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Abstract—Providing high-quality software in the face of un-

certainties, such as dealing with new user needs, changing avail-

ability of resources, and faults that are difficult to predict, raises

fundamental challenges to software engineers. These challenges

have motivated the need for self-adaptive systems. One of the

primary claimed benefits of self-adaptation is that a design with

external feedback loops provide a more effective engineering

solution for self-adaptation compared to a design with internal

mechanisms. While many efforts indicate the validity of this

claim, to the best of our knowledge, no controlled experiments

have been performed that provide scientifically founded evidence

for it. Such experiments are crucial for researchers and engineers

to underpin their claims and improve research. In this paper, we

report the results of a controlled experiment performed with 24

final-year students of a Master in Software Engineering program

in which designs based on external feedback loops are compared

with designs based on internal mechanisms. The results show

that applying external feedback loops can reduce control flow

complexity and fault density, and improve productivity. We found

no evidence for a reduction of activity complexity.

I. INTRODUCTION

The upcoming generation of software systems will in-
creasingly consist of loosely coupled interacting subsystems.
Examples are service-based systems to support business col-
laborations, large-scale mobile applications, smart homes, and
multi-robot systems. Engineering these systems and guaran-
teeing the required qualities (performance, robustness, etc.)
is complex due to the inherent uncertainty resulting from
incomplete knowledge at design time. Among the uncertainties
are new user needs, subsystems that come and go at will,
dynamically changing availability of resources, and faults
and intrusions that are difficult to predict. The challenges
of the next generation software systems have motivated the
development of self-adaptive software systems.

Self-adaptation endows a system with the capability to adapt
itself autonomously to internal changes and dynamics in the
environment in order to achieve particular quality goals in the
face of uncertainty. A self-adaptive system consists of two
parts: a managed system and a managing system [1], [2],
[3]. The managed system is situated in an environment and
provides some functionality to users. The managing system
realizes a feedback loop that adapts the managed system when
needed, according to some goals. In particular, the managing
system comprises the software to monitor and reason about
the managed system and its environment, and perform adap-
tations of the managed system when needed. In practice, the
software of the managed system and the managing system

may be clearly partitioned in separate modules or layers, or
the software of the two parts may be (partially) interwoven.

Over the past fifteen years, researchers have developed a
vast body of work on engineering self-adaptive systems [4],
[5], [6]. Two prominent lines of research in this field
are architecture-based self-adaptation and control-based self-
adaptation. Both lines of research recognize the crucial role
of feedback loops in realizing self-adaptation of software sys-
tems, but from different viewpoints. Architecture-based self-
adaptation [7], [2], [8], [9] emphasizes software components
for feedback loops, runtime models and mechanisms, and
the interaction with the managed system. Control-based self-
adaptation [10] applies control theory to synthesize and ana-
lyze feedback control loops for computing systems. Our focus
here is on architecture-based self-adaptation, in particular,
the design of self-adaptation using software components that
realize feedback loops for particular quality properties.1

One of the primary claimed benefits of self-adaptation is that
external feedback loops provide a more effective engineering
solution for self-adaptation. In one of the most influential
papers of the field [2], the authors state:

External control mechanisms provide a more ef-
fective engineering solution than internal mecha-
nisms for self-adaptation because they localize the
concerns of problem detection and resolution in
separable modules.

While many efforts indicate the validity of this statement,
to obtain objective and statistically relevant underpinning of
it, we need formal, rigorous investigations. Empirical exper-
iments provide the means for this, but to the best of our
knowledge, no controlled experiments have been performed
that provide evidence for the benefit of external feedback
loops. This paper contributes with a controlled experiment that
compares the design of self-adaptive systems using explicit
monitor-analysis-plan-execute (MAPE) loops with designs that
use internal adaptation mechanisms. The concrete goal of
the empirical experiment is to address the following research
question:

Analyze the design of self-adaptive systems
for the purpose of evaluating internal adaptation mech-
anisms and external MAPE loops

1We do not consider control-based approaches as the design of these solu-
tions are based on different techniques, such as target system identification,
control algorithm design, mathematical analysis of response, etc.
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with respect to their design complexity, fault density,
and productivity,
from the viewpoint of researchers,
in the context of final-year master students in software
engineering that add different self-adaptation properties
to the design of a distributed software application.

