
Claims and Evidence for Architecture-Based
Self-Adaptation: A Systematic Literature Review

Danny Weyns and Tanvir Ahmad

Department of Computer Science
Linnaeus University, Vaxjo, Sweden

danny.weyns@lnu.se, ta222aw@gmail.com

Abstract. Engineering the upcoming generation of software systems and guar-
anteeing the required qualities is complex due to the inherent uncertainties at
design time, such as new user needs and changing availability of resources.
Architecture-based self-adaptation is a promising approach to tackle these chal-
lenges. In this approach, a system maintains a model of itself and adapts itself to
realize particular quality objectives using a feedback loop. Despite a vast body
of work, no systematic study has been performed on the claims associated with
architecture-based self-adaptation and the evidence that exists for these claims.
As such insight is important for researchers and engineers, we performed a sys-
tematic literature review covering 20 leading software engineering conferences
and journals in the field, resulting in 121 studies used for data collection. The
review shows that self-adaptation is primarily used to improve performance, reli-
ability, and flexibility. The tradeoffs implied by self-adaptation have not received
much attention, and evidence is mainly obtained from simple examples. From the
study, we derive a number of recommendations for future research in architecture-
based self-adaptive systems.

1 Introduction

Engineering the upcoming generation of software systems and guaranteeing the re-
quired qualities (performance, robustness, etc.) pose severe challenges due to the in-
herent uncertainty resulting from incomplete knowledge at design time. Examples of
uncertainties are new user needs, subsystems that come and go at will, dynamically
changing availability of resources, and faults that are difficult to predict. These chal-
lenges have motivated the need for self-adaptive software systems. Self-adaptation en-
dows a system with the capability to adapt itself to internal changes and dynamics in
the environment in order to achieve particular quality goals in the face of uncertainty.

Over the past fifteen years, researchers have developed a vast body of work on
engineering self-adaptive systems. Two prominent loosely connected approaches to
realize self-adaptation are architecture-based self-adaptation and control-based self-
adaptation. Architecture-based self-adaptation [14, 11, 9] emphasizes software compo-
nents for feedback loops, runtime models and mechanisms, and the interaction with the
managed system. Control-based self-adaptation [10, 8] applies principles from control
theory to design and analyze feedback control loops for computing systems. Our focus
in this paper is on architecture-based self-adaptation.

Despite more than a decade of research on self-adaptation, it is not clear how the
research results have actually contributed to improvements of engineering complex soft-
ware systems. Recent efforts resulting from two Dagstuhl seminars summarize achieve-
ments in software engineering for self-adaptive systems and outline challenges for fu-
ture research [6, 13]. But, to the best of our knowledge, no systematic study has been
performed on the claims associated with self-adaptation and the evidence that exists for
these claims. However, such an insight is crucial for researchers and engineers.

Recently, two related surveys have been conducted. Patikirikorala et al. [15] sur-
veyed engineering approaches for control-based self-adaptation. The authors investi-
gated control methodologies in self-adaptive systems and identified a set of design pat-
terns. However, this survey did not investigate the evidence of self-adaptive systems.
Moreover, the survey covered only 9 venues tailored to control-based approaches. In a
previous effort [16], we performed a pilot study in which we investigated claimed ben-
efits and supporting evidence for self-adaptation from studies published by the SEAMS
community (http://www.self-adaptive.org/) between 2006 and 2012. Most of these stud-
ies focus on architecture-based self-adaptation. While this pilot provided useful insights
for the SEAMS community, the survey was limited in scope and time and as such did
not provide conclusive insights for the field as a whole.

The goal of the research presented in this paper is to perform a comprehensive study,
aiming to identify:

1. The focus of research on architecture-based self-adaptation,
2. The claimed benefits of architecture-based self-adaptation,
3. The evidence that is provided for these claims.

To that end, we have performed a systematic literature review. In this review we
searched 20 main software engineering venues and journals in the period 2000-2012,
resulting in 121 primary studies for data collection. All material of the systematic
literature review is available at the survey website.1

Paper Overview. Section 2 provides a short introduction of architecture-based
self-adaptation. In Section 3, we describe the method we used in our research. In
Section 4 we present and analyze the data extracted from the primary studies to answer
the research questions. Section 5 discusses limitations of our study. Finally, we derive
conclusions from the review and highlight a number of recommendations for future
research in architecture-based self-adaptation in Section 6.

