Enhancing Software Qualities in Multi-Agent
Systems using Self-Adaptation

Didac Gil de la Iglesia, and Danny Weyns

DFM, Linnaeus University, Vaxjo, Sweden
idac.gil-de-la-iglesia, danny.weyns}@lnu.se
didac.gil-de-la-iglesia, danny.weyns}@l

Abstract. Engineering multi-agent systems (MAS) is known to be a
complex task. One of the reasons lays in the complexity to combine mul-
tiple concerns that a MAS is expected to address, such as system func-
tionality, coordination, robustness, etc. A well-recognized approach to
manage system complexity is the use of self-adaptive (SA) mechanisms.
Self-adaptation allows to adjust the system behavior in order to achieve
certain software qualities (optimization, fault-tolerance, etc.). The key
idea behind self-adaptation is complexity management through separa-
tion of concerns. In this paper we introduce SA-MAS, an architectural
approach that integrates the functionalities provided by a MAS with
software qualities offered by a SA solution. The paper presents a ref-
erence model for SA-MAS and applies it to a Mobile learning case, in
which we deal with robustness properties. In addition, we apply formal
verification techniques as an approach to guarantee the requirements of
the SA-MAS application.

1 Introduction and Motivation

Multi-agent systems (MAS) have been applied in a broad number of fields, such
as e-commerce, traffic and transportation, robotics and education applications.
Among the benefits of these systems are autonomy of interacting entities, flex-
ibility of entities that can come and go at will, efficiency as a result of local
decision making, etc. Despite the benefits of MAS, engineering such systems
pose huge engineering challenges because of their distributed behavior [1], and
the need to deal with multiple concerns.

One recognized approach to manage complexity in MAS is by means of
employing domain-specific middleware, where (parts of) the coordination is
separated from agents that realize the system functionalities [2]. Recognized
approaches are e-institutions, organization middlewares, and stigmergic ap-
proaches. Self-adaptation (SA) is a well recognized approach for dealing with
the system complexity by separating logic that deals with particular runtime
qualities [3,4]. SA is used for adding so called self-* properties (self-healing, self-
protection, self-optimization) [3] to address changing operating conditions in the
system or its environment. SA is based on the design principle of separation of
concerns. SA is a promising approach to tackle the complexity of engineering
MAS by separating the logic that deals with quality concerns of interest from
the domain functionality provided by agents and coordination, handled by agents
supported by appropriate middleware.

SA has not deeply been studied in combination with MAS architectures.
One reason resides on the interference of the adaptation logic with the functional
agent logic, which becomes a conceptual conflict of breaking the autonomy of the
agents. Nevertheless, intertwining MAS and SA should be avoided when possible
to manage the system complexity. The separation of SA and MAS enables the
independent study of the distributed system functionalities from the behaviors
of self-adaptation mechanisms for robustness, performance, availability, etc. In
addition, the separation would facilitate adding SA mechanism on top of an
already existing multi-agent legacy platform, which would improve reusability
of solutions.

This paper studies the use of self-adaptive multi-agent systems (SA-MAS)
to handle the complexity of engineering MAS with particular quality concerns.
What differentiates SA-MAS from previous approaches that aimed at combining
MAS with a self-adaptive approach is a disciplined separation of logic for func-
tionality and coordination from logic to deal with quality concerns. Our approach
advocates for the construction of SA-MAS in a layered design. In this design,
the MAS becomes a managed entity from the self-adaptation perspective, and
components in the SA layer are managing entities of the system. In addition, we
apply formal methods to guarantee the quality properties of interest during the
engineering of SA-MAS.

The rest of this paper is structured as follows. In Section 2 we introduce a
reference model for SA-MAS, and describe its benefits and tradeoffs. Section 3
presents a case scenario to show the application of SA-MAS for robustness con-
cerns. We explain the application of the reference model to define a high-level
architecture for the case, presented in Section 4. Section 5 provides a formal
behavioral description of the SA-MAS software elements, demonstrating how
we separated system functionalities and coordination from self-healing behavior.
In Section 6, we formally specify the properties of interest of different concerns
and explain verification. In Section 7, we briefly explain the implementation of
the case. Section 8 discusses related efforts and Section 9 concludes the paper,
providing an outline for future work.

2 SA-MAS

The principled idea of SA-MAS is to add SA mechanisms to MAS to deal with
particular quality concerns. In particular, SA adds a supervising level to MAS
that can adjust the MAS to deal with non-functional properties such as protect-
ing the MAS from external security threats, or mitigating errors due to failures
in the the operating environment.

