
J

I
s

D
a

b

c

a

A
R
A
A

K
S
A
S

1

fl
T
i
r
d
m
c
c
t
q
m
d
t
m

a
b
i
m

0
h

ARTICLE IN PRESSG Model
SS-8985; No. of Pages 3

The Journal of Systems and Software xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j our na l ho mepage: www.elsev ier .com/ locate / j ss

ntroduction to the special issue on state of the art in engineering self-adaptive
ystems

anny Weynsa,∗, Sam Malekb, Jesper Anderssona, Bradley Schmerl c

Linnaeus University, Sweden
George Mason University, USA
Carnegie Mellon University, USA

 r t i c l e i n f o

rticle history:
eceived 15 July 2012
ccepted 16 July 2012
vailable online xxx

eywords:

a b s t r a c t

Researchers and engineers have been studying self-adaptation for over a decade, which has resulted in a
vast body of knowledge. Nevertheless, as technology progresses and software systems are increasingly
integrated, new challenges emerge. Among these challenges are the need for new theoretical models
for self-adaptation, methods to verify and validate self-adaptive systems, and disciplined engineering
approaches to support decentralization of control in self-adaptive systems. Tackling these challenges
elf-adaptive systems
utonomic systems
elf-organization

requires a cross-disciplinary approach. The goal of this special issue is to provide an overview of the state
of the art in the field of self-adaptive software systems. From 61 submission, 13 papers were selected for
publication. These papers demonstrate that the integration of different research fields that is required
to tackle the challenges in engineering self-adaptation is underway. We offer the papers of this special
issue as a benchmark on the current state of the art, and an exposition of key ideas and directions for
further work.
. Introduction

The house in which you live, the car you drive, the plane you
y, the TV you look at, are artifacts that have stable foundations.
hese artifacts, as many others we use in our daily lives, are phys-
cal: they are designed before they are built and used, and are
arely changed during their lifetime. Software is fundamentally
ifferent. Software is not a physical construct: it can easily be
odified at any time, even while it is in use. This modification

an occur in response to changes in requirements and operating
onditions. However, the growing complexity of software sys-
ems makes modifying them, while maintaining functionality and
uality of service, an increasingly difficult task to get right. The pri-
ary objective of self-adaptation is to enable software systems to

eal with changes themselves, autonomously. The key challenge is
hen: how to engineer such self-adaptive systems in a disciplined

anner?
Researchers and engineers have been studying principles of self-

daptive software systems for a long time. This has resulted in a vast
Please cite this article in press as: Weyns, D., et al., Introduction to t
systems. J. Syst. Software (2012), http://dx.doi.org/10.1016/j.jss.2012.

ody of knowledge. The ICSE 1998 paper of Oreizy and colleagues
s an important milestone in understanding the underlying funda-

ents of self-adaptation (Oreizy et al., 1998). The authors pointed

∗ Corresponding author.
E-mail address: Danny.Weyns@cs.kuleuven.be (D. Weyns).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.07.045
© 2012 Elsevier Inc. All rights reserved.

out that self-adaptation requires a runtime representation of the
system that is kept in synchrony with the actual system. This run-
time representation allows the system to reason about itself and
adapt when needed. IBM’s autonomic manager (Kephart and Chess,
2003) and Rainbow (Garlan et al., 2004) are two influential exam-
ples that realize this idea. Various researchers have argued that
software architecture provides the right level of abstraction and
generality to deal with self-adaptation (Oreizy et al., 1999; Garlan
and Schmerl, 2002; Kramer and Magee, 2007).

As technology progresses and stakeholder requirements evolve,
software systems are increasingly integrated, within and across
ownership domains, posing new challenges for self-adaptation.

Recent community efforts have identified the need for new the-
oretical models for self-adaptation (Dobson et al., 2006; de Lemos
et al., 2012), methods to verify and validate self-adaptive systems
(Magee and Maibaum, 2006; Tamura et al., 2012), and disciplined
engineering approaches to support decentralization of control in
self-adaptive systems (Kramer and Magee, 2007; Weyns et al.,
2012) as key challenges, among others. Tackling these challenges
requires a cross-disciplinary approach (Cheng et al., 2009), where
the know-how from architecture-based adaptation is synergisti-
cally merged with know-how from domains such as control theory,
he special issue on state of the art in engineering self-adaptive
07.045

runtime verification, context-aware computing, self-organization,
and multi-agent systems. The goal of this special issue is to pro-
vide an overview of the state of the art in the field of self-adaptive
software systems. The call for papers was particularly successful

dx.doi.org/10.1016/j.jss.2012.07.045
dx.doi.org/10.1016/j.jss.2012.07.045
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:Danny.Weyns@cs.kuleuven.be
dx.doi.org/10.1016/j.jss.2012.07.045

 ING Model
J

2 stems

a
r
q

2

s
p
c
d
n
o

2

f
a
s
p
E
i
s
s
f
g
a
r
t

2

t
t
i
p
a
a
s
o
t
R
s
d
c
d
s
p

2

e
T
i
a
m
t
p
o
n
s

ARTICLESS-8985; No. of Pages 3

 D. Weyns et al. / The Journal of Sy

nd attracted 61 submissions. All submitted papers went though a
igorous multiple-staged review process, and finally 13 high-
uality papers were selected for publication.