2 A Brief Introduction to Architecture-based Self-Adaptation

Figure 1 shows the primary elements of a self-adaptive system situated in an environ-
ment. We use the general terms managed subsystem and managing subsystem to denote
the constituent parts of a self-adaptive software system [11, 9, 17].

The environment refers to the part of the external world with which the self-adaptive
system interacts and in which the effects of the system will be observed and evaluated.

1 http://homepage.lnu.se/staff/daweaa/SLR/CESAS/CE-SAS.htm

Fig. 1. Constituent parts of a self-adaptive software system.

The distinction between the environment and the self-adaptive system is made based on
the extent of control. The managed subsystem comprises the application logic that pro-
vides the system’s domain functionality. The managing subsystem manages the man-
aged subsystem. The managing subsystem comprises the adaptation logic that deals
with one or more concerns. To realize its goals, the managing subsystem monitors the
environment and the managed subsystem and adapts the latter when necessary. Other
layers can be added to the system where higher-level managing subsystems manage
underlying subsystems, which can be managing subsystems themselves. One common
approach to describe the functions of managing subsystems is by means of a Monitor-
Analyze-Plan-Execute-Knowledge loop [11] (MAPE-K loop). The MAPE elements
map to the basic functions of a feedback loop, while the K component maps to run-
time models maintained by the managing system to support the MAPE functions [17].

It is important to note that the managed and managing subsystems can be deployed
centralized or distributed, and both subsystems can be explicitly separated or they can
be (partially) interwoven. Furthermore, the managing system can consist of one or more
feedback loops, and the MAPE functions can be mapped to distinct components, or they
can be integrated in one or more components.

3 Research Method

Our study uses a systematic literature review [12], which is a well-defined method
to identify, evaluation and interpreting all relevant studies regarding a particular re-
search question or topic of interest. A systematic literature review comprises three main
phases: planning, executing, and reporting. In the planning phase, the protocol for the
review is defined. This protocol describes the procedure that will be followed to con-
duct the review. In the execution phase, studies are selected, data is extracted, and the
results are analyzed. In the reporting phase, the study results are documented.

Three researchers were involved in the systematic literature review. The team de-
fined the protocol. To minimize bias, each primary study was assigned to two re-
searchers that independently collected the data. During discussion sessions with the
three reviewers, the collected data was compared and in case of differences, conflicts
were resolved. The data was then entered in a data base system for further processing.
Data analysis was performed by two researchers and discussed with the third researcher.
Finally, two researchers produced the final report of the review. The report was checked
by the third researcher and adjustments were made where needed.

We now discuss the research questions, searched sources, search strategy, inclusion
and exclusion criteria, collected data items, and approach for data analysis.

3.1 Research Questions

We formulated the goal of the review using the Goal-Question-Metric (GQM) perspec-
tives (purpose, issue, object, viewpoint) [3]:

Purpose: Analyze and characterize
Issue: the claims and evidence
Object: for architecture-based self-adaptive software systems
Viewpoint: from a researcher’s viewpoint.

This overall goal can be translated to three concrete research questions:

RQ1: What is the focus of research in architecture-based self-adaptation?
RQ2: What are the claims made for self-adaptation and what are the tradeoffs im-
plied by self-adaptation?
RQ3: How much evidence is available for the claims and what are the types of
evidence?

With RQ1, we want to get insight in the trends of research on architecture-based self-
adaptation and the current state of the art. RQ2 is motivated by the need to get clear
understanding of the benefits of architecture-based self adaptation, that is, we are inter-
ested in identifying which concerns are addressed in self adaptive systems and what are
the tradeoffs implied by applying self-adaptation. With RQ3 we aim to investigate what
assessment methods have been used to obtain evidence for the research results and how
much evidence is available for the applied methods.

3.2 Searched Sources

To guarantee high quality of the primary studies and obtain solid data to answer the
research questions, we searched the main conferences and journals for publishing re-
search results on self-adaptive systems, software architecture, and software engineering.
The selected sources are listed in Table 1. Rank is based on the Australian Research
Council ranking and H-index2. Instead of a general search, we opted for searching the
main specialized venues and the premier software architecture and engineering venues,
guaranteeing inclusion of high-quality primary studies for data collection.

