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ABSTRACT

Self-adaptation has been widely recognized as an effective ap-
proach to deal with the increasing complexity and dynamicity of
modern software systems. One major challenge in self-adaptive
systems is to provide guarantees about the required runtime quali-
ties, such as performance and reliability. Existing research employs
formal methods either to provide guarantees about the design of
a self-adaptive systems, or to perform runtime analysis supporting
adaptations for particular quality goals. Yet, work products of for-
malization are not exploited over different phases of the software
life cycle. In this position paper, we argue for an integrated for-
mally founded approach to validate the required software qualities
of self-adaptive systems. This approach integrates three activities:
(1) model checking of the behavior of a self-adaptive system dur-
ing design, (2) model-based testing of the concrete implementation
during development, and (3) runtime diagnosis after system deploy-
ment. We illustrate the approach with excerpts of an initial study
and discuss for each activity research challenges ahead.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Software Quality—methods for
software quality and verification and validation

Keywords

Self-adaptation, model checking, model based testing, runtime di-
agnosis

1. INTRODUCTION

Society extensively relies on the qualities of software systems.
Examples are the robustness of software for media and the avail-
ability of software for business collaborations. Due to the increas-
ing complexity and dynamicity of software systems, assuring and
maintaining the required qualities of software constitutes a tremen-
dous challenge. Self-adaptation has been widely recognized as an
effective approach to deal with the increasing complexity and dy-
namicity of software systems [10]. A self-adaptive system com-
prises two parts: the managed system that deals with the domain
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functionality and the managing system that monitors the managed
system and adapts it to achieve particular quality objectives [13,
27]. The key underlying idea of self-adaptation is complexity man-
agement through separation of concerns.

One major challenge in self-adaptive systems is to provide guar-
antees about the required runtime qualities [10]. With runtime
qualities, we mean non-functional qualities that directly relate to
a system’s runtime behavior, such as availability, reliability, perfor-
mance, etc. Formal methods provide the means to rigorously spec-
ify and verify the behavior of self-adaptive systems both at design
time and runtime. However, a recent study of the research results of
a representative sample of literature revealed that few researchers
are concerned with systematic verification of quality properties of
self-adaptive systems [26]. This trend is confirmed in a systematic
literature review we just completed focusing on the use of formal
methods in self-adaptive systems [28]. These reviews show that
most researchers consider verification of quality properties during
system design. However, to assure the verified properties, the im-
plementation should conform to the verified architectural models.
Moreover, as self-adaptive systems are usually complex systems
that operate in dynamic uncertain environments, it is often desirable
to monitor the system after deployment and determine incorrect be-
havior.

In this position paper, we argue for an integrated formally
founded approach to guarantee the required software quality prop-
erties in self-adaptive systems. This approach integrates 3 activities:
(1) static verification of the behavior of self- adaptive systems dur-
ing architectural design, with (2) model-based testing of concrete
implementations during system development, and (3) runtime di-
agnosis after system deployment. We illustrate the approach with
excerpts of an initial study and discuss challenges ahead.

Overview. The remainder of this paper is structured as follows.
Section 2 introduces a self-adaptive system that we use for illustra-
tion in the paper. In section 3, we underpin our position by review-
ing a representative sample of studies that employ formal methods
for analyzing properties of self-adaptive systems. Section 4 gives
a high-level overview of the integrated approach we propose for
validating qualities of self-adaptive systems. In section 5, we elab-
orate on each of the activities of the approach. We conclude with
challenges ahead to realize the proposed approach in section 6.

2. TRAFFIC MONITORING SYSTEM

In this section, we give a brief introduction of a self-adaptive sys-
tem that we use for illustration purposes. The system consists of a
set of intelligent cameras, which are distributed evenly along the
road. An example of a highway is shown in Fig. 1. Each camera
has a limited viewing range and the task of the cameras is to detect
and monitor traffic jams on the highway to assist for example traffic



light controllers or driver assistance systems. Doing this in a decen-
tralized way avoids the bottleneck of a centralized control center. To
that end, a software agent is deployed on each camera that monitors
the local traffic. If a traffic jam spans the viewing range of multi-
ple cameras, the agents form an organization. Organizations have
a master/slave structure; the master provides information to clients
that have an interest in traffic jams. The master/slave structure cre-
ates dynamic dependencies among the cameras, e.g., a master needs
to keep track of its slaves.
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Figure 1: Self-healing scenario

