
Modeling Variability in Product Lines Using
Domain Quality Attribute Scenarios

Nadeem Abbas
Linnaeus University

Software Technology Group
Växjö, Sweden

nadeem.abbas@lnu.se

Jesper Andersson
Linnaeus University

Software Technology Group
Växjö, Sweden

jesper.andersson@lnu.se

Danny Weyns
Linnaeus University

Software Technology Group
Växjö, Sweden

danny.weyns@lnu.se

Abstract—The concept of variability is fundamental in software

product lines and a successful implementation of a product line

largely depends on how well domain requirements and their

variability are specified, managed, and realized. While developing

an educational software product line, we identified a lack of

support to specify variability in quality concerns. To address this

problem we propose an approach to model variability in quality

concerns, which is an extension of quality attribute scenarios.

In particular, we propose domain quality attribute scenarios,

which extend standard quality attribute scenarios with additional

information to support specification of variability and deriving

product specific scenarios. We demonstrate the approach with

scenarios for robustness and upgradability requirements in the

educational software product line.

Index Terms—variability, quality attributes, scenarios, soft-

ware product lines

I. INTRODUCTION

Variability and variability management are central in Soft-
ware Product Line Engineering (SPLE) [1]. SPLE describes
two development cycles: domain engineering and product
engineering [1]. Domain engineering defines domain variabil-
ity and provides a common platform for product derivation.
Product engineering on the other hand exploits the variability
defined by domain engineering to derive concrete products.
Successful application of the product line approach to a large
extent depends on how well the domain variability is defined,
managed, and realized.

In this article we discuss work in progress concerning one
corner stone in product line variability modeling: variability
in quality attribute requirements. Modeling and managing
variability in quality attribute requirements is known to be a
complex problem [2]. However, clearly identified, understood,
and documented requirements variability is key for the design
of high quality software product line architectures. We faced
the problem of variability modeling for quality concerns
during the development of a software product line (SPL)
for educational and research purposes (EduSPL), which is
described in more detail in Section II. While eliciting and
specifying EduSPL’s domain requirements and their variability
we found out that the available methods to model variability
mainly focused on functional requirements. There is a lack of
methods with explicit support to model variability of quality
requirements. This is an observation we share with several

others, for instance, Myllärniemi et al. [3] and Etxeberria
et al. [4].

In the EduSPL project we planned to use Quality Attribute
Scenarios (QAS) [5] for specifying quality concerns. However,
standard QAS do not support modeling variability. To find
a suitable method to model variability in quality attributes
for a software product line we explored QAS further and
studied existing techniques to model variability. This study
has resulted in domain QAS, which extends standard QAS.
We introduce fragments and parameters in the QAS template
to model variability, and constraints to guide derivation of
product specific scenarios. The domain QASs specify varia-
tions in quality attributes at the domain level, and are defined
and documented as core assets during domain engineering.
In product engineering such domain QASs are used to derive
product specific quality attribute scenarios, i.e., product QASs,
which support product instantiation, but can also be used for
other activities, such as supporting scenario based architecture
evaluations. We have applied domain QASs to specify variabil-
ity for two primary quality concerns in EduSPL, robustness
and upgradability. The initial results from these activities
are promising, which encourages us to continue with further
investigations, development, and evaluation of domain QAS.

The remainder of this article is organized as follows. The
educational software product line is introduced in Section II.
Section III discusses domain QASs to model product line
variability in quality concerns. We exemplify domain QAS
for the two scenarios of the EduSPL in Section IV. In
Section V, we discuss domain QAS in a software product
line engineering context. We conclude and discuss challenges
for future research in this area in Section VI.

II. EDUCATIONAL SOFTWARE PRODUCT LINE (EDUSPL)

The problem we address in this article was identified while
developing the EduSPL. Before going into further details of
the problem and the proposed solution, we first give a brief
introduction of the EduSPL.

The EduSPL is a SPL for board games for educational and
research purposes that is currently under development. The
products of the EduSPL are game environments for multi-
player board games that are deployed in a distributed setting.
Game environments are expected to be available 24/7. The

EduSPL provides a complete SPL package that can be used:
(1) for master projects at advanced level to study and experi-
ment with various aspects of SPL, and (2) to support research
on self-adaptation and online updates of software systems. The
initial release of the SPL supports game environments with two
optional two-player games. In the future, we plan to extend
the asset base to support game environments with additional
multi-player games.