With internal adaptation mechanisms, we refer to a design
that realizes adaptation using tactics and techniques that are
integrated within the components of the managing system.
With external MAPE loops, we refer to a design that realizes
adaptation using a monitor-analysis-plan-execute loop that is
added to (and thus external to) the managed system. We focus
on three important measures of effectiveness of engineering:
design complexity, fault density, and productivity. Design
complexity allows comparing the difficulty in producing and
understanding a design. It is a key factor with respect to com-
prehensibility, testing, and maintainability [11]. Fault density
allows comparing the relative number of faults in software
components, which is an important criteria for the quality of a
design [12]. It can be used for example to define the effort and
time that is required for testing. Productivity allows comparing
the amount of functionality that can be produced per time
unit. Productivity directly relates to size, cost, and work effort
required to engineer a software system [13].

The experiment is performed in the context of a course in a
Software Engineering Master program at Linnaeus University,
where final-year students had to create different designs for
a distributed traffic monitoring application. All the material
of the experiment, including course material, the design and
implementation of the traffic monitoring application, the as-
signments of the tests, and the experiment results are available
at the experiment website.2

The remainder of this paper is structured as follows.
Section II gives an overview of the experiment setting. In
Section III, we explain planning of the experiment. Section IV
presents the analysis and discussion of the experiment results.
Threats to validity are explained in Section V. We discuss re-
lated work in Section VI, and draw conclusions in Section VII.

II. EXPERIMENT SETTING

The experiment took place as part of a nine-week course on
Software Architectures for Adaptive Systems. The subjects of
the experiment are 24 final-year master students in software
engineering. The objects are the reference approach and the
MAPE approach. With the reference approach subjects are
instructed to use internal mechanisms to extend a given design
for a requested adaptation property, that is, the functionality for
the property has to be integrated within the components of the
design. With the MAPE approach subjects are instructed to use
an external MAPE loop to extend the design for a requested
adaptation property. Fig. 1 shows a scenario of the application.

The application is a traffic monitoring system that consists
of a set of intelligent cameras, which are distributed along the
road. Each camera has a limited viewing range and cameras

2http://homepage.lnu.se/staff/daweaa/experiments/FeedbackLoops/index.htm

Figure 1. Scenario of the application used in the experiment

are placed to get an optimal coverage of the highway with
a minimum overlap. The system provides information about
traffic jams to clients, which can be traffic light controllers,
driver assistance systems, etc. To realize this functionality, the
cameras collaborate in organizations: if a traffic jam spans the
viewing range of multiple cameras, they form an organization
(structured as master-slave) that provides information to clients
with an interest in traffic jams. When traffic conditions change,
the organizations dynamically adapt as illustrated in Fig. 1.

Fig. 2 shows the primary components deployed on a camera.

Figure 2. Primary components deployed on a camera

The main responsibilities of the components are:
• Camera provides a service for retrieving the current traffic

conditions on the monitored road segment.
• Traffic Monitor provides a service for determining

whether or not the locally monitored traffic is congested.
• Organization Controller provides a service for merging

and splitting organizations. Organization management is
the responsibility of the cameras in the role of master.
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• Position provides a service to obtain information about
the physical positions of cameras.

• Communicator provides a service for inter-node commu-
nication.

In the experiment, we considered two types of self-adaptation
properties: i) enable the system to deal with silent node
failures3 (robustness), and ii) enable the system to add new
cameras dynamically (openness).

For the MAPE approach, a new node is added to the system
where components can be defined that realize the MAPE
functions. These components can interact with the cameras via
additional proxy components that are added to each camera.
The proxy components can access the regular components of
the cameras via get and set methods.

Fig. 3 gives an overview of the course. The course was split
in two parts. Each part consisted of two or three weeks lectures
and a home task, followed by two weeks for evaluation (when
students did the tests of the experiment).

Figure 3. Overview of 9-weeks course in which the experiment took place

In part I, students are educated on the traffic monitoring
application and on tactics to realize adaptation for different
types of quality properties, which fully covers the reference
approach. In part II, students are educated on self-adaptation,
with particular attention for MAPE loops, which covers the
MAPE approach. For the home task in part I, students were
instructed to study: i) the design of the application using the
architecture documentation and the implementation, and ii)
tactics to realize adaptation, using book chapters and articles.

3A camera becomes unresponsive without sending any incorrect data.

For the home task of part II, students had to study a set of key
papers in the field of self-adaptation, and hand in a summary
with a set of questions and/or critical remarks. For each home
task, an evaluation session was organized where students and
instructors discussed the study material and evaluated the
task results. For the first home task, an extra intermediate
discussion session was organized where students could discuss
questions with the instructors.