Our particular interest here is on self-healing of the system af-
ter a silent node failure, i.e., a failure in which a failing camera
becomes unresponsive without sending any incorrect data. This is
shown in the scenario from T2 to T3 in Fig. 1. To make the system
robust to such failures, we add a self-healing controller to each cam-
era. This controller keeps track of the agent’s dependencies. The
controllers of cameras with dependencies exchange ping/echo mes-
sages to detect failures of other cameras. If a failure is detected, the
controllers perform adaptations to bring the agent system back to a
consistent state from where it can continue with monitoring traffic
jams. For example, if a master fails, a new master will be elected.
For a detailed discussion of the traffic monitoring system, we refer
the interested reader to [24].

3. FORMAL APPROACHES TO
ADAPTATION

We recently performed a systematic literature review on the use
of formal methods in self-adaptive systems that covered 11 main
software engineering venues in the field and 5 journals [28]. From
the 6353 studies searched, 75 focused on the use of formal meth-
ods in self-adaptive systems. From these 75 studies, 51 use for-
mal methods for modeling and reasoning, 13 for model check-
ing, and 11 for theorem proving. We limit our discussion here
to the studies that use some form of model checking both offline
and at runtime. For more information, we refer the reader to
http://homepage.lnu.se/staff/daweaa/SLR-FMSAS. htm.

[9] studies an integrated approach for automatic generation of
adaptors for Web Service protocols at runtime. The approach com-
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bines automata models with rules expressed in linear temporal logic
(LTL). The property of interest is conformance with respect to the
syntax and order of protocol steps. The authors use “inverse model-
based testing” where tests are generated from the WSDL descrip-
tion and validated to check whether the synthesized automaton is a
correct data-flow abstraction of the service implementation.

[2] proposes a methodology for the specification and verification
of self-adaptive systems, combining communicating sequential pro-
cesses (CSP) models with properties specified in LTL. Considered
properties include correct refinement of the implementation model
from the adaptive system model, interference freedom, stability of
adaptation behavior, and deadlock freedom.

[19] proposes an approach for constructing autonomous systems
that synthesise tasks from high-level goals and adapt their software
architecture to perform these tasks reliably in a changing environ-
ment. The authors use labeled transition system (LTS) and struc-
tural constraints, and focus on verifying reliability properties.

[11] proposes a framework for designing fault-tolerance pro-
grams using dynamic program updates triggered by faults. The
authors use algebra and set theory for modeling and LTL for ex-
pressing rules. The main focus of the work is on failsafe updates
and progress during updates.

[7] focuses on design time formalization of self-repairing dy-
namic software architectures. The authors use T-typed Hypergraph
Grammars for modeling, and rules that are checked during graph
transformations. Properties of interest are completeness (desirable
configurations can be reached) and correctness (for reachable con-
figurations that are not desirable there exist repairing productions).

[14] proposes an approach for model-based runtime adaptation
for self-healing systems. Architecture models in Acme are checked
via Armani, which evaluates first order constraints on the fly as
properties of the architecture change. When problems are detected
Armani triggers a repair engine to look for a repair strategy. Con-
sidered properties are latency and the load of a server.

The authors of [3] argue that testing cannot provide safety guar-
antees for complex decentralized systems, while current model
checking and theorem proving techniques do not scale for such sys-
tems. To remedy this problem, they present a verification technique
that exploits the local character of structural safety properties. The
approach employs graphs for modeling and rules for defining prop-
erties, including system invariants and safety (e.g, hazards).

[29] proposes a model-based approach for developing dynami-
cally adaptive software. The authors use Petri nets and LTL and
focus on verifying invariants, liveness, tolerance, and adaptation
integrity. A Java implementation is connected with the Petri nets
(modeled in Renew) to test the conformance between the execu-
tions of the Java implementation and that of the Petri net models.

[20] proposes a model-based framework for developing self-
monitoring embedded programs. The approach derives a model-
based monitor from the requirements specification described in
temporal logic, and instruments a system model to emit events of
interest. The composition of the instrumented model with the mon-
itor forms a self-monitoring model that can be used for verification
and generating a program that can monitor its own execution.