2 ARC: http://www.arc.gov.au/era/era 2010/archive/era journal list.htm,
H-index: http://www.scimagojr.com and http://academic.research.microsoft.com/

Table 1. Searched Sources

ID Conference/Journal Rank H-index
Adaptive Adaptive and Self-adaptive Systems and Applications n/a n/a
ASE International Conf. on Automated Software Engineering A 24
DEAS Design and Evolution of Autonomic Application Software n/a n/a
ECSA European Conference on Software Architecture n/a 8
FSE Foundations of Software Engineering A 31
ICAC International Conference on Autonomic Computing B 32
ICSE International Conference on Software Engineering A 63
ICSM International Conference on Software Maintenance A 57
ISARCS International Symposium on Architecting Critical Systems n/a n/a
ISSTA International Symposium on Software Testing and Analysis A 35
SASO Self-Adaptive and Self-Organizing Systems n/a 9
SEAMS Software Engineering for Adaptive & Self-Managing Systems n/a n/a
SefSAS Software Engineering for Self-Adaptive Systems n/a n/a
WADS Workshop on Architecting Dependable Systems n/a n/a
WICSA Working International Conference on Software Architecture A n/a
WOSS Workshop on Self-Healing n/a n/a

JSS Journal of Systems and Software A 48
TAAS Transactions on Autonomous and Adaptive Systems n/a 16
TOSEM Transactions on Software Engineering and Methodology A* 47
TSE Transactions on Software Engineering A* 93

3.3 Search Strategy

The search strategy combines automatic with manual search. In a first step we searched
primary studies by automatic search using the following search string:

((Title:adaptive OR Title:adaptation OR Title:self OR Title:autonomic
OR Title:autonomous) OR
(Abstract:adaptive OR Abstract:adaptation OR Abstract:self OR Ab-
stract:autonomic OR Abstract:autonomous))

We performed automated search on three data search engines: IEEE Explore, ACM
Digital Library, and Springer for the respective venues. Search was based on title and
abstract. To ensure that the search string provides the right scope of studies, we applied
pilot searches on the set of studies from three venues: TAAS, ICAC, and SEAMS.

In the second step, two researchers read the abstracts, introduction and conclusions
of all the primary studies selected in the first step and used the inclusion/exclusion
criteria to filter out the studies that were not relevant for the review. For a number of
papers, we further looked into other sections. We explain the selection criteria below.

3.4 Inclusion and Exclusion Criteria

We used the following inclusion criteria in our search:

• Studies which were published between January 2000 to December 2012. We used
2000 as starting date as self-adaptive systems have become subject of active re-
search around that time.

• Studies on self-adaptive systems that at least partially separate the managing system
(adaptation logic) from the managed system (domain logic).

• Studies that concern the engineering of self-adaptation, i.e. the realization of self-
adaptation or parts of self-adaption.

• Studies that provide a minimal level of assessment of the research, which may be
in the form of example application, simulation, rigorous analysis, empirical, or real
world example.

We used the following exclusion criteria:

• Surveys and roadmap papers, as we are only interested in studies that provide a
minimal level of assessment of research results.

• We also excluded tutorials, short papers, editorials etc. because these papers do not
provide reasonable data.

A paper was selected as a primary study if it met all inclusion criteria and eliminated
if it met any exclusion criterion.

3.5 Data Items

Table 2 shows the data items we extracted to answer the research questions. For each
research question, we identified 3 to 4 data items that aim to provide data to answer the
research question. Several of these data items are defined based on the insights derived
from the pilot study [16].

We briefly discuss the different data items. The concrete options for each data item
are further discussed in the next section. For a detailed description of the data items, we
the protocol that is available at the survey website.

F1-F5: The data items author(s), year, title, venue, citation count are used for documen-
tation.

F6: Quality score assesses the quality of study, which is important for data analysis and
interpretation of results. Based on [7] and the pilot study, we assessed the following
quality items: (1) problem definition of the study, (2) problem context, i.e., the way the
study is related to other work, (3) research design, i.e., the way the study was organized,
(4) contributions and study results, (5) insights derived from the study, (6) limitations of
the study. For each item, we have quality levels: explicit description (2 points), general
description (1 point), and no description (0 points). A quality assessment score (max
12) is calculated by summing up the scores for all the items for a study.