The experiment took place in the last two weeks of both
parts. In each session (of three and half hours), subjects
received an assignment to extend the design of the application
for an adaptation property (with pen and paper), using a
specific approach (i.e., the reference approach or the MAPE
approach). For the course, students are graded on all tests.

III. EXPERIMENT PLANNING

Subsequently, we discuss assignments, experiment design,
hypotheses, and independent and dependent variables.

A. Assignments
We used four different assignments of the traffic monitoring

application, allowing to have subjects solving different tasks
in different experiment sessions. The difficulty to solve the
problem was of the same level for all assignments. The
following table summarizes the assignments:

Assignment Task

A1 Robustness scenario 1
A2 Openness scenario 1
A3 Robustness scenario 2
A4 Openness scenario 2

We used assignments for two adaptation properties: robust-
ness and openness. For each property we used two different
scenarios. In assignments A1 and A3, subjects have to add
support to deal with silent node failures. In A1 subjects have
to extend the given design of the traffic monitoring system
to deal with such a failure using the reference approach. In
A3, subjects have to extend the given design to handle such
a failure using the MAPE approach. The scenarios of A1
and A3 are different, but the problem difficulty is equal. In
assignments A2 and A4, subjects have to add support to add
dynamically a new camera to the system, respectively with the
reference approach and the MAPE approach. Similarly as for
A1 and A3, the scenarios of A2 and A4 are different, but the
difficulty of the problems is equal. Fig. 4 shows an example
scenario for openness.

Both assignments comprise the following parts: (1) a prob-
lem description; (2) a description of the task; (3) a set
of assumptions and constraints, and (4) the given design.
The problem description explains the adaptation property that
needs to be added to the system, illustrated with a scenario
(example shown in Fig. 4). The problem description lists the
concrete tasks the students have to do. Assumptions describe
things that a subject can take for granted when he or she solves
the problem. As an example, subjects could assume that the
Communicator component of a camera has the necessary logic
to communicate with other cameras based on the camera ID.
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Figure 4. Example scenarios of the assignments for openness.

Constraints describe restrictions with respect to the solution.
For example, when using the MAPE approach, the list of
methods of existing components can only be extended with
get- and set-methods, which represent probes and effectors
respectively (the get- and set-methods are used by the proxies,
see Section II). The design consists of a specification of the
following parts: (1) the components with their dependencies,
(2) the component interfaces, (3) the messages exchanged
between nodes, and (4) interaction diagrams4. The design is
specified in the form of a template that allows subjects to
extend and adapt the existing design elements; e.g., add a
component, add/remove a message, and add new interaction
diagrams. Subjects had to use pen and paper during the test.

B. Experiment Design
The experiment was conducted as a block subject-object

quasi-experiment. Blocked subject-object means that each
subject receives both treatments (the reference approach and
MAPE approach). Concretely, each subject received both treat-
ments two times, one for each adaptation property (robustness
and openness). This allows paired comparison of samples. The
experiment is a quasi-experiment [14] because it is performed
on a single group and there is no randomization of the order in
which the treatments are applied to the subjects. Fig. 5 shows
a summary of the experiment design.

Each box represents a test by a group of subjects (i.e.,
half of the total group) using a particular treatment. Thus
in the first experiment session (week 3), half of the subjects
receives assignment A1, the other half receives assignment A2.
This is done in a randomized fashion. In the second session
(week 4), the assignments are switched: subjects who received
assignment A1 in experiment session I now receive assignment
A2, and vice versa. A similar approach is used in the second
part of the course with assignments A3 and A4 (in weeks 8 and
9). Additional aspects relevant to the experiment design are:

4The design consisted of all the required material to solve the assignment.
However, subjects could use the complete architecture specification of the
traffic monitoring application during the tests.

Figure 5. Experiment design

the subjects were not aware of the experiment and did not
receive any feedback on the experiment sessions (including
their grades) until after the fourth experiment session.

C. Hypotheses Formulation
The research goal of this experiment is to compare the use of

internal adaptation mechanisms and external MAPE loops with
respect to design complexity, fault density, and productivity
(see Section I). This goal can be refined in 3 sub-goals that
map to a set of hypotheses. In particular, each sub-goal maps
to a null hypothesis to be tested, and an alternative hypothesis
in favor and to be accepted if the null hypothesis is rejected.
We formulate 3 null hypotheses (H0) and three alternative
hypotheses (Ha):

• H01: There is no difference in design complexity between
a design created using the reference approach and a
design created using the MAPE approach.

