
On the Challenges of Self-Adaptation in

Systems of Systems

Danny Weyns and Jesper Andersson
Department of Computer Science

Linnaeus University, Sweden
{danny.weyns, jesper.andersson}@lnu.se

ABSTRACT
A system of systems (SoS) integrates independently use-
ful systems into a larger system. Examples are integrated
surveillance systems and networked smart homes. A SoS
offers functions to users that cannot be provided by its indi-
vidual parts, but emerge as a combination of these. However,
providing these functions with a required level of quality
is difficult due to inherent uncertainties, such as systems
that attach and detach at will and faults that are difficult
to predict. Self-adaptation is a well-studied approach that
enables a system to reason about itself and adapt to achieve
particular quality objectives in the face of uncertainties and
change. However, the inherently decentralized nature of SoS
raises fundamental challenges to self-adaptation. This paper
presents three architectural styles to realize self-adaptation
in SoS, discusses key challenges for each style, and outlines
starting points that could help to tackle these challenges.

Categories and Subject Descriptors
D.2.11 [Software engineering]: Software architecture

General Terms
Design, management

Keywords
Systems of systems, self-adaptation, feedback loops, decen-
tralized control

1. INTRODUCTION
A system of system (SoS) integrates independently useful

systems into a larger system, delivering unique functions
to users that emerge from the combination of the individ-
ual parts. Examples are integrated surveillance systems,
intelligent traffic systems, and networked smart homes. Engi-
neering SoS and guaranteeing runtime qualities (performance,
reliability, etc.) that span beyond individual systems is com-
plex due to a variety of uncertainties. Examples of such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SESoS 2013 Montpellier, France
Copyright 2013 ACM 978-1-4503-2048-1/13/07 ...$15.00.

uncertainties are systems that attach and detach at will,
dynamically changing availability of resources, and faults
and intrusions that are difficult to predict. Self-adaptation
is a well-studied approach that enables a software system
to reason about itself and adapt autonomously to achieve
particular quality objectives in the face of uncertainties and
change. Central to the realization of self-adaptation are
feedback loops that monitor and adapt managed parts of a
system when needed. However, state of the art in the field
of self-adaptation has primarily studied centralized and hier-
archical control in self-adaptation, which is not applicable
to systems that are inherently decentralized. Realizing self-
adaptation in a SoS where no single entity has the knowledge
and authority to supervise and adapt the constituent parts
raises fundamental engineering challenges.

In this paper, we discuss a number of the key challenges to
enable self-adaptation of SoS. Section 2 starts by clarifying
our perspective on SoS and self-adaptation. Next, we present
three architectural styles to realize self-adaptation in SoS in
Section 3. For each style, we give an illustrative example,
identify a number of challenges, and provide some starting
points that could help tackling the challenges. Finally, we
draw conclusions in Section 4.

2. SYSTEMS OF SYSTEMS AND SELF-
ADAPTATION

Before we zoom in on challenges, we first clarify the key
terms we use this paper: SoS and self-adaptation.

2.1 Systems-of-Systems
There is no commonly agreed definition for what consti-

tutes a SoS. [23] refers to SoS or federations of systems (FOS)
or federated systems of systems (F-SOS) as systems that pos-
sess characteristics of complex adaptive systems. [4] focuses
on the nature of the composition to define the distinguish-
ing characteristics of SoS, including autonomy, connectivity,
diversity and emergence. [21] stresses scale and complexity
as central properties of ultra-large scale systems, phrased by
the slogan scale changes everything. In his influential paper
on architecting principles of SoS, Maier [20] characterizes
a SoS (he also uses the term collaborative system) as an
assembly of components which individually may be regarded
as systems and which possess two required properties:

• Operational independence of the components: If the
SoS is disassembled into its component systems these
systems must be able to usefully operate independently.

• Managerial independence of the components: The com-

ponent systems are separately acquired and integrated
but maintain a continuing operational existence inde-
pendent of the SoS.