Table 2. Data Items

Item ID Field Use
F1 Author(s) Documentation
F2 Year Documentation
F3 Title Documentation
F4 Venue Documentation
F5 Citation count Documentation
F6 Quality score RQ1-3
F7 Subject of the study RQ1
F8 Feedback loop architecture RQ1
F9 Application domain (if applicable) RQ1
F10 Quality concerns RQ2
F11 Claimed benefits RQ2
F12 Tradeoffs RQ2
F13 Validation setting RQ3
F14 Assessment approach RQ3
F15 Evidence level RQ3
F16 Repeatability RQ3

F7: Subject of the study refers to the software engineering field that is addressed in the
study. We used the SWEBOK sub-disciplines [1] to define the options, including soft-
ware requirements, software design, software construction, software testing, software
maintenance, among others.

F8: Feedback loop architecture refers to the structure of the feedback loop(s) (or parts
of it) that are the focus of the study. Options range from: focus on particular MAPE
functions, to single MAPE loop, and mutiple MAPE loops.

F9: Application domain refers to the kind of application for which self-adaptation is
used. We started from the an initial list of application domains taken from our pilot
study [16] and added additional domains when they appeared during the review.

F10: Quality concerns refer to the concerns related to self-adaptation. We defined the
following option based on IEEE 9126 and ISO/IEC 25012: reliability, availability, us-
ability, efficiency/performance, maintainability, portability, security, accuracy, flexibil-
ity, and other concern.

F11: Claimed benefits refer to the concerns of self-adaptation (identified in F10) with
positive impact. Options are: preserving quality of the software, improving quality of
the software, assuring quality of the software, and improving other concerns.

F12: Tradeoffs refer to the concerns of self-adaptation (identified in F10) with a neg-
ative impact. Option are: quality concerns that are negatively influenced due to self-
adaptation, and other concerns that are negatively influenced due to self-adaptation.

F13: Validation setting refers to the context in which validation is performed, with the
options: academic effort, academic/industry collaboration, and industrial effort.

F14: Assessment approach refers to the method used for evaluating the research results.
Options are: example application, simulation (use of a model of the real world), rigorous
analysis (typically based on formal methods), empirical study (case study, controlled
experiment), and experience from real examples.

F15: Evidence level expresses the degree of evidence for the research results. Evidence
can be obtained from: demonstration or application to simple examples, expert opinions
or observations, empirical studies, and industrial evidence.

F16: Repeatability of the study is one of the following options: the study is not repeat-
able (no useful material is available to repeat the study), a partial description is available
to repeat the study, the material to repeat the study is partially available, all the material
is available to repeat the study.

3.6 Approach for Analysis

The data items of the primary studies was collated to answer the research questions.
Analysis included: (i) obtaining consensus among the reviewers in case of conflicts,
(ii) analyzing the data, for which we used descriptive analysis and multiple regression
to identify correlations, and (iii) answering research questions. Based on the analysis
results, we derived conclusions and recommendations for future research in the area of
architecture-based self-adaptation, and we reflected on threats to validity of the review.

4 Results Analysis

We start by giving an overview of the primary studies selected for the review. Then we
discuss the results for each research question.

4.1 Selected Primary Studies

From 7400 studies published at 20 conferences/journals we retrieved 1296 studies after
applying the search string. From these studies we selected 121 primary studies after
applying the inclusion/exclusion criteria. A list with the selected primary studies is
available at the survey website. Figure 2 shows the number of selected studies per venue.

We see that JSS is the most popular journal to publish papers on architecture-based
self adaptive systems with 21.5% of the studies, while SEAMS is the most prominent
conference with 19.9% of the studies. TSE and TAAS represent 14.9% of the studies
and the top software engineering conferences ICSE, FSE and ASE represent 9.9% of
the studies. The architecture focused venues, WICSA, ECSA, and ISARCS represent
6.7% of the studies. 10.7% of the studies were published between 2000 and 2005 and
89.3% between 2006 and 2012, which shows the growing research interest in this area.

Figure 3 summarizes the quality scores for the selected primary studies. The results
show that researchers provide descriptions of the problem they tackle and how the prob-
lem relates to other efforts. Contributions and insights are also reported, although not

!"
#"

!"

#$"

!" $"
%"

!"

&"

'"

("

%"

'"

$" $"

(" ("

#&"

)"

%"

')"

'%"

#)"

#%"

!)"