H01 : µcomplexityRef = µcomplexityMAPE (1)

Ha1 : µcomplexityRef > µcomplexityMAPE (2)
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• H02: There is no difference in fault density between a
design created using the reference approach and a design
created using the MAPE approach.

H02 : µfault.densityRef = µfault.densityMAPE (3)

Ha2 : µfault.densityRef > µfault.densityMAPE (4)

• H03: There is no difference in design productivity be-
tween using the reference approach or using the MAPE
approach.

H03 : µproductivityRef = µproductivityMAPE (5)

Ha3 : µproductivityRef < µproductivityMAPE (6)

D. Independent and Dependent Variables

Each hypothesis requires the definition of a set of indepen-
dent and dependent variables, and a selection of proper metrics
to measure the dependent variables.

1) Independent Variables: Independent variables are vari-
ables in the experiment that can be manipulated and controlled.
In our experiment, there are two independent variables:

• Approach: The treatment used by a subject to solve an
assignment. This variable is the factor of the experi-
ment that is changed to see the effect on the dependent
variables. The two possible values of this factor are the
reference approach and the MAPE approach.

• Assignment: The problem to be solved by the subject
(assignments A1 to A4). Since the assignments have the
same level of difficulty, the assignment is not considered
as a factor but as a fixed variable.

2) Dependent Variables: Dependent variables are variables
that we want to study to see the effect of different treatments.
For each hypothesis, we defined the corresponding dependent
variables and selected proper metrics to measure the effects.

a) Design Complexity: Two representative measures for
design complexity are: (1) average activity complexity (AC)
per process, and (2) average control flow complexity (CFC)
per process [13], [15], [16]. AC per process is measured by
counting the number of activities in a process. We measured
AC as follows:

AC per process =

�
p � process AC(p)

# process
(7)

A process is a logically grouped sequence of activities in the
system. An example of a process is the sequence: a component
receives a message, updates state, and replies with a message.
Another example is: a timer expires and as a consequence, a
component sends messages to a set of other components.

Control flow complexity (CFC) is measured by counting the
number of control flow primitives (ifs, loops, etc.) per process.
We measured CFC as follows:

CFC per process =

�
p � process CFC(p)

# process
(8)

b) Fault Density: Fault density is commonly defined as
the number of known faults divided by the product size [12].
A fault is a mistake in a software product as the result of a
human error. In our experiment, we measured fault density in
the design. Simply counting the number of faults, however,
does not measure the impact of faults. A more precise metric
is to measure the amount of change that is required to make
the design work [12]. Size is measured as the amount of
functionality that is supported by the design. To measure
the amount of functionality we used Albrecht’s approach to
calculate function points [17]. Function points measure the
amount of functionality in a system and can be used as a
measure for software size [12]. Examples of function points in
the assignments are: a component sends a message to another
component, a component receives a message, a component
updates the state of a variable, etc. The total number of
function points per assignment is shown in the following table:

Assignment ID Scenario Total function points

A1 Robustness scenario 1 22
A2 Openness scenario 1 21
A3 Robustness scenario 2 28
A4 Openness scenario 2 26

Based on this, we measured fault density as the number of
changes divided by the number of supported function points:

fault density =
# changes

# supported function points
(9)

Examples of changes are: add/change an if statement, add
a communication link, etc. The experiment website gives an
overview of the supported function points and cost of changes.

c) Productivity: Productivity is defined as the amount of
functionality that developers can produce per time unit [12].
We measured functionality as follows:

functionality = # supported function points (10)

We measured productivity as follows:

productivity =
functionality

time spend on design
(11)

IV. ANALYSIS OF THE RESULTS AND DISCUSSION

Data was collected independently by two instructors. For
each assignment, the instructors determined the supported
function points, trimmed the design, and corrected the trimmed
design. The number of supported function points were counted
using the interaction diagrams. Trimming excluded parts of
the design that do not contribute to the actual functionality.5
Then the metrics for each dependent variable are applied to the
corrected design, and differences between the collected data
of the two instructors where resolved if needed.

A. Analysis
In total, 21 subjects provided usable data for paired com-

parison6 of fault density, complexity, and productivity.