The coarse-grained architecture of a simple EduSPL product
is shown in Figure 1. This product configuration consists of
two Player Environments (PE) and an Operator Center (OC)
that are deployed on three hosts. Both the PEs and the OC are
built from a common set of components that can be composed
to the needs of the customers. Each player has access to
a player environment that provides the functionality and a
supporting GUI to play online games and interact with other
players using a chat system. Games can be played with human
players or with softbots. An operator has access to an operator
center, which allows him to manage various aspects of the
system, such as registration of players, performing updates,
restoring player environments after failures, etc. Player en-
vironments and the operator center make use of the game
platform. The game platform offers basic services for the
subsystems to support system configuration, communication,
security, persistence, fault handing, and dynamic updates.

EduSPL products are built on top of the OSGi platform [6],
thus the various subsystems are composed of related OSGi
bundles. The OSGi platform offers basic support for dynamic
updates of configurations, including starting, stopping, and
replacing of bundles, consistency checking of updated config-
urations, etc. A typical configuration of a game environment
comprises 40 to 50 bundles.

Fig. 1. Example of an EduSPL Product

Our particular interest in this paper is in quality require-
ments and their variability. Examples of such (informally
defined) requirements are:

QR1 A new game is available and has to be added to a running
game environment.

QR2 The decision algorithm of a softbot has to be replaced.
QR3 The chat system has to be upgraded.

QR4 A player environment with an ongoing game crashes
unexpectedly. After rebooting the player environment, the
status of the game has to be restored.

Support for these kind of requirements should be provided
as services of the operator center. It is important to note that
some of these requirements are only applicable for products
with particular features (e.g., QR2, QR3), while others are
applicable for all products (e.g., QR1, QR4). Moreover, some
properties of the requirements may differ for different prod-
ucts. For example, the time to restore a game after a crash
(QR4) may be different for products that run on different
hardware platforms. Specifying requirements for each possible
variant will result in huge number of requirements that are
very difficult to manage. To avoid this, we need the means to
express the variabilities in quality requirements.

III. QUALITY ATTRIBUTES SCENARIOS AND VARIABILITY

In order to support variability in quality requirements, we
need the means to specify the variations and commonalities
in a requirements specification. Pohl et al. [1] suggested three
questions to identify requirements for product line variability:

1) What does vary? - e.g., an algorithm or a configuration
parameter value.

2) Why does it vary? - e.g., support for multiple execution
environments.

3) How does it vary? - e.g., by dynamic linking or by
setting a value at compile time.

While modeling quality requirements for the EduSPL, we
found out that there is no suitable approach available for
modeling the quality concerns and their variations. Using
standard QAS to specify quality requirements for a SPL leads
to problems. In particular, for each quality concern we need
to specify a large number of detailed scenarios that define
concrete elements for each scenario. Basically each of the
elements (source, stimulus, artifact, environment, response and
response measure) may be subject of variation of a scenario.
As a result, the number of scenarios domain engineers have
to write to address each quality variability will be huge.
Producing and managing such a large number of scenarios is
cumbersome and error prone. To that end, we have investigated
how QAS could be modified for this purpose.

Domain QAS
In the EduSPL project we investigated whether we could

combine QAS with dedicated variability modeling techniques.
This effort resulted in domain QAS, which is an extension
of standard QAS. The rationale for extending QAS to model
quality variations is the observation that the six elements in
the baseline QAS can be used to answer the three ’variability
questions’ suggested by Pohl et al. [1]. If we group the six
compartments of the standard QAS into three, as shown in
Table II, they match the three questions for identifying and
expressing variability of quality requirements for a SPL.

However, even if the standard QAS template allows express-
ing the variability, we discovered that additional information
was required to completely specify the variability. We decided

Domain Quality Attribute Scenario - Template

Compartment Description

Source (SO)
This is some entity (a human, a computer system, or any other actuator) that generates
the stimulus

Stimulus (ST) The stimulus is a condition that must be considered on arrival at the system.
Artifacts (A) Some artifacts are stimulated. This may be the whole system or some pieces of it.

Environment (E)
The stimulus occurs within certain conditions. The system may be in an ’over-load’ mode
or may be running in ’normal’ mode when the stimulus arrives.

Response (R)
The response is the activity undertaken after the arrival of the stimulus. In the examples,
we use UML scenario diagrams to model response fragments.