*+,," -./," */-," ,./0," 1,/23," 4,." /56789:" /,." ,/,+" *13,/" 13/3" 13,." 13,0" .3,/" ,:;,/," <//," <,." =,,"

*>?@AB>7A" ,CD7>AEFDA" 3>G;:?:GH:A" I>>@"" =>F?G6JA"

!
"#

$%
&'(

)'*
+"
,-
%*
'

!"#$%&'()'.+",-%*'/%&'0(1)%&%12%34("&156'

Fig. 2. Primary studies per venue/journal.

always explicitly. However, the majority of studies do not describe research design, i.e.
the way the research is organized, and most studies ignore reporting limitations of the
results (although we notice that a growing number of researchers have started reporting
limitations after 2008). Providing an explicit description of research design is common
practice for empirical studies, but less common in software engineering in general. The
results confirm this trend for the primary studies in this review. However, the poor treat-
ment of limitations deserves attention as this should be a key part of any engineering
study. Table 3 shows the regression analysis between the number of studies and quality
score for different publication fora.

Table 3. Number of studies and quality score for different publication fora

Venues Regression Eq. R Mean S.D.
Journals y = -0,0672x + 2,3498 -0,11 6,11 1,7
Conferences y = -0,1502x + 2,4545 -0,27 5,39 1,68
Symposia y = -0,1067x + 1,998 -0,15 5,67 1,37
Book Chapters y = -0,0178x + 0,2895 -0,16 5,38 1,75
Workshops y = -0,0791x + 0,9051 -0,37 4,28 1,33

The values confirm common sense that the primary studies with the best quality
scores are published in journals, while studies presented at workshops have lower qual-
ity scores. However, with a mean of the overall score of 5.6 (on a max of 12), the quality
of the selected primary studies can be considered as reasonably good.

!" !"

#$"

#" #"

%&"

#'" #'"

&("

)*"

+*"

'$"

&+" &+"

$"

$("

'("

('"

!"

(!"

'!"

*!"

&!"

$!"

)!"

#!"

%!"

+!"

(!!"

,-./012"314567.5" ,-./012"8.591:9" ;1<1=-8>"31<6?5" @.59-6/A7.5<" B5<6?>9<" C6269=7.5<"

!
"#

$%
&'(

)'*
+"
,-
%*
'

."/0-+1'23(&%*''
D."31<8-6E7.5" F151-=0"G.-3<" H:E06869"31<8-6E7.5"

Fig. 3. Quality scores for the primary studies

4.2 RQ1: What is the focus of research in self-adaptation?

Research focus is derived from data items: subject of the studies (F7), feedback loop
architecture (F8), and application domain (F9).

The most popular subject of the studies (F7) in terms of SWEBOK software engi-
neering fields is software design with 48% of the studies, followed by software quality
with 17%, software requirements with 8% and software testing with 8%. Design activ-
ities are an evident focus of architecture-based self-adaptation. Requirements for self-
adaptive systems have gained increasing attention during the last years (all studies on
requirements are from 2006 onward), confirming that handling dynamic changing user
needs is a topic of increasing importance in software engineering.

Figure 4 shows the frequency of feedback loop architecture (F8). The dominant
focus has been on single feedback loops, with 37% of the studies using distinct compo-
nents for each of the MAPE functions and 32% using components that mix (some of)
the MAPE functions. 20% of the studies (24 in total) focus on multiple feedback loops.
All studies directly or indirectly refer to the MAPE functions in their solutions, which
shows that MAPE serves a reference model (i.e., a division of functionality together
with flows between the pieces [4]). However, as a significant number of studies do not
map these functions one-to-one to components, MAPE is not generally considered as
a reference architecture (i.e., a reference model mapped to software elements). The
numbers show that researchers have payed less attention to engineering self-adaptive
systems with multiple control loops. However, we notice that 92% of these studies have
been published in the last four years, which underpins the growing interest in this area.

Figure 5 shows the frequency of application domains (F9). Only 69% of the stud-
ies do consider an explicit application domain. The remaining studies refer to ab-
stract applications, such as resource management, service-based system, networking,
etc. The dominant application domains are embedded systems (46%) and web applica-
tions (30%); the latter are e-commerce (such as travel planning, book store, etc.) and
information systems (such as news services, social media, etc.). Embedded systems

Fig. 4. Feedback loop architectures

have always been an important domain in research on self-adaptation. In the last years,
dynamic service composition has gained increasing attention. We found that 86% of
the studies with multiple feedback loops are applied to the domains of embedded sys-
tems, traffic, and robotics, which can be explained by the fact that these domains are
characterized by loosely coupled, physically distributed entities.