[12] proposes a formal orchestration model for dynamically
adaptable services. The authors use process algebra with first-order
logic expressions (FOL). The focus is on three properties: respon-
siveness (the service always guarantees an answer to every received
service request, unless the user cancels), availability (the service
is always capable to accept a request), and reliability (the service
request can always succeed).

[17] proposes an approach for on the fly behavioral adaptation of
component compositions using process algebra and LTS specifica-



tions. The focus is on the automatic generation of adaptor protocols,
and verification of matching and absence of deadlock.

[5] employs different verification techniques to learn an abstract
description from the observed behavior of the system. The approach
allows the application of formal verification methods and tools in
the validation process.

[8] proposes an approach to achieve QoS for service-based sys-
tems through dynamical adaptation. Formally specified require-
ments are automatically analyzed to identify and enforce optimal
system configurations using a control loop. The approach uses
Markov models and probabilistic computation tree logic (PCTL),
and focuses on improving response time and dealing with failures.

From this discussion, it is clear that most researchers employ for-
mal methods either to provide guarantees about the design of a self-
adaptive systems, or to perform runtime analysis to support adap-
tations with particular guarantees. The only studies that directly
transfer formalization results over different phases of the software
life cycle are [9, 20, 29, 8]. While we notice an increasing attention
for the use of formal methods in self-adaptive systems, we believe
that there is a dearth of approaches that exploit work products of
formalization throughout the software life cycle. Such approaches
would enable the transfer of quality assurances of self-adaptive sys-
tems obtained during design to the implementation and the running
system, enhancing the validity of the required qualities.

4. OVERVIEW OF THE APPROACH

We propose an integrated approach to validate the required soft-
ware quality properties of self-adaptive systems that spans design,
implementation, and deployment. In this section, we give a high-
level overview of the approach; each activity is discussed in more
detail in the next section. Fig. 2 shows the logical sequence of activ-
ities of the approach with their respective work products. Although
the figure suggests that the activities are executed in a sequence, in
practice, typically feedback is used for revising preceding activities
(incl. requirements description).
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Figure 2: Overview of the integrated approach

The approach starts from a description of requirements and envi-
ronment assumptions, which are often written in natural language.
During architectural design, the requirements are used to create for-
mal models of the self-adaptive system and the relevant parts of the
environment. Models can be defined for different parts of the sys-
tem and at different levels of abstraction. The mixture of abstrac-
tion and precision allows us to accurately model what is needed. In

addition, domain properties and adaptation properties are defined
that define rules or constraints over the models of the self-adaptive
system. Domain properties relate to the functionality of the self-
adaptive system, adaptation properties relate to the qualities that are
subject of adaptation. During model checking the models are ver-
ified against the properties, and in case of violations, the feedback
(counterexamples) is used to correct the models (or alternatively,
the properties may be revised).

While formal verification intends to show that a system has some
desired properties by proving that a model of that system satisfies
these properties, model based testing starts with a verified model
and a set of required properties, and then intends to show that the
actual implementation of the system behaves compliant with this
model. Model based testing supports automatic generation of tests
(supported by user guidance) and execution of the tests. Different
setups can be used for unit and integration tests, using correspond-
ing models and properties. The work product of model based test-
ing is an implementation that complies with the verified model that
resulted from model checking.

Once the system has passed the necessary tests, it can be de-
ployed. As self-adaptive systems are usually complex systems that
have to operate under highly dynamic operating conditions, it is of-
ten desirable to diagnosis the behavior of the system after deploy-
ment. To that end, the system has to be instrumented and monitored
at runtime. The collected data can be used to analyze the system
behavior based on the verified models and required system proper-
ties. In case of violations, feedback is provided to the stakeholders
which can be used for various purposes, from providing statistical
information, up to evolving the systems or revising strategies.

S. ACTIVITIES OF THE APPROACH FOR
VALIDATING QUALITIES

We now zoom in on the different activities of the approach. We
start with model checking, followed by model based testing, and
finally runtime diagnosis.

5.1 Model Checking

Given a model of the system and a formal property, model check-
ing enables one to systematically check whether this property holds
for the model. Model checking is a relative mature domain [I,
4] and numerous tools are available to verify a variety of differ-
ent types of models. Fig. 3 shows an overview of model checking
for self-adaptive systems.