. Overview of the issue

The papers of the special issue cover a variety of topics in the
pace of engineering self-adaptive systems. We have grouped the
apers in five categories based on key aspects considered in them:
ontrol loops, runtime models, decentralized control, formal foun-
ations, and integrated perspectives. However, these categories are
ot disjunct and several of the papers could belong to more then
ne category.

.1. Control loop

Patikirikorala et al. investigate a control engineering approach
ocusing on performance management of software systems. The
uthors present different types of control schemas and demon-
trate their usefulness in a range of experiments that were
erformed under different operating conditions. The paper by
racar et al. uses a feedback control loop to control the behav-
or of a satisfaction problem solving algorithm. It demonstrates
ignificant performance gain for two different NP-hard constraint
atisfaction problems. Peng et al. present a control-based method
or self-tuning of different quality properties. The authors employ
oal models that represent runtime requirements. These models
re used to make tradeoff decisions by a preference-based goal
easoning mechanism. The decisions are mapped to optimal archi-
ectural reconfigurations for the actual operating conditions.

.2. Runtime models

In their paper, Amoui et al. introduce a model-centric approach
o support fine-grained adaptations of software systems. Central
o the approach are graph-based models of the software that are
nterpreted at runtime to manage system adaptations. Wu et al.
resent a non-intrusive online monitoring approach to dynamically
nalyze data-centric properties for multi-participant service-based
pplications. The approach not only considers constraints on the
equence of exchanged messages, but also exploits the content
f messages. In this way, the approach extends existing moni-
oring patterns in the area of service-based systems. Abebe and
yan study dynamic offloading of computational tasks in perva-
ive environments. The authors present an approach where each
evice maintains a graph of components running in local memory,
ombined with an abstraction of components running on remote
evices. Evaluation of computationally heavy applications shows a
ignificant improvement in communication costs, memory needs,
ower consumption, and efficiency of adaptations.

.3. Decentralized control

Khakpour et al. present a framework to model large-scale
cosystems that integrates central control with self-organization.
he formal foundation allows combined used of model check-
ng at design time with runtime verification to verify structural
nd behavioral adaptation properties. This combined use of for-
al methods at design time and runtime is necessary to manage

he complexity of the hybrid approach. Pruteanu and Dulman
Please cite this article in press as: Weyns, D., et al., Introduction to t
systems. J. Syst. Software (2012), http://dx.doi.org/10.1016/j.jss.2012.

resent LossEstimate, a fully decentralized approach that allows
nline estimation of communication failures in large-scale wireless
etworks. The estimates provide dynamic approximation of mes-
age loss in the network. This gossip-like approach exhibits small
 PRESS
and Software xxx (2012) xxx–xxx

communication overhead and fast convergence time for different
types of network topologies.

2.4. Formal foundations

Perz-Palacin et al. propose an adaptation framework that can
be used to reduce power consumption in a computing infrastruc-
ture by tuning the number of servers and their operating frequency.
The framework employs stochastic Petri Nets to guarantee a proper
balance between energy consumption and system performance.
In their paper, Xu et al. propose ADAM, an approach to identify
defects in context-aware adaptive systems. The approach moni-
tors runtime errors and relates the errors to responsible defects
in the application. ADAM relies on formally defined adaptation
semantics that are exploited by assert checkers to detect errors.
Analyzing what to monitor and when to adapt in order to guar-
antee requirements in complex domains is a difficult problem, so
Salifu et al. introduce an approach that encodes the monitoring
and adaptation problem as propositional logic constraints. A SAT
solver is then used to decide between monitoring and adaptation
options.

2.5. Integrated perspective

Hallsteinsen et al. present an integrated methodology and
development framework for adaptive software systems, focus-
ing on ubiquitous and dynamic computing environments. The
approach follows the model-driven paradigm and is supported
by a middleware that facilitates dynamic adaptations at run-
time. Cheng and Garlan introduce the Stitch language to express
repair strategies that map to business objectives. These strate-
gies allow an architecture-based self-adaptation framework to
select a strategy for adaptation with optimal utility in a given
context.

This summary demonstrates that the integration of different
research fields that is required to tackle the challenges in engi-
neering self-adaptation is underway. Nevertheless, there remains
plenty of room for researchers to contribute to this undertaking,
and push the field forward. We offer the papers of this special issue
as a benchmark on the current state of the art, and an exposition of
key ideas and directions for further work.

Acknowledgments

We thank all the authors for submitting their work to the spe-
cial issue. We are grateful to the reviewers for their excellent work.
Finally, we thank the editor in chief for his support throughout
the process of preparing this special issue, and JSS for hosting the
special issue.

