence interval.

Correctness. We compared the number of updates that were per-
formed correctly according to the requirements of the update scenar-
ios. With the baseline approach 71% of the simple scenarios where
performed correctly and only 18% of the complex scenarios. With
the architectural approach all scenarios were performed correctly
(100% correctness). For the complex scenarios a statistical analy-
sis based on the Wilcoxon-test revealed a significant difference in
correctness between both approaches. For the simple scenarios there
was insufficient evidence.

Availability. We compared the number of unnecessary process shut
downs which cause interrupts of logistic subsystems that were not
needed for the update. With the baseline approach, in 17% of the
simple scenarios and 33% of the complex scenarios at least one pro-
cess was shut down unnecessarily. With the architectural approach
in 6% of the complex scenarios at least one process was shut down.
Note that these processes were shut down due to mistakes of integra-
tors. In the simple scenarios, no unnecessary processes were shut
down. Statistical analysis showed significant difference between
both approaches for the availability results.

Confidence. All test persons confirmed that the architectural ap-
proach gives them more confidence to evolve logistic systems. How-
ever, for the baseline approach we found no correlation between the
reported confidence of a test person in the correctness of the up-
date and the actual correctness. This means that test persons are
often unaware that the updated logistic system contains errors. With
the architectural approach, the test persons confirmed that they were
confident that the update scenarios were performed correctly.

Figure 7: Example of an update procedure model.

5.5 Threats to validity
We briefly discuss two threats to the validity of the experiment.

First, the experiments were performed in a controlled lab setting.
People may react differently when no real customers are involved or
faulty updates to logistic machines cannot cause real damage. We
anticipated this threat by explaining the test persons that minimal
shutdowns and correctness were key requirements of the updates.

Second, the experiment did not allow the test person to interact
with other people. In practice, integrators may contact colleagues
during updates. Note that both approaches received an equal treat-
ment. Moreover, it is known that fixing errors by calling colleagues
only helps in a small number of cases.

6. RELATED WORK
The research presented in this paper is related to three extensively

studied fields in software engineering: software evolution, architec-
ture reconstruction, and architecture viewpoints. Here, we mainly
focus on work related to these three fields in the context of SPL.

Software Evolution. Several authors have pointed to the complexity
of SPL evolution. Svahnberg and Bosch [19] argue that the higher
level of interdependency between the various software assets makes
evolution in SPL a more complex process. Pohl at al. [16] state
that stakeholders of a SPL are faced not only with evolution over
time, but also with the existence of different variants at the same
time. The authors put forward the consistent integration of changes
in SPL as an open research challenge in SPL engineering. Hendrick-
son and van der Hoek [10] point to the complexity associated with
the typical mismatch between architectural variability and the ac-
tual variability. Ajila and Kaba [1] discuss an evolution process for
SPL that supports local and complex (i.e. inter-project) evolutions.
The authors also present a number of supporting mechanisms for
evolving SPL, including mechanisms to check consistency during
maintenance at different levels of granularity (architecture, product
line, product). Tools like SELECTA [9] which uses composition of
meta-models, and pure::variants [5] (industrial tool) help with the
variability space evolution. Whereas the existing approaches focus
on particular concerns with respect to different aspects of SPL evo-
lution, our approach is targeted at runtime updates of SPL products.
Our work contributes with a unified view on SPL updates that covers
multiple concerns which are captured in an update viewpoint.

Architecture Reconstruction. In a recent article, Ducasse and Pol-
let [8] provide a general overview of the state of the art in software
architecture reconstruction. When accurate architecture knowledge

is lacking, SPL methods for SPL updates (and evolution in general)
can benefit from the use of architecture reconstruction techniques.

Anquetil et al. [3] identify four orthogonal traceability dimensions
in SPL (refinement, similarity, variability, and versioning). The au-
thors propose a model-driven traceability framework based on the
specification of a metamodel for a repository of traceability links.
The approach enables retrieving and manipulating the various types
of traceability links in SPL. [2] employ source code mining tech-
niques to understand SPL evolution. Chen proposes a set of tools to
assist maintainers with the co-evolution of product and product line
architectures [6]. The tools support determining the difference be-
tween two selected (versions of) a product architecture, and merging
the difference back into the original product line architecture.