2.1 Reference Model

Fig. 1 presents a reference model for a SA-MAS, which is conceived as a lay-
ered architecture where concerns and responsibilities from the MAS and self-
adaptation subsystems are clearly separated. The part of Fig. 1 on the left hand
side shows the primary layers. The bottom layer of the SA-MAS architecture
provides the communication infrastructure, which encapsulates the means for

communication between agents of the distributed system. The middle layer pro-
vides the multi-agent system, which deals with requirements of the domain at
hand. The top layer provides self-adaptation, which can modifying the MAS
layer, conditioned by the environment and system state, in order to cover sys-
tem quality concerns. Fig. 1 (left) illustrates a distributed system with multiple
nodes that share the three layers of a SA-MAS. In principle, the interactions
should be restricted between connected layers, and a layer should not depend on
layers upwards. In practice, there might be deviations from this principle.

The part of Fig. 1 on the right hand side refines the MAS and SA layers.
The MAS layer is composed by autonomous agents that provide the required
domain functionalities for the system at hand, and the (optional) coordination
middleware that deals with coordination concerns.

INode. 1 fodeﬂ fode.:& i fode.1 NODE

LA Pl
SA E
SELF ADAPTATION -
Il [Probe | lEffec'torsl
MULTI AGENT SYSTEM MAS Agent
Coordination
E r Middleware
COMMUNICATION
INFRASTRUCTURE COM.[Comm. Middieware |

KEY D Node :] Layer :]Component O Data

Fig. 1: Reference model for SA-MAS

The coordination middleware is optional as MAS may be designed with
purely agents that communicate via exchanging messages. In this approach,
agents are in charge of providing functionalities and handling coordination. An
established approach of coordination middleware for MAS are electronic institu-
tions, where agents interact through scenes in virtual markets [5]. Yet another
approach is stigmergic coordination, where agents coordinate their behavior
through the manipulation of virtual marks in the coordination infrastructure.
Classic examples are digital pheromones [6] and gradient fields [7]. Recently,
there has been an increasing interest in middleware support for organization
management, some of this recent work on this is [8,9].

Using a coordination middleware offers a separation of concerns, by sepa-
rating domain functionalities (provided by agents) from coordination concerns
(provided by the middleware). However, this separation does not consider qual-
ity properties as first class concerns. Support for example for fault tolerance is
typically scattered over agents and coordination middleware, which results in
complex designs that are difficult to understand and maintain.

To overcome this limitation, SA provides the flexibility to alter the behavior
of certain modules in a (possibly legacy) system to realize quality properties
of interest as first-class concerns. A common approach to realize SA is by a
MAPE-K control loop [3, 10], as shown in the right part of Fig. 1. The knowledge

component (K) maintains a runtime representation of the managed MAS, which
typically consists of local knowledge models at the nodes of the system, and
a representation of the adaptation goals. A monitor component (M) gathers
information from the underlying MAS and possibly the system’s environment in
order to update the knowledge models, providing the subsequent computations
of the control loop with the necessary data. An analyze component (A) examines
the knowledge previously gathered by the monitor, and based on the adaptation
goals draws conclusions on which further actions should be undertaken by the
SA system. A plan component (P) puts together a series of adaptation actions to
resolve the problem identified by the analyzer. This set of actions to the managed
MAS is then carried out by an execution component (E).

A SA can support the behavior modification of a single agent, such as publish-
ing new services in the MAS, and modifying the internal service implementation.
A SA can also support the adaptation of the organization, by requesting modifi-
cations on the structure of agents in the organization (peer-to-peer, hierarchies,
federations, etc. [11]) or modifying the list of members in the organization. In
order to allow interaction between the MAS and the SA layer, probes and ef-
fectors should be included. Probes are components included in the MAS that
allow a monitoring component to collect relevant information of the managed
system. Similarly, effectors in the MAS are required to apply the effects of the
execute component in the SA. Adding these two component in a MAS implies
an intrusive task. This is a tradeoff that breaks the agent autonomy and requires
additional components in the MAS, but has a noticeable impact reducing the
system complexity to enhance system quality properties.

Sometimes, several quality concerns need to be considered when modeling a
MAS. This may require that several self-adaptation components are placed in
the SA layer, to address the multiple quality concerns. Examples could be system
performance and robustness. Often, these quality concerns become cross-cutting,
therefore it is important to keep the self-adaptation components separated when
possible, to reduce their individual complexity and encourage their scalability
and reusability. [12] presents inter-loop and intra-loop coordination in a SA-
MAS application. An alternative approach to deal with multiple concerns is
pre-emption to switch adaption concerns dynamically [13].