Summary for RQ1: The main focus of research in engineering architecture-based self-
adaptation has been on software design of a single feedback loop, applied to the do-
mains of embedded systems and web applications. Driven by the engineering challenges
of future software systems, there is a growing interest in requirements for self-adaptive
systems, dynamic service composition, and multiple feedback loops.

4.3 RQ2: What are the claims made for self-adaptation and what are the
tradeoffs implied by self-adaptation?

The answer to RQ2 is derived from quality concerns (F10), claimed benefits (F11), and
tradeoffs (F12).

The top three concerns related to self-adaption (F10) are efficiency/performance
(55% of the studies), reliability (41%), and flexibility (28%). Accuracy, security, usabil-
ity, maintainability, and availability account each for 6% or less of the studies. Other
reported concerns are engineering effort, complexity, stability, and cost. These concerns
are considered in only 6% of the studies (in total). This latter observation is remarkable
as seminal papers in the area of self-adaptation use these other concerns as the primary
arguments for the need of self-adaptation [14, 11, 9].

!"#

$%#
$!#

"# "#

!#
&#

'#

%#

$'#

$%#

&'#

&%#

!'#

!%#

('#

)*+,--,-#)./0**,1/,# 23401*5603#
7879,*7#

:0+06/7# ;15</=#
91537>0195603#

?@A6*,-B5# C5*,7#

!
"#

$%
&'(

)'*
+"
,-
%*
'

'.//0-123(4'5(#2-4*'

Fig. 5. Studied application domains

We analyzed the correlation between the main quality concerns and the main appli-
cation domains. Table 4 shows the results of this regression analysis.

Table 4. Correlation between main quality concerns and application domains

Application Domains Efficiency/Performance Reliability Flexibility
Embedded 0,89 0,84 0,59
Information Systems 0,88 0,68 0,78
E-commerce 0,75 0,63 0,81

The results tell us that efficiency/performance is relevant to self-adaptation in all
primary domains, while reliability is more relevant to embedded systems and flexibil-
ity to web-based systems. Reliability is a classic quality concern in embedded systems.
On the other hand, in web-based systems, flexibility provides an alternative for reli-
ability tailored to open environments. For example, a common approach to deal with
uncertainty about the availability of services is to exploit self-adaptation to replace dy-
namically a service that becomes unavailable.

We also looked at the number of concerns considered in individual studies and mea-
sured that 57% of the studies consider a single concern, 40% consider 2 concerns, the
remaining 3% consider more concerns. We can conclude that most researchers take a
narrow view on engineering self-adaptive systems, focusing on a particular concern,
without considering the interplay with other concerns.

Figure 6 summarizes the data for claimed benefits (F11) and tradeoffs (F12). This
important figure clearly shows that most studies focus on concerns with a positive ef-
fect, i.e., 91% of the concerns related to self-adaptation are claimed to be positively
influenced. Broken down, 81% of the studies state that a quality of the software is im-
proved by self-adaptation, 5% state that a quality is assured, and the remaining 5% state
that a quality is preserved.

!"#

!$#

%&#

!#

'#

"#

(#

"#

%#

(#

$#

$#

&#

(%#

$#

(#

$#

$#

$#

$#

$#

$#

(#

(#

(#

(#

)*+,-.+/01-234256.+-#

7-8,69,8,:/#

;8-<,9,8,:/#

=++>26+/#

?-+>2,:/#

@A69,8,:/#

=B6,869,8,:/#

C6,.:6,.69,8,:/#

D-E-.F69,8,:/#

)G42:#

H45E8-<,:/#

?:69,8,I6J4.#

H4A:#

K
>6
8,:
/#
6L

2,9
>:
-A
#

M
:N
-2
#+
4.