Response Measure (RM)
When the response occurs, it should be measurable in some fashion so that the
requirement can be tested

Variants (V) &

Valid QAS Configurations (VC)

Variants define the elements of variation of the domain QAS.
Valid QAS Configurations define allowed combinations of the variants to derive product
specific QAS from the domain QAS.

Fragment Constraints (FC)

Fragment constraints express constraints on the selection of fragments of the standard
QAS compartments (i.e., Source, Stimulus, Artifact, Environment, Response, and Re-
sponse Measure). There are three categories of fragment constraints: (1) Mandatory, (2)
Variant specific, and (3) Bindings.
A mandatory constraint defines the fragments that need to be included in all the product
QAS derived from the domain QAS.
A variants specific constraint defines the additional fragments that need to be included
for a valid QAS configuration.
A binding defines a restriction on the values of parameters for a valid QAS configuration.

TABLE I
DOMAIN QUALITY ATTRIBUTE SCENARIO

QAS Fragments
Source

Why does it vary?
Stimulus
Artifact

What does vary?
Environment

Response
How does it vary?

Response Measure

TABLE II
QAS ANSWERS THE VARIABILITY QUESTIONS

to include this additional variability modeling information
in additional compartments to support understandability. The
extended domain QAS template is described in Table I.

The first six compartments remain the same as originally
defined by the standard QAS. However, we have extended the
content of the compartments with fragments and parameters
to support modeling the variability for a given requirement.
Fragments are mandatory or optional parts of compartments
that need to be selected and composed to derive concrete
scenarios from the domain QAS for a product. Parameters
can be used to express more fine-grained variations inside
fragments. Parameters have to be bound to values for a
concrete scenario.

We introduced two additional compartments (see Table I)
to define the scope of the domain QAS and support deriving
product specific QAS from the domain QAS, i.e., Variants and
Valid QAS Configurations and Fragment Constraints. Variants
define the elements of variation of the domain QAS, and

valid QAS configurations define allowed combinations of the
variants to derive product specific QAS from the domain QAS.
Fragment constraints express constraints on the selection of
fragments of the standard QAS compartments. These include
mandatory fragments required for all product QAS, variant
specific fragments required for specific QAS configurations,
and constraints on the bindings of parameters of the required
fragments.

Domain QASs are core assets that specify variations in
quality concerns at the domain level. We use domain QASs
to specify quality requirements for the EduSPL during do-
main engineering. In product engineering projects, the domain
QASs are used to derive product specific QASs, i.e., product
QASs, to model product specific quality requirements. Product
specific scenario instantiation requires the selection of the
fragments for the required valid configuration and binding
parameter respecting the fragment constraints.

IV. DOMAIN QAS IN THE EDUSPL

To illustrate how the domain QAS can be used to model
product line quality attributes variability, we defined two
example scenarios for the EduSPL.

A. Robustness Domain QAS

The robustness domain QAS shown in Table III describes
variability in one of the robustness requirements for the
EduSPL. In particular, this requirement is concerned with
restoring and resuming a failed player environment (PE) after
a silent node failure (the PE becomes unresponsive after a

crash). We assume that the operator center and other support-
ing infrastructure are operating normally during the recovery.

The Source and Stimulus compartment have one trivial
fragment. The first distinct variation required is in the Artifact
compartment, with three fragments (A1, A2, A3). Dependent
PE represents the player environment that gets affected when
the PE referred to as A2 fails (e.g., the player of the dependent
PE was playing a game with the PE that crashed).

Environment has five fragments (E1, E2,..., E5). E1 repre-
sents an environment where a PE is online but no game or
chat is ongoing. E2 represents an environment where a PE
is online with chat (but no ongoing game). E3 represents the
environment where a PE is online with an ongoing game, but
no ongoing chat. E4 represents the environment where a PE
is online with an ongoing game and chat. E5 represents the
environment where a PE is playing a game against a softbot.

How the operator center responds to a detected PE failure,
under different environment conditions, is characterized in
the Response compartment using sequence diagram fragments.
The first fragment (R1) specifies how the OC detects, accesses,
and restores the failed PE. The three other fragments specify
different variants for different conditions. Response Measure
has only one fragment, however, it contains the parameter x
that expresses the range of response time for restoring the PE
supported by the EduSPL.

The Variants and Valid Configurations compartment char-
acterizes three concrete failure recovery variants required in
the EduSPL. The three variants V1, V2, and V3 refer to
game environments with support for games, chat, and softbots.
The EduSPL allows four possible QAS configurations for
these variants. These four are modeled explicitly in the Valid
Configurations part. For example, valid configuration VC3
states that the EduSPL supports game environments with only
games and softbots.