2.2 Formal Analysis

While SA mechanisms are placed to provide quality properties to the multi-
agent system, it is critical to guarantee that SA behaviors perform the desired
outcomes. This is, verify that the adaptation processes performed by a SA com-
ponent achieve the desired quality concerns. Formal methods provide us the
means to rigorously describe and verify the behavior of an entity. Examples
such as deadlocks and livelocks [1] need to be analyzed, but also properties
that are domain and concern dependent. In order to verify the SA-MAS de-
signs, the behaviors of layers on the architecture need to be formally modeled,
including probes and effectors that interact with agents and organization and
self-adaptation processes. In addition, a formal representation of the external
world is necessary. The environment in which the system is placed provokes

(through disturbances, failures, etc.) changes in the system behavior, on which
the SA should react. Other components of the system that may trigger self-
adaptation should be modeled as well. There is a range number of variables in
the external world that can be considered when modeling our system. However,
we may create a model that presents an abstraction of the environment, which
describes the behavior with the basic variables that can influence the SA-MAS.

3 M-Learning Scenario

To illustrate the design of a SA-MAS, in this section we present a case study
on the field of m-Learning. In [14], a MAS solution based on mobile devices
was developed. The solution covered the functional requirements for a set of
pedagogical outdoor activities to train geometry concepts. Distance calculations
were required to perform the activities and mobile devices with GPS were used
as tools to support this requirement. Distances could be measured based on the
locations of two or more mobile devices. For collaboration purposes, the stu-
dents were arranged in groups of 3, which means that each group could acquire
three locations at a time and the distances between them. In this study, devices
grouped in an organization are named Mobile Virtual Device (MVD). The ac-
tivities took place during the winter season, wherefore the weather conditions
could affect the GPS accuracy and reliability measurements. From our experi-
ence, no more than two over six devices would permanently degradate the GPS
signal to the extent that it becomes undesirable for the distance measurements.
The Fig. 2 illustrates an example of the accuracy error of a GPS module over
a period of time. The two dotted lines indicate the max. accuracy error allowed
for two different tasks.

15 2
§12 ———————IL\——--————————————Taskz
%9——————1——\——--—— N — —|— — — — — Taski
56

i -~

[10 20 30 40 50 60
Time

Fig. 2: Example of GPS quality

Quality requirements: The characteristics provided by this legacy system could
not guarantee the robustness of the system under uncertain environmental con-
ditions, which could provoke misleading measurements (for example in t=20).
Previous studies have analyzed organization self-healing mechanisms for indi-
vidual device failures [15]. In this scenario we focus on the quality of the GPS
modules. Previous studies [16] show that the accuracy of a GPS can vary de-
pending on the environment conditions.

4 Overview of the architectural design

To address a GPS service failure, a SA layer complements the previously im-
plemented MAS architecture. Fig. 3a illustrates the architectural composition of
the SA-MAS after including an additional SA layer to the legacy system. Fig. 3b
presents the behavioral composition of the SA-MAS. Separation of concerns are
also present in the behavioral structure of the SA-MAS, splitting self-adaptation
processes from functional processes provided in the MAS. The reader should no-
tice that, in order to provide guarantees on the SA behaviors, an abstraction of
the environment needs to be described by an additional process.

ENVIRON. PHONE SERVER ENVIRON. PHONE SERVER

SELF-HEALING SELF-HEALING

Self Healirfg?] . . GPS
|{ Organization \ Organization
Subsystem 3(SH Tracker)(SH Manager SE;;CE

MAS | ! ; '
i [Device \ | Server :
Context | Agent | Agent |
) (o] i i |
mvp & | i /
| (Organization Organization) | MVD
Middleware Middleware {1 Phone MVD) i i/ Structures

com. =
| ‘

4# 4 7!

EE'OHJT'\ Communication Infrastructure = ‘

ey [JNoce [Jiayer [O] Component T Port [Inode [] taver {77} Component

KEY
-OProvided Interface > Required Interface <+~ Delegates (O Process [S‘zac::,e ——— Channel

Mobile™
Agent

com. i L]
| Channels i

(a) Component diagram deployed (b) Design model of server, phones and
in server and phones environment (component mapping)

Fig. 3: Collaborative m-Learning system

5 Behavioral Models

We provide a formal verification of the system behavior to guarantee its cor-
rectness w.r.t. main properties. Uppaal allows to describe an abstraction of a
system’s behavior to rigorously design and verify desired system properties. Pro-
cesses are defined as timed automata, which allow use of guards for the edges,
execute basic program functions and communicate with other processes through
signal passing. The SA-MAS described in section 3 is divided in three behav-
ioral areas. Probes and effectors processes describe the additional components
required in the MAS. These connect with the Self-Adaptation processes and the
external world. Notice that probes and effector models describe behaviors to ac-
quire information from the MAS and effect agent’s and organization’s behaviors
as represented in Fig. 1, but do not describe internal functionalities in the MAS.