5The parts excluded during trimming were similar for both approaches.
6A number of subjects provided incomplete or inconsistent data, or did not

attend all experiment sessions, invalidating their data for paired comparison.
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Table I and Fig. 6 summarize the measurements for all
dependent variables, and the paired difference between the
treatments. The table also shows the number of subjects that
performed better, equal, or worse for the MAPE approach.

The paired difference Zi is defined as Zi = Mi − Ri for
i = 1, ..., n. Mi and Ri are the measurements of subject i for
respectively the MAPE and the reference approach; n is the
number of subjects that produced data for both treatments.

To select a proper statistical test, we compare the distri-
bution of Zi for each dependent variable with the standard
normal distribution, using the Anderson-Darling test [18]. This
results in the following p-values:

Variable p-value Anderson-Darling test
AC per process 0.0659
CFC per process 0.3359
Fault density 0.0031
Functionality 0.5152
Productivity 0.0211

With a significance level (α) of 0.05, we assume Zi to be
normally distributed only for the dependent variables AC per
process, CFC per process, and functionality. Based on this
assumption, we use the paired t-test [19] to test our hypotheses
for AC per process, CFC per process, and functionality, and
the Wilcoxon signed-rank test [20] to test our hypotheses for
the two other dependent variables.

This results in the following p-values for our hypotheses:

p-value Statistical test
AC per process 0.7842 paired t-test

CFC per process 0.0028 paired t-test
Fault density 0.0310 Wilcoxon signed-rank test
Functionality 0.0001 paired t-test
Productivity 0.0060 Wilcoxon signed-rank test

With a significance level of 0.05, every null hypothesis is
rejected except for AC per process.

B. Discussion
Except for activity complexity, the descriptive analysis

shows that there is a clear improvement for the dependent vari-
ables when subjects use the MAPE approach compared to the
reference approach. This is confirmed by the statistical tests.

The only dependent variable that is not improved is activity
complexity. The measurements show somewhat higher values
for the MAPE approach (4.516) compared to the reference
approach (4.147). The functionality that is required to add
the requested adaptation properties is similar for both ap-
proaches, which explains the similar values measured for activ-
ity complexity. The main difference between both treatments
in this respect is the allocation of the required functionality
to components (with the reference approach, the functionality
is integrated in the existing components, with the MAPE
approach, the functionality is allocated to components of the
external feedback loop).

There are several explanations for the improvements of the
other dependent variables. On average, control flow complex-
ity is about 37% lower with the MAPE approach (0.787) com-
pared to the reference approach (1.253). Thus, using MAPE

reduces the number of control flow primitives per process that
are required to realize the adaptation properties. Closer exam-
ination of the designs with the MAPE approach reveals that
subjects create more processes (allocated to the components
of the MAPE loop). We counted the number of processes and
on average subjects used 2.66 processes with the reference
approach and 5.0 with the MAPE approach. This divide and
concur approach results in processes that are simpler in terms
of number of control flow primitives, which explains the
decrease of control flow complexity of the MAPE approach.

On average, the number of required changes per sup-
ported function point (fault density) is about 32% lower with
the MAPE approach (1.001) compared to the reference ap-
proach (1.458). With the MAPE approach subjects divide the
responsibilities of the adaptation functions (monitor, analyze,
plan, execute) over different components. We counted the
number of extra components used with the MAPE approach.
About half of the subjects define explicit components for each
of the adaptation functions, with 2.75 extra components on
average. This better modularization and separation of concerns
allows the subjects to focus on the specific functions of
adaptation, which likely lead to a smaller chance on faults.

Using the MAPE approach has also a positive impact on
productivity. The total number of supported function points
for the reference approach is 8.037 and 13.185 for the MAPE
approach. This is an increase of 64%. We measured the total
time that subjects have spent on their design, which is on
average 2h07min for the reference approach and 2h34min for
the MAPE approach. This results in an average productivity
(supported function points per hour) of 3.896 for the reference
approach and 5.420 for the MAPE approach, an increase of
39%. Two possible explanations for this improvement are:
availability of higher level building blocks (MAPE compo-
nents), and reduced design complexity. The availability of
higher level building blocks that map to the core functions
of adaptation and a reduction in design complexity makes it
more easy for subjects to reason about the adaptation behavior
of the system, improving productivity.