Fragment Constraints define constraints on deriving product
QASs for the EduSPL from this domain QAS. The mandatory
constraint expresses the fragments that are required in all prod-
uct QASs; e.g., R1 from the Response compartment. There are
four variant specific constraints. The constraint Variants VC1,
for instance, expresses that no additional fragments and their
variants are needed for deriving the product QAS robustness
is required only for ongoing games. Constraint Variants VC3
states that the environment variant E5, and the response variant
R4, must be included (in addition to the fragment specified
by the mandatory constraint) in product QASs for games and
softbots.

In the scenario we see how actual values are bound to
the fragment parameter x. In the robustness product QASs,
a concrete value for the response measure must be provided
to make a scenario complete. The actual binding takes place
during product engineering.

B. Upgradability Domain QAS
The upgradeability domain QAS shown in Table IV specifies

variability in an upgradeability concern of the EduSPL. The
scenario focuses on upgrades of a single PE. The variability

characterized by fragments and parameters define the product
QAS scope for this upgradeability concern.

How the two stimulated artifact fragments, OC and PE,
responds to the two stimuli fragments under operating envi-
ronment (E1) is specified by the fragments of the Response
compartment. Fragment R3 specifies how upgrades are down-
loaded and executed. The other two fragments specify how the
upgrades can be initiated.

Response Measure defines three fragments of response
measures. For example, RM1 expresses that PE is notified by
the OC within x seconds, where the range for x is specified as
range(x) = [5..60]. Similarly RM2 and RM3 specify ranges
for downloading and performing upgrades, respectively.

The Variants and Valid QAS Configurations compartment
specifies three upgrade responses to be supported in the
EduSPL. The three variants V1, V2, and V3 represent variants
of QAS for push, critical push, and pull upgrade styles [7]
respectively. A critical push upgrade specifies a requirement
that some upgrades may not be delayed, for instance, an
upgrade of a security system component.The EduSPL supports
four QAS upgradeability configurations as specified by the
four Valid QAS Configurations.

Fragment Constraints define constraints on deriving product
QASs for upgradability. The mandatory constraint states that
the response fragment R3 must be included in all valid con-
figurations for product QASs. There are four variant specific
constraints for the upgradability domain. The constraint Vari-
ants VC2, for example, states that fragments Stimulus-ST1,
Response-R1, and Response Measure-RM1 must be included,
together with the mandatory fragments, for product specific
QASs that specifies support for both push (V1) and push
critical (V2) upgrades.

The binding of values to fragment parameters in this sce-
nario is concerned with specifying values for the response
measure. The scenario specifies a number of constraints on
time to notify, download, and upgrade. For example, bindings
to VC2 and VC3 illustrate how parameter values and param-
eter constraints are used to specify critical upgrades. Such
upgrades should not take more than 120 seconds.

V. DOMAIN QAS IN PRODUCT LINE ENGINEERING

We identified the issues related to quality concern speci-
fication addresses in this work during the Domain Analysis
activities for the EduSPL (Section II). In the previous section
we illustrated how to apply domain QAS to concrete concerns
in EduSPL. The domain QAS are used in several software
product line engineering activities. In Figure 2, we depict a
software product line engineering process based on the process
framework proposed by Pohl et al. [1]. Below we elaborate
on domain quality attribute scenarios in the initial activities of
domain and product engineering in the EduSPL context.

1) Domain Analysis – Domain analysis specifies common-
ality and variability in a software product line [1]. The
domain QAS for quality concerns are considered as core
assets with commonality and variability. When defining
the scope for quality attribute requirements in a new

Source (SO) [SO1] Player Environment (PE)
Stimulus (ST) [ST1] Operator Center (OC) detects that a PE has failed

Artifacts (A)

[A1] OC
[A2] Failed PE
[A3] Dependent PE

Environment (E)

[E1] PE without active game or chat
[E2] PE with active chat
[E3] PE with active game player
[E4] PE with active game player and chat
[E5] PE with active game softbot

Response (R)

Response Measure (RM) [RM1] Restore the failed component(s) within “x” seconds, with range(x) = [120..300]

Variants (V) &

Valid Configurations (VC)