5.1 Probes and Effector processes

To be able to gather information w.r.t. the MAS and modify its behavior, probes
and effectors components are created. In this subsection we describe the processes
to interact with Agents and the MVD Middleware.

Device Agent. The mobile agents have the autonomy to offer locations services
to other nodes in the system. However, one influencing variable on the service
quality is the GPS quality. A probe can allow gathering the service quality to
prepare the required SA mechanisms. The process that describes the service
quality state is represented by a timed automaton, containing a Desired and
an Undesired state. For each device agent, there is an instance of the process
running. Signals, providing from the environment, referring to the GPS state are
used to decide transitions between the two basic states.

Phone_Q degradated[Pid[?

setUndesired(Pid)
Desired Undesired
Phone_Q recovered[Pid]?

setRecovered(Pid)

Fig. 4: Device agent process

Organization MVD. Parallelly, probes and effectors are necessary to allow
SA of the organizations. The first organization process (Fig. 5a) is described by
an automaton that contains three basic states of a MVD. Based on the number
of GPS resources in the MVD and the requirements of the task in process, the
MVD can be in a Complete (there is an equality between the two variables),
Incomplete (there is a lack of GPS resources) or Redundant state (there is an
excess of GPS resources). There exist a unique instance of the MVD process for
each MVD in the activity.

Organization Phone. There are two basic states in which a phone can be found
(Fig. 5b), depending on if it is a member of a MVD (inM VD) or not (Free). The
state of a phone device offers basic information to determine potential resources
to be used in the self-healing processes. Therefore, transitions between the phone
states are subjected to Release and Use signals originated during the self-healing
process and described in the following subsection.

MVD_Redundant[Mid]?

MVD_Redundant[Mid]? MVD_Desired[Mid]?

Redundant Complete Incomplete Use[Pid]?
setStateUsed(Pid)

MVD

D_Incomplete[Mid]?

selStateFreePid)

(a) Organization MVD (b) Organization Phone

Fig.5: Organization processes

5.2 Self-Adaptation processes.

The SA processes describe the four basic roles of the managing system: Monitor,
Analyze, Plan and Execute. Two different self-adaptation ambients are identi-
fied. The first, GPS Service Self-Adaptation, deals with the quality of the GPS
service and determines when a service can be offered (or not) in the MAS. The
second, Organization Self-Healing, deals with the health of existing MVD w.r.t.
the activity requirements.

GPS Service Self-Adaptation. This process is responsible for monitoring the
accuracy of the GPS module in the mobile device and to request the device agent
to enable or disable the GPS location service. It has two basic states (Normal
and Degradated). A GPS Service Self-adaptation process (Fig. 6) runs on each
mobile device. This process monitors the GPS quality by receiving increments or
decrements of its quality (qualityUp and qualityDown signals) from the environ-
ment. An analysis determines the reliability of the GPS service based on system
knowledge: the current service accuracy and the activity requirements. The plan
and ezecution stages are performed communicating with the device agent, by
sending Phone_Q_* signals. In case a used GPS becomes degradated, a signal
removePhone is fired. This allows notifying the organization self-healing subsys-
tem w.r.t. the unsuitability of maintaining the phone inside the organization.

qualityDown[Gid]?

dé;re‘a;eQualiW(}.

increaseQuality()

en hone[myMVD]!
setBadPhone(Pid)

qualityDown[Gid]?
MVD < 0

decreaseQualityi Normal
ality <
activityl &) myMVD <0

Phone_Q_degradated[Gid]] =¥

Pid = Gid, Degradated
myMVD = determineMVD(Pid)

increaseQuality()

quality >= activityl.min_accuracy
Phone_Q_recovered|Gid]!

Fig. 6: GPS Service Self-adaptation process

Organization Self-Healing. The organization self-healing process is repre-
sented by two interconnected automata. These processes are in charge of pro-
viding robustness to the system, assuring that the related MVD is directed to
the Complete state in case of failures. Two automata are instantiated for each
MVD. The four MAPE roles are distributed among the two automata, being the
monitor, analysis and ezecute in the tracker process (Fig. 7) and the plan role
in the manager process (Fig. 8).