Based on this characterization, Maier identifies a set of guid-
ing design principles for SoS:

• Stable intermediate forms: individual systems or sub-
sets of systems of a SoS should be capable of operating
and fulfilling useful purposes, before full deployment
and during operation.

• Policy triage: A SoS design team should carefully
choose what to control; over-control will fail for lack of
authority, under-control will eliminate the integrated
nature of the SoS.

• Leverage at the interfaces: The architecture of a SoS
is essentially defined by its interfaces, which are the
primary points at which designers can exert control.

• Ensuring collaboration: Mechanisms should be ex-
ploited that create joint utility, which is known to
be a basis for consistent behavior.

2.2 Self-Adaptation
Self-adaptation has been widely recognized as an effec-

tive approach to deal with the increasing complexity and
dynamicity of modern software systems [22, 17, 6, 19]. A
self-adaptive system comprises two parts: the managed sys-
tem (also called system layer [10], managed resources [16],
base-level subsystem [28], target system [13]) that deals with
the domain functionality, and the managing system (or ar-
chitecture layer [10], autonomic manager [16], reflective sub-
system [28], controller [13]) that deals with the adaptations
of the managed system to achieve particular quality goals.

One influential approach to structure the managed system
is by means of four components that realize a feedback loop:
Monitor-Analyze-Plan-Execute supported by a Knowledge
repository [16] (MAPE-K). Figure 1 shows the elements of a
MAPE-K system.

Figure 1: Elements of a MAPE-K managed system

A monitor component gathers information from the man-
aged system and possibly the system’s environment to up-
date a set of models of the knowledge repository. An analyze
component examines the gathered data and based on the
adaptation goals draws conclusions on whether further ac-
tions should be undertaken. A plan component puts together

a series of adaptation actions to resolve the problem identi-
fied by an analyze component. The actions to the managed
system are then carried out by an execution component.
Examples of MAPE-K based approaches are the Rainbow
framework [10] that employs constraints defined over an
architectural model of the managed system to realize self-
adaptation, and K-Components [9] that reifies a system’s
component architecture as a configuration graph that can be
rewritten by a configuration manager to adapt the system
when needed.

Another well-studied approach to realize the managed sys-
tem is by means of a controller. Figure 2 shows the elements
of a closed loop control system. The target system is the

Figure 2: Elements of a closed loop control system

managed system. The measured output is the subject of
control. The disturbance input is any change that affects
the measured output and for which adaptation is required.
Noise input affects the measured output produced by the
target system. The reference input is the desired value of
the measured output, and the control error is the differ-
ence between reference input and measured output. The
transducer transforms the measured output so that it can
be compared by the reference input. Based on the control
error, the controller determines the setting of the control
input that manipulates one or more parameters of the target
system. An example of control-based self-adaptation for high-
performance servers is described in [2]. Servers are modeled
as difference equations and different types of controllers (e.g.
Proportional, Integral) are applied to deal with performance
requirements (e.g., server response time, convergence). [8]
employs multi-input multi-output techniques for controlling
a Web server. System models are derived from experiments
and the controller optimizes CPU and memory usage based
on a cost function.

3. ARCHITECTURAL STYLES OF SELF-
ADAPTATION FOR SOS

As the constituent systems of a SoS are independently
developed and operated, SoS are inherently decentralized
systems. The SoS architect has to express the overall ar-
chitecture through the specification of the communication
elements between abstractions of the constituent systems of
the SoS. In general, this requires well-defined communication
protocols at different levels of the technology stack.