[V1] games
[V2] chat
[V3] softbots
[VC1] V1
[VC2] V1 ∧ V2
[VC3] V1 ∧ V3
[VC4] V1 ∧ V2 ∧ V3

Fragment Constraints (FC)

[Mandatory] { SO1 } ∧ { ST1 } ∧ { A1, A2 } ∧ { E1, E3 } ∧ { R1 } ∧ { RM1 }
[Bindings] RM1.bind(x)
[Variants VC1] ∅
[Variants VC2] { A3 } ∧ { E2, E4 } ∧ { R2, R3 }
[Variants VC3] { E5 } ∧ { R4 }
[Variants VC4] { A3 } ∧ { E2, E4, E5 } ∧ { R2, R3, R4 }

TABLE III
DOMAIN QAS FOR ROBUSTNESS

Source (SO)
[SO1] Operator Center (OC)
[SO2] Player Environment (PE)

Stimulus (ST
[ST1] OC notifies PE about an upgrade
[ST2] PE checks for upgrade at OC

Artifacts (A)
[A1] OC
[A2] PE

Environment (E) [E1] Normal operation

Response (R)

Response Measure (RM)

[RM1] PE notified within x seconds, with range(x) = [5..60]
[RM2] Upgrade package downloaded within y minutes, with range(y) = [1..10]
[RM3] Upgraded performed within z seconds, with range(z) = [15..60]

Variants (V) &

Valid Configurations (VC)

[V1] push
[V2] push critical
[V3] pull
[VC1] V1
[VC2] V1 ∧ V2
[VC3] V1 ∧ V2 ∧ V3
[VC4] V3

Fragment Constraints (FC)

[Mandatory] { SO1, SO2 } ∧ { A1, A2 } ∧ { E1 } ∧ { R3 } ∧ { RM2, RM3 }
[Variants VC1] { ST1 } ∧ { R1 } ∧ { RM1 }
[Variants VC2] { ST1 } ∧ { R1 } ∧ { RM1 }
[Variants VC3] { ST1, ST2 } ∧ { R1, R2 } ∧ { RM1 }
[Variants VC4] { ST2 } ∧ { R2 }
[Bindings VC1] V1.(RM1.bind(x) + RM2.bind(y) + RM3.bind(z)) | x+y+z ≤ 6 minutes
[Bindings VC2] (V1.(RM1.bind(x) + RM2.bind(y) + RM3.bind(z)) | x+y+z ≤ 6 minutes)

∧ (V2.(RM1.bind(x) + RM2.bind(y) + RM3.bind(z)) | x+y+z ≤ 120 seconds)
[Bindings VC3] (V1.(RM1.bind(x) + RM3.bind(y) + RM2.bind(z)) | x+y+z ≤ 6 minutes)

∧ (V2.(RM1.bind(x) + RM2.bind(y) + RM3.bind(z)) | x+y+z ≤ 120 seconds)
∧ (V3.(RM2.bind(y) + RM3.bind(z)) | y+z ≤ 10 minutes)

[Bindings VC4] V3.(RM2.bind(y) + RM3.bind(z)) | y+z ≤ 10 minutes

TABLE IV
DOMAIN QAS FOR UPGRADABILITY

!"#$%&'()#*+,-(.-/,-000",-/

)#*+,-(
102%,"0*0-'3(4(5-+673,3

)#*+,-(
10+6,8+',#-

)#*+,-(
90",:,&+',#-(4(9+6,$+',#-

!"#$%&'(.-/,-000",-/

!"#$%&'(
102%,"0*0-'3

!"#$%&'
5-+673,3(4()03,/-

!"#$%&'(
;*<60*0-'+',#-

!"#$%&'
90",:,&+',#-(4(
9+6,$+',#-

!"#$%&'(6,-0
=+-+/0*0-'

!"#$%&'(6,-0(
>&#<,-/

!"#$%&'(6,-0(
.?#6%',#-(
=+-+/0*0-'

>#:'@+"0(!"#$%&'(A,-0(.-/,-00",-/

B#"0(5330'3(

Fig. 2. Product Line Engineering (PLE) activities [1]

product-line development, for instance the EduSPL, each
quality concern should be analyzed for variability and
commonality. This is then specified in the different QAS
compartments. The variants and valid configurations
are specified together with the QAS constraints. During
product line evolution, this activity considers product
QAS, possibly for new quality attributes, for inclusion in
the software product line as core assets. Domain QASs
form the basis, together with functional and supple-
mentary requirements for the product-line architecture,
which are derived primarily during Domain Realization.