The tracker process contains three main states, Complete, Incomplete and
Redundant, and is in charge of maintaining the internal state of the MVD. The
tracker monitors arriving and leaving phones into the MVD. Phones can leave an
organization due to the adaptation outcomes presented in the GPS service self-
adaptation process. The tracker analyzes the completeness of the group w.r.t.
the current activity (knowledge). If the automaton is found in Incomplete state,
a signal is submitted to the Self-Healing manager to determine the adaptation

truct[Mid].nMembers < activityl.number_GPS
ncomplete[Mid]!

uct(Mid].nMembers > activityl.number_GPS

mvdSts
MVD_Redundant[Mid]!

nbers < activityl.number_GPS

d].nMembers == activityl.number_GPS
Niid]!

Mid]

s > activityl.number_GPS Members == activityl.number_GPS

d].nMembers > activityl.number_GPS

truct[Mid]. mvdStruct[Mid].nMembers < activityl.number_GPS
Redundant[Mid]! MVD \

VD_Incomplete[Mid]! Incomplete

Redundant

Complete
emovePhone[Mid]? addPhone[Mid]?
Pid = getBadPhone() Pid = getNewPhone()

emovePhone[Mid]? addPhone[Mid]?
Pid = getBadPhone() Pid = getNewPhone(
c

sel

Pid)!
putPhone(Pid, Mid)

Release[Pid]!
delPhone(Pid, Mid

Use[Pid]! Release[Pid]!
utPhone(Pid, Mid) delPhone(Pid, Mid)

uct[Mid].nMembers >
numbe

truct[Mid].nMembers ==
GPS numb:

ber_GPS

movePhone[Mid]?

addPhone[Mid]? e
Pid = getBadPhone()

Pid = getNewPhone()

ict[Mid].n
num

ed[Mid]!

sired[Mid]! Release[Pid]!
delPhone(Pid, Mid)

Uselpid]!
putPhone(Pid, Mid)

truct[Mid] .nMembers < activityl.number_GPS
ncomplete[Mid]!

s > activityl.number_GPS

Fig.7: MVD tracker process

AllFine LookForFreeResources NoFreePhones

MVD Desired MVD_Incomplete[Mid]?
HEEEE newPhone = getFreePhone() foundPhone == NOPHONE
@) @
MVD_Redundar]t|
foundPhone '= NOPHONE newPhone =
addPhone[Mid]! getFreePhone()

MVD_Desired[Mid]?

MVD_Redundant[Mid]?

Fig. 8: Self-healing Manager process

actions required to recover a desired state on the managed MVD. The plan
process is described by the second automaton (Fig. 8). When the MVD is found
in the Incomplete state, the MVD_Incomplete signal is fired. Then, a search for a
Free and Desired phone to be included in the MVD is started (getFreePhone). A
search can become unsatisfactory (NoFreePhones) when no phones are available.
In such scenario, the organization self-healing plan process repeats until the
search becomes satisfactory. The plan resolution determines a newPhone to be
included in the Incomplete MVD and fires the addPhone signal to communicate
with the tracker process. The execution of the adaptation actions include the
update of the phone (Use) and organization (Desired and Redundant) states.

5.3 External World.

The external world can affect the behavior of our system, and it is therefore
necessary to provide a formal representation of it. The external world contains
any component not included in our system that can affect a SA-MAS. In this

10

subsection we model an abstraction of the external world that has an impact on
our system robustness. The server agent behavior modifies the GPS accuracy
requirements for the tasks. Context where the activity takes places can affect
the GPS reception.

Server Agent. The SA process does not modify the server behavior. However,
this component modifies the required GPS accuracy for the activity, which has
an impact on a quality property. Therefore, it is necessary to model the server
agent behavior as part of the external world. The behavior of the server agent has
a first stage in which the platform is initialized for the activity, defining groups
(MVDs) in the activity and an initial deployment of nodes in each group. In a
second stage, the agent controls the activity flow updating the task requirements
and GPS quality requirements.

Context. An abstraction of the environment with the concerned aspects are
presented in the following automaton (Fig. 9). The context influences the GPS
quality, which can force its degradation or recovery. This process simulates an
environment that sets the GPS qualityUp or qualityDown, triggering modifica-
tions on the GPS service self-adaptation process, to self-adapt the state of the
location service provided by the device agents. One instance of the context runs
for each GPS device, allowing to trace independent GPS-based location service
behaviors.