The work products of model checking are verified models for a
set of properties. These work products are central to the integrated
approach for validating qualities of self-adaptive systems. We illus-
trate the different models and properties with examples of the traffic
monitoring system described in section 2

Environment Model. One of the abstract models we use to model
the environment is that of a car. Fig. 4 shows a timed automaton
for a car, designed with Uppaal.' C'ar waits for the startCar sig-
nal from the release traffic process (this process releases cars in the
environment). Once started, the car moves along the subsequent
viewing ranges of the cameras. Whenever a car enters/leaves the
viewing range of a particular camera it emits a signal that can be
used by the camera agents to monitor traffic congestion.

To reduce the state space during verification of robustness proper-
ties, we use an environment model that creates the sequence of traf-
fic conditions as described in Fig. 1, including the failure of camera
1 at T2. This model is shown in Fig. 5.

"http://www.uppaal.com/
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Self-Adaptive System Model. The central component of the self-
adaptive system is the self-healing controller. Fig. 6 shows the au-
tomaton for the self-healing controller. The controller sends peri-
odically is Alive[ping| signals (based on WAIT _TIME) to the
self-healing controllers of the cameras on which the local camera
depends (e.g., master/slave and neighbor dependencies). If a cam-
era does not respond in a certain time (ALIV E_T 1M F) it adapts
the organizational controller (i.e., a part of the regular functional-
ity that supports agents with managing organizations), either by re-
moving a dependency in case a slave failed, or by restructuring the
organization in case the master of the organization failed.

Domain Propery. One of the required domain properties is that all
cameras cannot be slave at the same time (i.e., the system would not
provide its function, that is, there are no masters that inform clients
about traffic congestion):

A[] not forall(i: cam_id) Camera (i) .Slave

Self-Adaptation Property. We illustrate two self-adaptation prop-
erties related to robustness. First, when camera 1 fails then eventu-
ally camera 2 and 3 detect the failure.

A<> SelfHealingController(l) .Failed imply
SelfHealingController (2) .FailureDetected
&& SelfHealingController (3) .FailureDetected

Second, when camera 1 fails then eventually camera 2 and 3 will
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form an organization (with either one of them as master and the
other slave).

A<> Camera(l) .Failed imply

((Camera(2) .MasterWithSlaves
&& camera[2].slaves[3])
(Camera (3) .MasterWithSlaves
&& camera[3].slaves[2]))

The work products of model checking are the verified models of
the self-adaptive systems, together with a set of properties. The
models provide the input for the following activities.

5.2 Model Based Testing

[22] characterizes model based testing as automation of black-
box test design. Model based testing uses a concise behavioral
model of the system under test, and automatically generates test
cases from the model. The goal of model based testing is to show
that the implementation of the system behaves compliant with this
model. Fig. 7 shows an overview of model based testing.
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The central aspect of model based testing is the implementation
relation that defines the conformance between the system model
(SM) and the implementation (SUT). [21] defines the ioco (input-
output conformance) as follows: any experiment derived from the
specification and executed on the implementation leads to an output
that is foreseen by the specification. [15] defines relativized timed
input/output conformance as the formal implementation relation.
Relativized i/o conformance allows checking whether the behavior
of an implementation is correct (conforms) to its specification when
operating under assumptions about the environment.

An important aspect of model based testing is test selection. As
exhaustive testing of realistic systems is typically not feasible, the
tester needs to steer test selection. A typical approach is to anno-
tate the models with auxillary variables or automata that allow the
test purpose or coverage criterion to be formulated as a reachability
property that can be issued to the model-checker. For example, in
JTorX? the test purpose can be specified in an automaton by mark-
ing the success state(s) in which the test purpose is reached.

As an example, to test the self-healing scenario described in
Fig. 1, we could mark the Recover F'ailure state in the automaton
shown in Fig. 5 as a success state. We can then formulate a reach-
ability property to check whether the system will always reach the
recover failure state after the camera has failed. This property can
be issued to the model checker to test whether the implementation
conforms to the model with respect to this property.

An alternative approach is described in [15] where test purposes
and coverage criteria are formulated as observer automata that can
be automatically superimposed on the model in Uppaal. This avoids
explicit changes to the model, and allows the user to specify his own
coverage criteria relatively easily.

Finally, to enable test execution, the implementation (SUT) has
to be connected with the test execution tool using an adapter. The
adapter is an implementation-specific hardware/software compo-
nent that is responsible for translating abstract input test events into
real representations, and physical output observations into abstract
model outputs. Whereas the development of the adapter may some-

Zhttps://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki/

times be laborious, it is not specific for model based testing.