Despite significant improvements of productivity, we make
a remark regarding the results. The dependent variables we
used to check the hypothesis of productivity measure how
productive subjects are with respect to realizing functionality
in terms of supported function points per time unit. During
analysis of the results, we also looked at productivity with
respect to the realization of the overall functionality that is
required for the requested adaptation requirements. To that
end, we introduced an additional variable, called effective
productivity, defined as follows:

supported part of design =
# supported function points

# required function points

(12)

effective productivity =
supported part of design

time spend on design
(13)

The effective productivity expresses what fraction of the
total required functionality the subjects realize per time unit.
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The resulting p-value for effective productivity is 0.202 (paired
t-test), which gives only a weak indication that subjects
are also more productive in terms of realizing the overall
functionality for an adaptation property when using the MAPE
approach compared to the reference approach.

V. THREATS TO VALIDITY

The design of the experiment introduces some threats to
validity [21], [19]. We discuss the main identified threats.

A. Threats to Construct Validity
Construct validity is the degree to which the operationaliza-

tion of measures in the study actually represent the constructs
in the real world. We see two such threats. First students
might try to perform better with the MAPE approach to
impress the course holders (who do research in self-adaptive
systems). To reduce this threat, the students were not aware
of the experiment and students were graded on all experiment
sessions (and were aware of this). Second, the experiment
relies on a set of assignments that might not fully represent
the type of problem on which we want to test both treatments.
We belief that the assignments provide representative problems
for self-adaptation, as the problem domain has been used for
illustration and evaluation of self-adaptive systems in several
research articles, e.g., [3]. We further tried to reduce this threat
by using two different types of problems for each treatment.

B. Threats to Internal Validity
Internal validity is the extent to which independent variables

are actually responsible for the effects seen to the dependent
variables. For all subjects, the effects of the first treatment
(reference approach) are observed in the first and second
experiment sessions (weeks 4 and 5), and the effects of the
second treatment (MAPE approach) are observed in the third
and fourth sessions (weeks 8 and 9). This introduces three
potential threats:

1) Increased Understanding: A subject’s understanding of
certain concepts (the design of the traffic monitoring system,
basic tactics, etc.) can increase between the first and the second
series of observations. Increased understanding of the concepts
may affect the measurements, in particular, fault density and
productivity. To reduce this threat, the students had three
full weeks to learn the application domain, the design of the
traffic monitoring system, and the basic tactics to realize self-
adaptation, prior to the first experiment session. In addition, the
design was documented using standard UML, which is basic
knowledge for the students. Furthermore, students had already
basic knowledge of most of the tactics. The students were
asked to fully master both the design and the tactics. Students
with questions could discuss the material using a communica-
tion platform, and during an intermediate discussion session.
At the end of week 3, an evaluation session was organized
where students had to demonstrate that they had mastered the
study material. From that point on, the application domain and
basic tactics were considered to be known and no more time
was spent on it, limiting possible learning effects.

To verify the possible effect of increased understanding, we
looked at the measurements of only test II (week 5) and test IV
(week 9), anticipating a possible learning effect obtained from
the preceding tests7. Analysis shows the following results:

Variable Wilcoxon signed-rank Paired t

AC per process 0.8365 0.8046
CFC per process 0.0249 0.0166

Fault density 0.0884 0.0404
Functionality 0.0014 0.0010
Productivity 0.0615 0.0437

The underlined values represent the results with appropriate
tests according to the distributions of measurements. Although
there is no longer strong statistical evidence for reduced fault
density and improved productivity (with the reduced number
of measurements), the results support the assumption that the
possible effects of increased understanding of concepts are
limited.

2) Maturing: Subjects can mature between the two obser-
vations, for example, by taking the experiment more serious.
This threat is reduced by keeping the subjects unaware of the
experiment and grading results (during the experiment), but
aware that they will be graded on each experiment session.

3) Learning the type of Problem: Subjects can learn the
problems they have to solve, making them better prepared in
the second series of experiment sessions. To reduce this threat,
we used different concrete problem scenarios in subsequent
sessions when subjects had to solve a problem for the same
adaptation requirement.

C. Threats to External Validity and Conclusion Validity

External validity is the degree to which findings of a study
can be generalized to other subject populations and settings.
Conclusion validity concerns generalizing the result of the
experiment to the concept or theory behind the experiment.

Due to practical restrictions, we used students of a Master
in Software Engineering program as subjects for our study.
Although these students do not represent expert software en-
gineers, they are the next generation of software professionals
and are relatively close to this population [22].