Clear 0 &&
Y = timer
nextNoise = hy qualityDown[Gid]!
PreRun getNextNoise(Pid)
sSystemReady()
Cid = Pid
nextRecover > 0&& Affects
timer >= nextRecover
qualityUp[Gid]! O/ nextRecover = getNextRecover(Pid)

Fig.9: Context (GPS signal)

5.4 System

One instance of the system, defining the processes that are involved, can be
created to study the desired quality properties. The following presents a system
with a Server updating the activity requirements every 100 time units, and
instances of the MAS-related components, SA and External world models. For
analysis purposes, the system is composed by 6 phones to be used in 2 MVDs.
The activity is composed by two tasks (Taskl and Task2), requiring 1 and 2
phones per group respectively. The following are the system declarations defined
in Uppaal.

ServerAgentl = ServerAgent(100);

system DeviceAgent, PhoneState, MVD, //MAS (Probes and Effectors)
GPS_Agent, SHTracker, SHManager, //SA
Context, ServerAgentl, //External World

ActivityServerInit;

11

const int Phones=6; //Number of phones
const int MVD=2; //Number of groups
int Taskl=1, Task2=2; //Phones required per task

We stimulate undesired GPS conditions and MVD states provoking errors on
the GPS module. The following arrays define time instances from when the GPS
module quality can be changed.

int GPSSetNoise[Phones] [Nerrors] = {{2,0,5, 70},{2,0,30, 120}, ...};
int GPSRemoveNoise[Phones] [Nerrors] = {{2,0,25,100},{2,0,80,160}, ...};

6 Properties

After the processes have been modeled, Uppaal assists us to verify that concern
properties are satisfied. Properties are verified by querying the system using
TCTL (timed computation tree logic) statements. The main focus of this study
is the robustness of the system, provided by the SA. The verification of the
properties is evaluated based on the scenario presented in 5.4.

6.1 MAS (Functional correctness of Probes and Effectors)

Due to the dynamism of the server agent, and changes in the environment,
the organizations require frequent modifications. Therefore, it is critical that no
deadlock is found in the system (F1). Deadlock is directly supported in Uppaal.
The second property (F2) guarantees that an organization will eventually reach
a Complete state if new activity requirements had led it to an Incomplete state.

F1: A[] not deadlock

F2: A<> forall(Mid:MVD_id)
ServerAgentl.SubmitTask && MVD(Mid) .Incomplete
imply MVD(Mid) .Complete

6.2 SA (Robustness)

The verification of the self-adaptation behaviors for robustness is divided into
four properties. The first property defines that if a MVD organization reaches
an Incomplete state, eventually the self-healing system will detect the failure
and look for a resource to recover the organization (R1). This can be expressed
as a safety property, stating that the self-healing manager will not consider the
MVD as being in a AllFine state if the structure is Incomplete.

R1: A[] forall(Mid:MVD_id)
MVD(Mid) . Incomplete imply !SHManager(Mid).AllFine

R2: A<> forall(Mid:MVD_id)
SHManager (Mid) .LookForFreeResources
imply SHManager (Mid) .Al1lFine

12

R3: A<> forall(Mid:MVD_id)
MVD(Mid) . Incomplete imply MVD(Mid) .Complete || MVD(Mid) .Redundant

R4: A<> forall(Mid:MVD_id) forall(Pid:phone_id)
PhoneState(Pid) .Free
imply mvdStruct[Mid] .member [Pid]==

R2 verifies that when the self-healing manager searches for a free resource, will
eventually find one, under the assumption that no more than two phones will be
Undesired after all the environment changes have been processed. A consequence
from the previous two properties states that if a MVD organization gets into an
Incomplete state it will eventually recover from it (R3). Finally we verify that in
case a phone detects a GPS degradation, it will eventually be excluded from any
involved organization (R4). The musStruct represents a global data structure
containing all the MVDs in the activity (see Fig. 3b).

These properties allow us to determine the correctness of the SA layer be-
havior on top the legacy MAS, analyzing that self-adaptive actions are correctly
designed and transmitted to the MAS through probes and effectors.

6.3 Results

The separation of concerns in a SA-MAS allowed us to study and verify
functional properties of the system, while relieving us from focusing on self-
adaptation processes. Similarly, the layered design of the SA-MAS allows us to
concentrate on the verification of robustness properties.

Describing a SA-MAS using formal methods offers rigor but also is an ad-
ditional effort for the development process. Moreover, quality properties veri-
fication is a demanding task that scales up exponentially due to the multiple
options that derive from each state in the SA-MAS. To provide some measure-
ments, verification of deadlock in a system with one MVD and 3 phones required
6.72 seconds, 14.85 seconds for 2 MVDs and 6 phones and up to more than 4
hours for 3 MVDs and 12 phones.