To deal with particular quality requirements, a managing
layer can be added to a SoS, resulting in a self-adaptive
SoS. The typical architecture of a self-adaptive SoS thus
consists of a set of interacting managed systems that are

controlled by local feedback loops. For SoS, in general no
assumptions can be made about the presence of systems,
availability of external resources, prediction of faults, etc. To
deal with these uncertainties, a key challenge is to provide
guarantees for properties that span multiple systems of the
SoS. These properties refer to the adaption requirements
and other behavioral aspects such as stability and transient
behavior. Handling uncertainties is currently subject of active
research in the field of self-adaptation. SoS add another
dimension of complexity to the problems of uncertainty due
to their inherent decentralized nature.
Figure 3 shows three basic architecture styles to struc-

ture the managing layer of a SoS. We derived the styles
from classic control architectures, see e.g. [3], and generaliza-
tions over concrete architectural patterns for decentralized
self-adaptation described in [29]. The three styles provide
increasing levels of knowledge sharing and collaboration,
allowing to mitigate uncertainty at different scales.
We now discuss the three styles. We give illustrative ex-

amples from our practice, identify a number of challenges,
and provide some starting points that could help tackling
the challenges. Although the different examples do not fully
comply to Maier’s properties of a SoS, they are decentralized
systems where self-adaptation is realized with the different
styles. As such they can serve as basic examples for the
application of three architectural styles in SoS settings.

3.1 Local Adaptations
The first style, local adaptations represents a fully decen-

tralized adaptation architecture. In this style, feedback loops
do not coordinate directly, but, typically there will be in-
direct interactions. E.g., a local feedback loop may affect
the response time of the local managed system, triggering
other feedback loops to adapt. In a recently started project,
called CareSmart, we study the application of smart home
technology to provide innovative services for elderly care
living in their own houses. The architecture of the system
consists of smart home systems that collect and synthesize
sensor data at the homes of the elderly people. Useful data
is sent to mobile care assistant systems that welfare helpers
can use to make decisions about visits and interact with the
elderly or other persons when needed. This collaborative
system provides different types of local adaptations. For
example, each smart home system is provided with a context
adaptor that detects changes in the context and dynamically
adapts services based on the preferences of the elderly. E.g.,
the adaptor may activate a service that enables an elderly to
alarm a relative via voice when he/she enters the bathroom
without having the alarm with him/her. Mobile care assis-
tants also have a context-adaptor that activates for example
a service that provides specific information of an elderly once
the welfare helper approaches his or her home. Initial results
of the CareSmart project are reported in [18].
In the local adaptations style the design problem of self-

adaption for a SoS boils down to the design of local feedback
loops. However, this style provides limited support to each of
the guiding design principles for SoS proposed by Maier. As
feedback loops share no information with each other, there
is a high-degree of uncertainty regarding other systems and
the environment. Consequently, the approach is sensitive to
side-effects of indirect interactions between individually well-
optimized systems, as well as emergent behavior that results
from interactions between the compositions of systems. In

Figure 3: Basic architectural styles of decentralized
self-adaptation in SoS

the CareSmart project for example, the activation of context-
dependent services by elderly people may trigger a series of
reschedules of visit plans of mobile care assistants. To deal
with the uncertainties of local adaptations, [1] points to the
need for analysis tools that allow to understand and quantify
the effects of indirect interactions, as well as runtime support
for dynamic verification of the design assumptions coupled
with appropriate actions when violations are detected. A
number of interesting approaches have been proposed to
analyze properties of a SoS (e.g., stability) based on the
local adaptations style. Examples are analyses based on
an integrated transfer function of a (partial) composition of
systems [27] and grouping of local controllers [26]. Interesting
fields that provide various techniques that can potentially
be used for the analysis of properties of SoS designed with
the local adaptations style are complex system theory and
economics [14]. Examples are analysis based on the principles
of entropy, Pareto efficiency, and the Nyquist stability.