The experiment relies on assignments that are created by
the authors of this paper, two of them being researchers in
the area of self-adaptation. This creates a potential threat
that the assignments are no realistic representation of the
underlying problem, and favor the MAPE approach over the
reference approach. This threat could have been reduced by
asking external experts to produce the assignments; however,
due to constraints, this was not possible for the experiment.
To minimize bias towards the MAPE approach, we used the
design of an existing system in the experiment and asked the
creator of this system (and author of the design documentation)
to review all the assignments. The feedback was used to make

7To get enough measurements for paired comparison, besides regular data,
we also used the results of three subjects from their first test (reference
approach) that produced unusable data in the second test (while they produced
useful results in the fourth test).

9



!

treatment

ac
tiv

ity
 c

om
pl

ex
ity

 (A
C

)
pe

r p
ro

ce
ss

Reference MAPE

2

4

6

8

10

12

!

!

paired diff.
(M−R)

−10

−5

0

5

10

(a) Average activity complexity (AC) per process.

!!!

!

treatment

co
nt

ro
l f

lo
w

 c
om

pl
ex

ity
 (C

FC
)

pe
r p

ro
ce

ss

Reference MAPE

0.5

1.0

1.5

2.0

2.5

3.0

!
!

paired diff.
(M−R)

−2

−1

0

1

2

(b) Average control flow complexity (CFC) per process.

!

!

!

treatment

fa
ul

t d
en

si
ty

(#
 c

ha
ng

es
 p

er
 s

up
po

rte
d 

fu
nc

tio
n 

po
in

t)

Reference MAPE

0

1

2

3

4

5

6

!

paired diff.
(M−R)

−2

−1

0

1

2

(c) Fault density.

outlier

upper quartile + 1.5 x IQR

upper quartile

median

lower quartile

lower quartile - 1.5 x IQR

mean

upper quartile = cuts off highest 25% of data
median = cuts data set in half
lower quartile = cuts off lowest 25% of data
IQR = upper quartile - lower quartile

outlier

Q3 + 1.5 x IQR

Q3

median

Q1

Q1 - 1.5 x IQR

mean

Q1
median

Q3
IQR

= cuts off lowest 25% of data
= cuts data set in half
= cuts off highest 25% of data
= Q3 - Q1

(d) Key.

treatment

# 
su

pp
or

te
d 

fu
nc

tio
n 

po
in

ts

Reference Adaptive

5

10

15

20

25

30

paired diff.
(A−R)

−30

−20

−10

0

10

20

30

(e) Functionality.

treatment

pr
od

uc
tiv

ity
(#

 s
up

po
rte

d 
fu

nc
tio

n 
po

in
ts

 p
er

 h
ou

r)

Reference MAPE

2

4

6

8

10

12

!

!

paired diff.
(M−R)

−10

−5

0

5

10

(f) Productivity.

Figure 6. Box plots for all measurements.
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Table I
MEASUREMENTS FOR ALL DEPENDENT VARIABLES.

Activity complexity (AC) per process

mean (µ) median st.dev better equal worse

Reference 4.147 3.750 1.443
9 2 16MAPE approach 4.516 4.333 1.978

Paired Diff (Mi −Ri) 0.370 0.500 2.405

Average control flow complexity (CFC) per process

mean (µ) median st.dev better equal worse

Reference 1.253 1 0.726
18 3 6MAPE approach 0.787 0.600 0.449

Paired Diff (Mi −Ri) -0.466 -0.250 0.801

Fault density (number of changes per supported function point)
mean (µ) median st.dev better equal worse

Reference 1.458 1 1.399
16 0 11MAPE approach 1.001 1 0.636

Paired Diff (Mi −Ri) -0.457 -0.227 1.218

Functionality (number of supported function points)
mean (µ) median st.dev better equal worse

Reference 8.037 4 6.400
20 0 7MAPE approach 13.185 14 7.696

Paired Diff (Mi −Ri) 5.148 4 6.106

Productivity (number of supported function points per time unit)
mean (µ) median st.dev better equal worse

Reference 3.896 2.5 3.194
18 0 9MAPE approach 5.420 4.667 3.436

Paired Diff (Mi −Ri) 1.523 1.038 2.792

some adaptations to the assignments, to minimize bias towards
the MAPE approach.