7 Implementation and Lessons Learnt

Extending a legacy system with a SA layer involves intrusive actions to be per-
formed on the adapted system. The SA processes require internal information
from the legacy system, therefore it is necessary to implement a set of probes
components in the MAS that allow the data gathering that is necessary for the
monitoring and analysis process. Moreover, behavior and organization modifica-
tions in the MAS require the inclusion of effectors that realize the plans defined
in the SA. Our scenario, considers a MAS implemented in JADE [17], which uses
software agents to cover functional requirements. The system is extended by new
agent behaviors that allow data acquisition and agent behavior modifications.
The additional SA layer in the SA-MAS needs to be deployed on the mobile
devices in a distributed manner. This is implemented by additional distributed
agents in the system that perform the Monitor, Analyze, Plan and Execute

13

roles [10] and interact with the MAS through the probes and effectors men-
tioned above. The formal models that describe processes for probes and effectors
and SA components presented in 5 communicate through a basic signal passing
mechanism in Uppaal. However, this process becomes more complex in the de-
velopment phase. The modifications on the legacy system include additional
communication protocols to interact with the newly added SA layer.

Moreover, the new SA layer in the SA-MAS includes processing efforts for
the device. In addition to the domain functionalities provided by the agents in
the MAS, processes related to self-healing need to be executed, which derives
into a processing overhead.

The rigorous description and verification of properties through formal meth-
ods have also provided advantages for the implementation design. Detecting
non-verified properties becomes valuable help to identify errors in the SA-MAS
behavior. As an example, during the formal modeling process, we detected an
incorrect definition of an organization in Redundant state. This would occur
when an incoming task would reduce the number of required GPS and the MVD
had been recovered from an Incomplete state.

8 Related work

Few researchers have performed explorative studies on self-adaptation in decen-
tralized systems and MAS. [18] uses an auction-based mechanism to coordinate
resource usage in self-adaptive multi-agent systems and defines areas in which
an agent can bid for the resources. This approach is aligned with the MVD con-
cept used in our SA-MAS. The authors’ approach can be applied as a Planning
mechanism inside a MAPE-K in the self-adaptive layer. [19] describes the key
attributes of decentralized self-adaptive systems derived from a number of case
studies. This study can be considered as an extension of the FORMS work, pro-
viding an architectural view to separate the functional requirements provided by
a MAS from the quality properties offered by a SA layer. [20] expresses struc-
tural constraints over an architectural specification that are used by component
managers to automatically configure the system. Managers exchange information
using reliable broadcast channels, restricting scalability. This approach contrast
with the use of local organizations (MVD) where self-healing approaches are ap-
plied, which would improve scalability issues. [21] introduces a gossip protocol
to overcome the scalability limitation in distributed systems. This mechanism
could be implemented in our SA-MAS reference model to disseminate necessary
information for the SA of organizations in the MAS. The authors in [20] ob-
serve an evolution limitation in their approach in case of new requirements. Our
layered SA-MAS approach can be an answer to this question, by reducing the
level of intrusive modifications in the MAS limiting to probes and effectors. [22]
presents the K-Components Framework to dynamically modify and evaluate a
graph representations of a decentralized system, to apply the planned changes to
the running system. The framework allows separating adaptive and functional
system behaviors.

A related approach is presented in [23] that uses meta-agents to overcome
the inflexibility of some MAS platforms. The author states that “each appli-

14

cation agent rests on a small set of interconnected and interacting meta-agents
which provide the application agent with its abilities to encapsulate behavior and
to communicate” [23]. The offered interfaces of the meta-agents facilitates the
modification of the agent behavior and implementation. However, the approach
does not provide a systematic solution to deal with quality properties as first
class citizens.

9 Discussion and Future work

In this paper we introduced a reference model for SA-MAS, an architecture de-
sign that combines the benefits of multi-agent systems with quality properties
that a self-adaptive mechanism can offer. We argued for the benefits of an addi-
tional SA layer on top of a MAS system in order to offer separation of concerns.
This approach becomes beneficial for legacy MAS, but demands an intrusive
step to include probes and effectors in the MAS in order to communicate with
the SA. In order to verify that quality properties are provided, we have applied
formal methods, which offer the means to rigorously describe behavior processes
and verify desired properties. We have illustrated the separation of concerns in
SA-MAS with a Mobile learning case study, where SA has been applied both for
individual agent and organization adaptations.