+-
2.
A#

!"#$%&'()*&+&',*#-)./&'
14A,JB-# O-P6JB-#

Fig. 6. Claims and tradeoffs of self-adaptation

On the other hand, little attention is given to concerns with a negative effect, i.e., the
tradeoffs implied by self-adaptation. 10.7% of the studies state that self-adaptation has
an efficiency/performance cost, a single study considers a negative effect on flexibility,
and 3.3% of the studies state a negative effect on other engineering aspects (effort, com-
plexity, stability and cost). Concretely, seven studies report an efficiency/performance
tradeoff against flexibility and six studies against reliability. Three the four studies re-
port negative effects to other concerns against performance, the other one against accu-
racy.

This analysis confirms that the majority of researchers focus on a single concern
only (see F10). Even if multiple concerns are considered, they mainly look at the posi-
tive effects of self-adaptation. To further understand these observations, we looked into
the studies and found that 80% of the studies that do not consider tradeoffs in their
evaluation, simply ignore implications of self-adaptation. 13% of the studies recognize
possible tradeoffs and acknowledge the limitations of their study in that respect, the
other 7% of the studies postpone the issues related to tradeoffs to future work.

Summary for RQ2: Most researchers on self-adaptive systems claim improvements of
software qualities, in particular for efficiency/performance, reliability, and flexibility.
Tradeoffs are hardly considered at all, neither with respect to other qualities nor the
effects on concerns such as effort and cost. A minority of researchers recognize the
limitations of their work with respect to tradeoffs or they postpone it to future work.

4.4 RQ3: How much evidence is available for the claims and what are the types
of evidence?

To answer this question, we analyze the data extracted from validation setting (F13),
assessment approach (F14), evidence level (F15) and repeatability (F16).

For validation setting (F13), we found that out of 121 studies, only two studies were
performed in a joint effort between academic and industry. No industry-only studies
have been reported. These numbers give a strong indication that the research results of
architecture-based self-adaptation have not found their way to practice (at least, they
have not been reported in the main software engineering venues).

Figure 7 shows the assessment methods that have been used in the studies (F14).
Example application accounts for 67.8% of the studies, simulation for 19.8%, rigorous
analysis for 8.3%, empirical study for 2.5% and experience from real-world example
for 1.7%. Closer examination reveals that almost all studies use simple basic example
applications to assess the research findings. The reported empirical studies were in fact
quasi empirical studies. No controlled experiments have been reported in the area of en-
gineering architecture-based self-adaptation and experiences with real-world examples
is very limited. The lack of both empirical evidence and studies with industry partners
hampers industrial adoption of architecture-based self-adaptation in general.

Fig. 7. Assessment approaches

Table 5 shows that example applications are used in all application domains. Sim-
ulation is mainly used in web-based systems (e-commerce and information systems),
while rigorous analysis is mainly used for embedded systems and e-commerce.

Given the used assessment methods, it is not surprising that most studies have a low
evidence level (F15). Concretely, 95.8% of the studies provide minimal evidence from
demonstrations or simple/toy examples, 1.7% provide evidence from expert opinions or
observation, and 2.5% provide (weak) empirical evidence.

Summary for RQ3: Most research on architecture-based self-adaptive systems is as-
sessed using simple example applications with a minimal level of evidence. Few em-
pirical studies exist and there is hardly any industrial application of architecture-based
self-adaptation reported. Weak evidence and poor connection with practice shows that
research in architecture-based self-adaptation is still more exploratory than exploitative.

Table 5. Correlation between assessment methods and application domains

Assessment Methods Embedded Robotics E-commerce Traffic and
transport.

Information
systems

Example Application 0,93 0,93 0,84 0,88 0,85
Simulation 0,78 0 0,84 0,14 0,82
Rigorous Analysis 0,73 0 0,86 0 0,20

5 Limitations of Study

Despite the sound methodology, this study has some limitations. First, our study is lim-
ited to 20 major venues in the field. While we believe that these are the most prominent
venues for research on architecture-based self-adaptive systems, we may have missed a
number of primary studies that have been published elsewhere. Second, we used com-
mon terms to formulate the search string. However, these terms may not fully cover all
studies on architecture-based self-adaptation, as there is no generally agreed consensus
on the key terms in the field. This limitation is inherent to a field where research is
still in an exploratory phase. To minimize this threat, we performed a number of pilot
searches to get optimal coverage of automatic search. Third, there is a potential bias of
the reviewers. We believe that the comprehensive selection and data extraction process
that involved two reviewers who cross-checked the search results, supported by a third
reviewer to obtain consensus in case of conflicts, should minimize this threat of bias.