2) Product Requirements & Analysis – In a product
engineering project, the domains QAS are core assets
that provide templates to instantiate product QAS. In-
stantiation of a EduSPL product implies that specific
variants and valid configurations are selected and that
values are bound to QAS parameters. The product
specific requirements may require modifications to the
derived instances or addition of product QAS not covered
by the product line. The rigorous expressions in the
domain and product QAS may be used to verify QAS
instances.

3) Domain Realization – The main challenge in domain
realization is to derive a product-line architecture for the
domain requirements, including domain quality concerns
specified by domain QAS. Most architecture design
methods rely on scenarios for evaluation, for example,
ATAM [5]. The domain QAS plays an important role
in domain design activities for the EduSPL. Initially
as specifications of quality concerns that drive the
architecture design method and later as the basis for
concrete product QAS for scenario based evaluation.
Here the rigorous underpinning of a domain QAS may
be used to derive concrete domain evaluation scenarios
based on valid configurations and fragment constraints.
The application of product QAS in product realization
is analogous to domain realization. Here the product
specific QAS drive product architecture design and

evaluation. The product QAS were derived from domain
QAS during product analysis.

Software product line engineering will benefit from the
promotion of quality attribute scenarios to core assets in ar-
chitecture documentation, architecture design, and architecture
evaluation. Above we discussed how domain QASs function
both as domain documentation and as templates for product
specific documentation. In addition, domain QAS could assist
in identifying architecture patterns and tactics in architecture
design and used to derive concrete scenarios for architecture
evaluation.

VI. DISCUSSION & CONCLUSION

In this work we address a research problem of modeling
variability in quality concerns for software product lines. We
identified the problem during the development of the EduSPL
software product line for educational and research purposes.
The contribution of this work is domain QAS, an approach
that promotes quality attribute scenarios to core assets in
software product lines. The approach reduces the number of
quality attribute scenarios that must be generated as part of
domain and product engineering efforts in software product
line engineering. Our work on quality attributes scenarios
as core assets is work in progress so evaluation is limited
and several remaining challenges have been identified in the
process. We discuss some below.

The primary challenge is to further extend the domain
QAS to support all aspects of variability modeling for quality
concerns. We have modeled examples from the EduSPL,
which illustrate that the extended quality attribute scenarios
approach is applicable for modeling quality concern variability
in software product lines. However, these initial modeling
efforts are limited. Further modeling will most certainly trigger
additional work to revise the domain QAS template and its
constraint language. Extensions to the template will address
support for expressing variability in all QAS compartments,
including improved support for fragments, parameters and
their configuration and bindings. The domain QASs we have
modeled so far do not exploit variability in all compartments,

thus we may not say for sure that the proposed specifications
approach with variants and valid configurations together with
bindings and fragments is sufficient. Extensions to the con-
straint language, which in its current instance supports basic
expressions, include several modifications to improve the con-
straint language’s expressiveness. Using constraint languages
is not novel, Karataş [8] discusses a more advance language
which allows for extensive analysis. Other examples of the
use of formal languages for modeling variability include the
work on propositional logic by Bagheri et al. [9]. Another
aspect that needs further study is the need for expressing
model dependencies and other relationships, such as requires
and excludes. Among the dependencies, trade-offs stand out
as the most challenging. Quality attributes are non orthogonal
and deriving one product QAS may impact the constraints and
bindings for others. Additional challenges for the language is
to incorporate modeling support to express dependencies to
other model artifacts. Traceability will provide provisioning
for connecting artifacts from different development activities
to each other, which will assist engineers in maintaining
models. The work of Tun [10] is a nice example of how to
create links from requirements to products.

It is often argued that variability modeling should be fac-
tored out from the ’base’ model. Variability languages such
as OVM [1] and CVL [11] are two examples. [12] is an
approach that extends OVM with so called meta variation
points and meta variants to support addition of variants at
runtime. The work of Frantz et al. [13] uses OVM with
annotations. However this approach is more concerned with
relating quality attributes to specific variation points and
variants releated to features. Etxeberria and Sagardui [14]
propose similar extensions, adding attributes to feature models
to better support evaluation. For our domain QAS we decided
to include variability in the specifications. The rationale was
understandability and because the fragments we considered
were small, which meant that they fit in one template, we argue
that this approach is better from that point of view. However,
it might be that additional modeling will bring fragments of
such size that the approach has to be reconsidered. More
complex fragments and quality concern models may require
that a single concern is modeled in multiple domain QAS.
However, this introduces additional dependencies that have to
be supported as first-class citizen in the modeling approach.