Coming efforts include an exhaustive analysis of the implemented SA-MAS
in real settings. This task will include the evaluation of the system behavior
under undesired states, to study the reaction of an implemented SA-MAS for
guaranteeing the desired quality goals. Secondly, traces from the use of the SA-
MAS in real settings need to be compared with simulations performed in Uppaal.
This task needs to be performed using Model-based testing techniques [24]. This
study will strength the guarantees of the SA-MAS, to evidence that properties
formally verified are transferred to the implemented system.

The question How well does the system scale up? needs to be answered, both
by simulation in formal models and through empirical studies. The presented
scenario describes a mobile learning activity, where numbers of participants vary
in the range of 15-40 students. The simulation in Uppaal has been studied for
a limited amount of mobile phones and has evidenced initial scalability issues.
Morever, in other SA-MAS scenarios these numbers could become critical, which
would require of further studies to determine its viability.

References

1. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2002)

2. Weyns, D., Parunak, H.V.D.: Environments for multiagent systems state-of-the-art
and research challenges. Springer (2005)

3. Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Computer
Society 36(1) (2003) 41-50

4. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. FOSE
’07 2007 Future of Software Engineering (2007) 259-268

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

15

Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELI: An Agent-
Based Middleware for Electronic Institutions. In: Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems. Volume 1 of AAMAS
’04., Washington, DC, USA, IEEE Computer Society (2004) 236-243

Parunak, H.V.D.: Digital pheromone mechanisms for coordination of unmanned
vehicles. In: First international joint conference on Autonomous agents and mul-
tiagent systems. AAMAS ’02, New York, New York, USA, ACM (2002) 449-450
Mamei, M., Zambonelli, F., Leonardi, L.: Cofields: a physically inspired approach
to motion coordination. Pervasive Computing, IEEE 3(2) (2004) 5261

Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., Joosen, W.: The MA-
CODO middleware for context-driven dynamic agent organizations. ACM Trans.
Auton. Adapt. Syst. 5(1) (2010) 3:1-3:28

Hiibner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent or-
ganisations with organisational artifacts and agents. In: Autonomous Agents and
Multi-Agent Systems. Volume 20. (April 2009) 369-400

Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-
adaptation. In: 7th International Conference on Autonomic Computing. (2010)
205214

Isern, D., Sdnchez, D., Moreno, A.: Organizational structures supported by agent-
oriented methodologies. Journal of Systems and Software 84(2) (2011) 169-184
Vromant, P., Weyns, D., Malek, S., Andersson, J.: On Interacting Control Loops in
Self-Adaptive Systems. In: Software Engineering for Adaptive and Self-Managing
Systems. (2011)

Raheja, R., Cheng, S.W., Garlan, D., Schmerl, B.: Improving architecture-based
self-adaptation using preemption. In: First international conference on Self-
organizing architectures, Berlin, Heidelberg, Springer-Verlag (2010) 21-37

Gil de la Iglesia, D.: Uncertainties in Mobile Learning applications: Software Ar-
chitecture Challenges. Licentiate thesis, Linnaeus University (2012)

Iftikhar, M.U., Weyns, D.: A Case Study on Formal Verification of Self-Adaptive
Behaviors in a Decentralized System. Electronic Proceedings in Theoretical Com-
puter Science 91 (August 2012) 4562

Wing, M., Eklund, A., Kellogg, L.: Consumer-grade global positioning system
(GPS) accuracy and reliability. Journal of Forestry (2005)

Bellifemine, F., Caire, G., Greenwood, D.: Developing Muti-Agent Systems with
Jade. John Wiley & Sons, Liverpool, UK (2007)

Malek, S., Mikic-rakic, M., Medvidovic, N.: A decentralized redeployment algo-
rithm for improving the availability of distributed systems. In: 3rd International
Conference on Component Deployment. (2005)

Weyns, D., Malek, S., Andersson, J.: On Decentralized Self-Adaptation: Lessons
from the Trenches & Challenges for the Future. In: Software Engineering for
Adaptive and Self-Managing Systems, IEEE (2010)

Georgiadis, 1., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: Workshop on Self-Healing Systems, ACM (2002)

Sykes, D., Magee, J., Kramer, J.: FlashMob: Distributed Adaptive Self-Assembly.
In: Software Engineering for Adaptive and Self-Managing Systems, ACM (2011)
Dowling, J.: Decentralised Coordination of Self-Adaptive Components for Auto-
nomic Distributed Systems. PhD thesis, Univ. of Dublin (2004)

Lynch, S.: Using Meta-Agents to Build MAS Platforms and Middleware. In: 3rd
International Conference on Agents and Artificial Intelligence. (2011) 28-30
Apfelbaum, L., Doyle, J.: Model based testing. Software Quality Week Conference
(1997) 1-14