In addition, we made a number of practical decisions that
should be taken into account when generalizing our findings:

• using pen and paper to write down designs;
• allowing subjects to make a number of assumptions about

the systems and their context;
• using standard UML notations.
Finally, there might be a threat with respect to the reliability

of the measures. The measures are applied to corrected and
trimmed designs. To increase the reliability and objectiveness
of measures, all designs were corrected and analyzed indepen-
dently by two instructors. Then the results were compared and
discussed in case of conflicts to come to an agreement.

VI. RELATED WORK

To the best of our knowledge, so far, no controlled empirical
experiments have been performed that provide evidence for the
claims associated with self-adaptation, in particular w.r.t. the
impact on engineering these systems. Nevertheless, there are
a number of papers that report results of empirical studies that
are related to the experiment presented in this paper.

[23] reports a controlled experiment on the use of design
patterns with respect to maintenance activities. The subjects
were professional software engineers that performed nine
software maintenance scenarios employing various design
patterns and simpler alternatives. For most tasks, the authors
found improvements of using patterns, such as a reduction

of maintenance time. They also found some negative effects,
including simpler solutions that were less error-prone com-
pared to solutions with patterns. There are similarities between
this study and our experiment, where an external feedback
loop can be considered as a pattern to realize self-adaptation.
However, the focus of [23] is on different patterns and on
maintenance activities, while our focus is on MAPE loops and
design activities. Evidently, our findings, in particular design
complexity, are potentially valuable for maintenance activities
as well, but that was not the focus of our experiment.

In [24] the authors report the results of an experiment that
verifies whether aspect-oriented approaches support improved
modularization of crosscutting concerns relative to design
patterns. The study shows that most aspect-oriented solu-
tions provided improved separation of concerns. Some aspect-
oriented solutions resulted in higher coupled components,
more lines of code, and more complicated designs. Aspects
provide a means to separate concerns by encapsulate them in
modules, resembling some similarities with external feedback
loops that encapsulate the functionality of adaptation concerns.
However, the study in [24] focuses on the code level, while
our study is concerned with the impact on design.

Finally, a recent experiment [25] evaluates the impact on
the design of a set of higher level abstractions for modeling
adaptive collaborations of service-based systems. The study is
performed with Master-level students and compares the use
of state of the art modeling abstractions for service-based
systems with new proposed modeling abstractions, including
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collaboration, role, interaction, and capability. The experiment
results show that the use of these new abstractions can reduce
fault density and design complexity, and improve reuse and
productivity. Except for reuse, we studied similar properties
related to design activities. However, the abstraction level and
focus in both studies is different. [25] considers the design at
the level of business processes and their interactions, while
the study presented in this paper looks at design at the level
of software components and their interactions. Furthermore,
the focus of [25] is on the design of a service-based system
using new modeling abstractions, while we focus on the impact
of the design when using an external feedback loop to add
adaptation properties to an existing design.

VII. CONCLUSIONS

In this paper, we investigated the question whether external
feedback loops provide more effective engineering solutions
for self-adaptation than internal mechanisms. The results of
the study confirm common sense in the community of self-
adaptive systems, by providing evidence that external feedback
loops indeed provide more effective engineering solutions to
self-adaptation, for the problems considered in the study.

The study yields the following insights. First, external
MAPE loops do not reduce the average number of activities
of the processes that are used to realize self-adaptation,
compared to internal mechanisms. Thus there is no significant
difference in the size of solutions created with both treatments.
However, and more importantly, external MAPE loops do
simplify the design in terms of control flow primitives for the
processes. The significant reduction of control flow complexity
increases understandability of the design, and can improve
maintainability and testability of the system. Second, the use
of external MAPE loops reduce fault density. Reduced fault
density increases the quality and reliability of the software
design, and add to customer satisfaction. It can also reduce the
effort required for testing. Third, external MAPE loops realize
a separation of concerns, which yields easier to understand
designs, having a positive effect on productivity. Improved
productivity can save the time and cost to develop software.
Whereas we measured a significant increase of productivity in
terms of supported functionality per time unit, we observed
only a weak effect on effective productivity that measures the
supported part of the overall design per time unit.

As with any empirical experiment, this study adds one piece
of the puzzle towards obtaining a well-founded understanding
of a topic of interest. What makes this study special is that it is
(to the best of our knowledge) the first controlled experiment
that investigates the effectiveness of engineering self-adaptive
systems. We hope that our study will be an impetus towards
more empirical studies that add pieces to the puzzle, guiding
us towards a well-founded understanding of engineering self-
adaptive systems.
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