References

Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Ben-
como, N., Brun, Y., Cukic, B., Serugendo, G.M., Dustdar, S., Finkelstein, A., Gacek,
C., Geihs, K., Grassi, V., Karsai, G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Miran-
dola, R., Müller, H., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle,
J., 2009. Software engineering for self-adaptive systems: a research roadmap.
In: Software Engineering for Self-Adaptive Systems, vol. 5525. Lecture Notes in
Computer Science. Springer.

de Lemos, R., Giese, H., Müller, H., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo, N.,
Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goeschka,
K., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J.,
Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M.,
Prehofer, C., Schäfer, W., Schlichting, R., Smith, D.B., Sousa, J., Tahvildari, L., Wong,
he special issue on state of the art in engineering self-adaptive
07.045

K., Wuttke, J., 2012. Software engineering for self-adaptive systems: a second
research roadmap. In: Software Engineering for Self-Adaptive Systems II, vol.
7475, Lecture Notes in Computer Science. Springer.

Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F., 2006. A survey of autonomic

dx.doi.org/10.1016/j.jss.2012.07.045

 ING Model
J

stems

G

G

K
K

M

O

O

T

W

ARTICLESS-8985; No. of Pages 3

D. Weyns et al. / The Journal of Sy

communications. ACM Transactions on Autonomous and Adaptive Systems 1
(December (2)), 223–259, http://doi.acm.org/10.1145/1186778.1186782.

arlan, D., Cheng, S., Huang, A.C., Schmerl, B., Steenkiste, P., 2004. Rainbow:
architecture-based self-adaptation with reusable infrastructure. IEEE Computer
37, 46–54.

arlan, D., Schmerl, B., 2002. Model-based adaptation for self-healing systems. In:
ACM SIGSOFT Workshop on Self-Healing Systems (WOSS’02), Charleston, SC,
18–19 November.

ephart, J., Chess, D., 2003. The vision of autonomic computing. Computer 36 (1).
ramer, J., Magee, J., 2007. Self-managed systems: an architectural challenge. Future

of Software Engineering.
agee, J., Maibaum, T., 2006. Towards specification, modelling and analysis of fault

tolerance in self managed systems. In: Software Engineering for Adaptive and
Self-Managing Systems.

reizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L., 1999. An architecture-based approach
to self-adaptive software. IEEE Intelligent Systems 14 (May (3)), 54–62
http://dx.doi.org/10.1109/5254.769885.

reizy, P., Medvidovic, N., Taylor, R., 1998. Architecture-based runtime software
evolution. In: International Conference on Software Engineering.

amura, G., Villegas, N., Muller, H., Sousa, J., Becker, B., Karsai, G., Mankovskii, S.,
Pezze, M., Schafer, W., Tahvildari, L., Wong, K., 2012. Towards practical run-
Please cite this article in press as: Weyns, D., et al., Introduction to t
systems. J. Syst. Software (2012), http://dx.doi.org/10.1016/j.jss.2012.

time verification and validation of self-adaptive software systems. In: Software
Engineering for Self-Adaptive Systems II, vol. 7475. Lecture Notes in Computer
Science. Springer.

eyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,
Andersson, J., Giese, H., Goeschka, K., 2012. On patterns for decentralized control
 PRESS
and Software xxx (2012) xxx–xxx 3

in self-adaptive systems. In: Software Engineering for Self-Adaptive Systems II,
vol. 7475, Lecture Notes in Computer Science. Springer.

Danny Weyns is an Associate Professor in the Computer Science Department at
Linnaeus University. He received a Ph.D. from the Katholieke Universiteit Leuven,
Belgium in 2006 and was a postdoc at the same university between 2006 and 2011.
His research interests are in software architecture, self-adaptive systems, multi-
agent systems, and middleware for decentralized systems. The current focus of
Danny’s research is on a formally founded approach for engineering decentralized
self-adaptive software systems.

Sam Malek is an Assistant Professor in the Computer Science Department at George
Mason University. His research interests are in software architecture, autonomic
computing, and software dependability. Malek received his Ph.D. and M.S. degrees
in Computer Science from the University of Southern California, and his B.S. degree
in Information and Computer Science from the University of California Irvine. He is
a member of IEEE, ACM, and ACM SIGSOFT.

Jesper Andersson is an Associate Professor in the Computer Science Department
at Linnaeus University. He received a Ph.D. from Linköping University in 2007 on
dynamic software architectures. His research interests are in software architecture,
self-adaptive systems, software engineering processes, and software product lines.
he special issue on state of the art in engineering self-adaptive
07.045

Bradley Schmerl is a Senior Systems Scientist in the School of Computer Science at
Carnegie Mellon University. He received his Ph.D. from Flinders University in Ade-
laide, South Australia in 1997 and was an Assistant Professor at Clemson University
between 1998 and 2000. His interests include software architecture, self-adaptive
systems, pervasive computing systems and software development environments.

dx.doi.org/10.1016/j.jss.2012.07.045
doi:10.1109/5254.769885

	Introduction to the special issue on state of the art in engineering self-adaptive systems
	1 Introduction
	2 Overview of the issue
	2.1 Control loop
	2.2 Runtime models
	2.3 Decentralized control
	2.4 Formal foundations
	2.5 Integrated perspective

	Acknowledgments
	References