Core assets are reused in product engineering activities. We
argue that domain QASs are useful to derive product specific
QAS, for instance for architecture evaluations. However, we
have not yet evaluated the approach and derived product spe-
cific instances from large sets of complex domain scenarios.
Efforts in that direction will most certainly raise additional
issues, such as, the complexity of the derivation process, the
quality of the generated scenarios, and, as a consequence,
the pros and cons offered by domain QAS compared to the
traditional approach of writing multiple scenarios for each
quality attribute.

Finally, at this stage we have not considered any method-
ological support or tool support for domain QAS. However we

believe that an integration with existing design and evaluation
methods is important. The formal-underpinnings of domain
QAS makes it a candidate for extensive tool support. We
will initially focus on specification and derivation support.
This may be evolved and expanded into model verification
combined with advanced model management in the future.

ACKNOWLEDGMENTS

We are grateful to Tony van Beers, Bartosz Michalik, and
Quan Nguyen for their contributions to the EduSPL. We also
thank the reviewers for the useful feedback that we received
on an earlier version of this paper.

REFERENCES

[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line
engineering: foundations, principles, and techniques. Springer-Verlag
New York, Inc., (2005).

[2] L. Etxeberria, G. Sagardui, and L. Belategi, “Quality aware software
product line engineering,” Journal of the Brazilian Computer Society,
vol. 14, no. 1, pp. 57–69, 2008.

[3] V. Myllärniemi, T. Männistö, and M. Raatikainen, “Quality attribute
variability within a software product family architecture,” in Second
International conference on Quality of Software Architecture QoSA,
2006.

[4] L. Etxeberria, G. Sagardui, and L. Belategi, “Modelling variation in qual-
ity attributes,” Lero The Irish Software Engineering Research Centre.,
Tech. Rep., 2007.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Addison-Wesley Professional, (2003).

[6] OSGi Alliance. (2012) OSGi Service Platform Release 4. [Online].
Available: http://www.osgi.org/Main/HomePage. [Accessed: Jun. 21,
2012].

[7] J. Andersson, “A deployment system for pervasive computing,” in
Proceedings of the International Conference on Software Maintenance.
IEEE, 2000.

[8] A. Karata, H. Ouztzn, and A. Doru, “Mapping extended feature
models to constraint logic programming over finite domains,” in
Software Product Lines: Going Beyond, ser. Lecture Notes in
Computer Science, J. Bosch and J. Lee, Eds. Springer Berlin
/ Heidelberg, 2010, vol. 6287, pp. 286–299. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15579-6 20

[9] E. Bagheri, T. Di Noia, A. Ragone, and D. Gasevic, “Configuring
software product line feature models based on stakeholders’ soft and
hard requirements,” in Proceedings of the 14th international conference
on Software product lines: going beyond, ser. SPLC’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 16–31. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1885639.1885642

[10] T. Than Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans,
“Relating requirements and feature configurations: a systematic
approach,” in Proceedings of the 13th International Software
Product Line Conference, ser. SPLC ’09. Pittsburgh, PA, USA:
Carnegie Mellon University, 2009, pp. 201–210. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1753235.1753263

[11] F. Fleurey, O. Haugen, B. Mller-Pedersen, G. K. Olsen, A. Svendsen,
and X. Zhang, “A generic language and tool for variability modeling,”
SINTEF ICT, Tech. Rep. 978-82-14-04457-7, 2009.

[12] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet, K. Schelfthout,
and W. V. Betsbrugge, “Adding variants on-the-fly: Modeling meta-
variability in dynamic software product lines,” in International Workshop
on Dynamic Software Product Lines, 2009.

[13] F. Roos-Frantz, D. Benavides, A. Ruiz-Corts, A. Heuer, and
K. Lauenroth, “Quality-aware analysis in product line engineering
with the orthogonal variability model,” Software Quality Journal,
pp. 1–47, 10.1007/s11219-011-9156-5. [Online]. Available: http:
//dx.doi.org/10.1007/s11219-011-9156-5

[14] L. Etxeberria and G. Sagardui, “Variability driven quality evaluation in
software product lines,” in Software Product Line Conference, 2008.
SPLC ’08. 12th International, sept. 2008, pp. 243 –252.