Several general tools have been developed that support architec-
ture reconstruction. These tools can be useful to support updates
of SPL. ArchView [15] visualizes a software architecture that is
built from the source code and historical information. The SEX-
TANT [18] tool enables retrieving architecture relevant information
from multiple sources, and uses this information to discover depen-
dencies between entities using the XQuery framework.

Comparing to the discussed approaches, our work derives as-is
views from a heterogenous set of information sources of deployed
products. We also extract to-be architectures, i.e. the valid installa-
tion bundles of updated products. Finally, our approach goes beyond
identifying differences between as-is and to-be architectures by de-
riving the concrete tasks that are needed to evolve SPL products.

Architectural Viewpoints and Views. The research devoted to ar-
chitectural viewpoints and views specific for SPL is quite limited.
We discuss one representative approach from the domain of SPL and
some more general relevant related work.

O’Brien [14] describes a process and a supporting workbench that
was used to reconstruct architectural views of three small automo-
tive motor systems. The author discusses how different architecture
views and styles were extracted from the source code of the systems,
supported with staff interviews.

Rozanski and Woods [17] describe an evolution perspective. An
architecture perspective is defined as “a collection of activities, tac-
tics, and guidelines that are used to ensure that a system exhibits a
particular set of related quality properties that require consideration
across a number of the system’s architectural views.” The scope of
the evolution perspective is very broad and covers the following con-
cerns: the magnitude of change, dimensions of change, likelihood of
change, timescale for change, when to pay for change, development
complexity, preservation of knowledge, reliability of change.

van Deursen et al. [21] propose an interesting approach for view
reconstruction, called Symphony. Symphony comprises a two-stage
process for reconstructing architecture views. The first stage pro-
duces a reconstruction strategy defining the views to reconstruct.
The second stage of Symphony concerns the execution of the re-
construction strategy, during which the views are populated and the
results are interpreted. The two stages have similarities with the view
definition and update execution of our work.

Arias et al. [4] define an execution viewpoint to facilitate evolution
of large and complex software-intensive systems. The authors obtain
a set of as-is execution models by performing measurements on a
running system. Based on those models, budgets for future designs
can be expressed as to-be models. This work follows a similar idea
as our work, however, the type of viewpoint is different.

The contribution of our work to architectural viewpoints is the
definition of an update viewpoint for SPL that covers the important
concerns and enables stakeholders to deal with the tradeoffs between
the update concerns.

7. CONCLUSIONS
In this paper, we presented an architecture approach to support the

updates of SPL products. Central in this approach is an update view-
point that frames the multiple stakeholder concerns for updating SPL
products, including variability, traceability, versioning, availability,
and correctness. The fact that we used an architectural viewpoint
is not by coincidence. Architecture viewpoints are an established
approach to manage multiple concerns. The update viewpoint cap-
tures reusable architectural knowledge that can be customized for a
concrete SPL. A customized update viewpoint offers the means for
stakeholders to reason about their concrete concerns for updating the
SPL. The proposed approach employs views as an instrument to sup-
port online updates of SPL products. The models of the update views
generated by the supporting framework guide integrators by listing
the concrete tasks they need to perform when upgrading deployed
products and by showing inconsistencies when they fail to do so.

Considering multiple concerns at the same time inevitably implies
tradeoffs. We applied our approach to support updates of SPL prod-
ucts at the granularity of assets and their corresponding resources.
Consequently, consistency and correctness can only be guaranteed
at the same level of granularity. However, applying the approach at
a finer level of granularity increases complexity and costs.

Although we successfully applied the approach to Egemin’s SPL,
several research challenges remain. In particular, we plan to formally
proof the correctness and availability properties of the proposed ap-
proach. We also plan to challenge the generality of the approach by
applying it to a different domain with different technology.