6 Conclusion

Research on architecture-based self-adaptation is widely recognized as key for tack-
ling several of the hard challenges we currently face in software engineering. However,
reflecting on the results and analysis of our study, we conclude that there are opportu-
nities for improving coherence in research to move the field forward. We recommend
coherence improvements in three dimensions.

First, coherence among the researchers can be improved. We observe that different
groups follow specific lines of research that are only weakly connected. Researchers
apply their results to specific applications and mostly ignore limitations. Furthermore,
there is a lack of empirical studies. Clear and fair treatment of limitations and evidence
for findings provide a basis for both consolidation of results and starting points for
future research efforts in the field. However, there are some positive signs. First, we
notice that researchers have started reporting limitations of their work. Over 85% of the
studies that report limitations have been published since 2008. Furthermore, a recent
study [18] reports the results of a first controlled experiment on design improvements
of using external feedback loops to realize architecture-based self-adaptation.

Second, coherence of research that spans software engineering fields can be im-
proved. We observe a clear dominance of attention for the design of self-adaptive sys-
tems. Clearly, there is a need to integrate design with other engineering activities of
self-adaptive systems, including requirements, testing and engineering processes. Here

too, we observe some positive signs. During the last years, we notice a growing interest
in the study of requirements for self-adaptive systems, lead by different groups in the
world. We also notice a growing interest in other activities, e.g. the 10 studies on testing
were all published since 2008. Finally, a recent publication [2] shows an interest of the
community in engineering processes for self-adaptive systems.

Third, coherence of research with the surrounding world can be improved. Cur-
rently, research is primarily evaluated using simple applications without making the
material available to others. Worse, collaborations with industry partners are very rare.
Availability of experimental material and industrial involvement are essential to the field
to obtain maturity. But again, there is some hope. The community took the initiative to
establish exemplars that provide model problems for the community (http://seams.self-
adapt.org/wiki/Exemplars). We also refer to a recent study [5] that reports experiences
of an industrial application of architecture-based self-adaptation.

We performed a systematic literature review study that shed light on the claims that
are made for architecture-based self-adaptation and evidence that is provided for these
claims. We hope that this study can contribute to push this important field forward.

References
1. Abran, A., et al. (eds.): Guide to the Software Engineering Body of Knowledge - SWEBOK.

IEEE Press, Piscataway, NJ, USA (2001)
2. Andersson, J., et al.: Software eng. processes for self-adaptive systems. LNCS 7475 (2013)
3. Basili, V., et al.: Goal question metric approach. In: Encyclopedia of Soft. Eng. (1994)
4. Bass, L., et al.: Software Architecture in Practice. Addison Wesley (2003)
5. Camara, J., et al.: Evolving an adaptive industrial software system to use architecture-based

self-adaptation. SEAMS (2013)
6. Cheng, B.H., et al.: Software engineering for self-adaptive systems: A research roadmap.

LNCS vol. 5525, Springer (2009)
7. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-

view. Inf. Software Technology 50, 833–859 (2008)
8. Filieri, A., et al.: Self-adaptive software meets control theory: A preliminary approach sup-

porting reliability requirements. In: ASE (2011)
9. Garlan, D., et al.: Rainbow: Architecture-based self-adaptation with reusable infrastructure.

IEEE Computer 37, 46–54 (2004)
10. Hellerstein, J., et al.: Feedback Control of Computing Systems. Wiley (2004)
11. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)
12. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in soft-

ware engineering (EBSE 2007-001, Keele and Durham University) (2007)
13. de Lemos, R., et al.: Software engineering for self-adaptive systems: A second research

roadmap. LNCS vol, 7475, Springer (2012)
14. Oreizy, P., et al.: Architecture-based runtime software evolution. In: ICSE (1998)
15. Patikirikorala, T., et al.: Survey on the design of self-adaptive software systems using control

engineering approaches. SEAMS (2012)
16. Weyns, D., et al.: Claims and supporting evidence for self-adaptive systems: A literature

study. Software Engineering for Adaptive and Self-Managing Systems (2012)
17. Weyns, D., et al.: Forms: Unifying reference model for formal specification of distributed

self-adaptive systems. ACM TAAS (2012)
18. Weyns, D., et al.: Do external feedback loops improve the design of self-adaptive systems?

a controlled experiment. In: SEAMS (2013)