Besides the formally verified models of self-adaptive systems
(SM), we also include the environment models (EM) for testing.
[16] argues that modeling the environment explicitly and taking this
into account during test generation has several advantages: 1) the
test generation tool can synthesize only relevant and realistic sce-
narios for the given type of environment; 2) the engineer can guide
the test generator to specific situations of interest; 3) a separate en-
vironment model avoids explicit changes to the system model if
testing must be done under different assumptions or use patterns.

We add to these arguments that environment models are a sine
qua non for model based testing of runtime qualities, which is cen-
tral to self-adaptation. In the example discussed above, it is the
environment model that specifies the failure events that have to be
tested. An explicit model of the environment allows an engineer
to precisely specify the failure scenarios of interest and the condi-
tions under which the failures happens. For example, in the sce-
nario shown in Fig. 5 a camera failure is generated after traffic is
congested, which allows to test the correctness of the system when
one of the cameras of an organization that monitors a traffic jam
fails. Nevertheless, model based testing of qualities is an open is-
sue [6, 18, 23], and so is the question of which environment (or
other) models we need for testing particular quality properties.

The work product of model based testing is an implementation
that conforms to the verified design models. It is important to note
that testing only shows errors of the implementation against the ver-
ified models within the test scope based on test selection.

5.3 Runtime Diagnosis

Self-adaptive systems are designed with run-time adaptation in
mind, keeping the user’s perceived as well as system intrinsic de-
pendability at a satisfactory level. However, the partial cover-
age inherent to model based testing of complex systems combined
with the uncertainty of the operating conditions under which self-
adaptive systems have to operate calls for automated runtime diag-
nosis. Fig. 8 shows an abstract model for runtime diagnosis of a
deployed self-adaptive system.
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Figure 8: Overview runtime diagnosis

To enable monitoring, the system needs to be instrumented to
collect relevant information at runtime. Additionally, probes have
to be provided that monitor the relevant aspects of the environment.



The data derived from monitoring is used by a diagnosis tool to an-
alyze the system behavior. Analysis interprets the actual system be-
havior based on the verified behavioral models of the self-adaptive
system and the properties of interest. In the example described in
section 5.1, we may want to monitor camera failures and verify
whether the system recovers within a certain time window.

The results of runtime diagnosis can serve different purposes. At
a minimum, violations of properties may be communicated infor-
matively to the stakeholders. Analysis of data over time may be
useful for stakeholders to support decision making about a possi-
ble evolution of the self-adaptive system. For example, if the data
shows that the system systematically does not respond appropri-
ately, this may trigger a system evolution. The runtime models
of the self-adaptive system can support integrators with perform-
ing online updates of the system. In [25], we have demonstrated
that accurate models of the running system are essential to under-
stand dependencies among components and as such to perform cor-
rect online updates. The results of diagnosis may also be used for
strategic decision making. For example, the failure rate of partic-
ular hardware or the resistance of the software to certain security
attacks may be used for future decision making.

6. CONCLUSIONS AND CHALLENGES

In this paper, we have argued for an integrated formally founded
approach to validate the qualities of self-adaptive systems. The ap-
proach is based on the exploitation of the formal work products
during subsequent stages of the software life cycle.

We conclude with summarizing the main challenges in each of
the activities of the proposed approach. Model checking of self-
adaptive systems requires verification of a new class of properties,
such as stability of adaptation behavior, failsafe updates, progress
during updates, adaptation integrity, mismatch, and interference
freedom. Research is needed to get a better understanding of these
properties and how they can be verified. The focus of model based
testing so far has been on functional correctness of software sys-
tems. However, the concerns of self-adaptive systems are primarily
of a qualitative nature. Research is needed to study how model
based testing can be used to test implementations for quality prop-
erties. Finally, formally verified models of self-adaptive systems
enable rigorous runtime monitoring and analysis of self-adaptive
systems. However, this area is relatively unexplored and further re-
search is needed both for realizing runtime diagnosis and exploring
the potential use of it.

In our ongoing work, we explore the use of model based testing
for robustness in self-adaptive systems. Our long term goal is to
develop a foundation for validating qualities in decentralized self-
adaptive systems in line with the proposal outlined in this paper.
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