8. REFERENCES
[1] S. Ajila and A. Kaba. Evolution support mechanisms for

software product line process. Journal of Systems and
Software, 81(10):1784–1801, 2008.

[2] S. A. Ajila and R. T. Dumitrescu. Experimental use of code
delta, code churn, and rate of change to understand software
product line evolution. Journal of Systems and Software,
80(1):74–91, 2007.

[3] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa. A model-driven
traceability framework for software product lines. Software
and Systems Modeling, 2010.

[4] T. Arias, P. America, and P. Avgeriou. Defining execution
viewpoints for a large and complex software-intensive system.
In Joint Working Conf. WICSA/ECSA, 2009.

[5] D. Beuche. Variant management with pure:: variants.
Pure-systems GmbH, Tech. Rep, 2003.

[6] P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, and
A. van der Hoek. Differencing and merging within an
evolving product line architecture. In Software
Product-Family Engineering, LNCS vol. 3014. Springer, 2004.

[7] P. Clements and L. Northrop. Software product lines.
Addison-Wesley Reading MA, 2001.

[8] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEE Trans. on
Software Engineering, 35(4):573 –591, 2009.

[9] J. Estublier, I. A. Dieng, and T. Leveque. Software product
line evolution: the selecta system. In Product Line Approaches
in Software Engineering. ACM, 2010.

[10] S. A. Hendrickson and A. van der Hoek. Modeling product
line architectures through change sets and relationships. In
ICSE 2007. IEEE Computer Society.

[11] R. Hilliard. A trust viewpoint. Technical Report, 2009.
http://mysite.verizon.net/rfh2/writings/hilliard-TrustVP-r1.pdf.

[12] ISO/IEC. Systems and software engineering - architecture
description. ISO/IEC standard, draft D8, August 2010.

[13] B. Michalik, N. Boucke, D. Weyns, and A. Helleboogh.
Empirical Evaluation of EvoLine. Katholieke Universiteit
Leuven, 2011. TR. Available via
http://people.cs.kuleuven.be/danny.weyns/EvoLineEvaluation.pdf.

[14] W. O’Brien. Architecture reconstruction to support a product
line effort: Case study. In TR CMU/SEI-2001-TN-015.
Software Engineering Institute, 2001.

[15] M. Pinzger. Archview-analyzing evolutionary aspects of
complex software systems. PhD, Vienna University, 2005.

[16] K. Pohl, G. Böckle, and F. Van Der Linden. Software product
line engineering: foundations, principles, and techniques.
Springer-Verlag New York Inc, 2005.

[17] N. Rozanski and E. Woods. Software Systems Architecture:
Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional, 2005.

[18] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini. The
sextant software exploration tool. Software Engineering, IEEE
Transactions on, 32(9):753 –768, sept. 2006.

[19] M. Svahnberg and J. Bosch. Evolution in software product
lines: Two cases. Journal of Software Maintenance,
11(6):391–422, 1999.

[20] F. Van Der Linden, F. van der Linden, K. Schmid, and
E. Rommes. Software product lines in action: the best
industrial practice in product line engineering.
Springer-Verlag New York Inc, 2007.

[21] A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: View-driven software architecture
reconstruction. In Fourth Working IEEE/IFIP Conf. on
Software Architecture, 2004.

[22] D. Weyns, B. Michalik, N. Boucke, and A. Helleboogh.
Viewpoint for Online Evolution of Software Product Lines.
Katholieke Universiteit Leuven, 2011. TR. K.U.Leuven
http://people.cs.kuleuven.be/danny.weyns/EvoLineViewpoint.pdf.

[23] D. Weyns, B. Michalik, A. Helleboogh, and N. Boucke.
Codifying architecture knowledge to support online evolution
of software product lines. In Sixth Workshop on SHAring and
Reusing architectural Knowledge, SHARK, 2011.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering: an
introduction. Kluwer, 2000.