3.2 Regional Monitoring–Local Adaptations
The second style, regional monitoring–local adaptations

enables local feedback systems to gather runtime data from
neighboring systems to support local decision making of adap-
tations. This data can be exploited to reduce the potential
side effects of purely decentralized adaptation architecture.
[24] discusses an example application where we have applied
the second style. The application in an intelligent traffic
monitoring system that provides information about traffic
jams to clients, such as traffic light controllers, driver assis-

tance systems, etc. The traffic monitoring system consists of
intelligent cameras that are distributed along the road. If a
traffic jam spans the viewing range of multiple cameras, they
form an organization that provides information to clients,
realizing scalability. The organizations dynamically adapt
when the traffic conditions change. To deal with camera fail-
ures, each local camera system is extended with a MAPE-K
loop that monitors the status of the cameras on which the
local camera depends, i.e., the neighbors and the camera’s
of the organization to which the local camera belongs.

In the regional monitoring–local adaptations style the de-
sign of self-adaptation requires the design of local feedback
loops and the definition of monitoring interfaces to collect
data from other local managed systems. This style provides
a better match with Maier’s guiding design principles for
SoS. Gathering data from neighboring systems helps reducing
uncertainty and as such reduces the sensitivity to side-effects
of indirect interactions between local systems. The tradeoff
is an increased dependency between systems. For exam-
ple, in the traffic monitoring system, the cameras within
an organization share their status which supports efficient
reorganizations when traffic conditions change or a camera
fails. Nevertheless, support for stability, division of control,
and collaboration remains limited. In the traffic monitoring
system, we employed model checking techniques to verify
robustness properties of both local systems and organizations.
However, this approach is restricted to guarantee properties
that are known at design time. A key challenge is to provide
guarantees for properties based on information that can only
be acquired at runtime. Promising approaches to deal with
runtime uncertainties in SoS are the exploitation of testing
and verification at runtime. Recent work in this direction,
although not applied to SoS yet (according to Maier’s prop-
erties), is presented in [5] that applies runtime verification
of probabilistic models in a MAPE-K setting, and [7] that
applies runtime testing to support inter-operability. An-
other, complementary approach to mitigate uncertainties
is to exploit learning techniques. An inspiring initial work
here is [12] that uses reinforcement learning in controller de-
sign. Another interesting approach is presented in [30] where
Kalman filters are used for learning performance models in
a self-adaptation setting.

3.3 Collaborative Adaptations
The third style, collaborative adaptations enables local

feedback loops to collaborate with one another. From a
control-theoretic perspective, state-of-the-art controller de-
sign does not provide solutions to guarantee stability in sys-
tems with arbitrary data exchange between controllers [25].
However, a number of researchers have studied different types
of coordination between local feedback loops in self-adaptive
systems [29]. These approaches typically restrict the interac-
tions based on locality, the type of data that is exchanged,
and the amount of data exchange. These restrictions allow
to better control the adaptation and system behavior. As an
example, in [11], we applied the collaborative adaptations
style in a mobile learning application that supports tradi-
tional indoor lectures with outdoor activities [11]. Groups
of three or four students use the application to measure and
calculate properties of geometrical figures, such as circles and
triangles. To support the tasks, students use GPS-enabled
mobile devices that can interact with each other and with
a server operated by the teacher. A group consists of one

master device and multiple slave devices. The master device
manages the group and interacts with the server. To guaran-
tee the required level of GPS accuracy a self-adaptation layer
is added to the system modeled with two types of MAPE-K
loops deployed at each device. The first loop acts locally and
is responsible for activating and deactivating the GPS service.
The second loop deals with group management, where the
master device collects data of the slaves and adapts the group
when the GPS service of one of the devices fails.

The collaborative adaptations style provides a powerful
approach to engineer self-adaption in SoS. The problem of
designing self-adaptation requires the design of local feed-
back loops, their interactions and collaborations, and the
definition of appropriate interfaces to support the collabora-
tions. This style matches best with Maier’s guiding design
principles for SoS. If well-defined interaction protocols are
available, the designer gets powerful means to support collab-
oration between systems and balance control. The tradeoff
is a further increase of dependencies between systems of the
SoS. Although, the collaborative adaptations style enables
feedback loops to accommodate with one another reducing
uncertainties, control of adaptation is decentralized. As such,
a main issue remains providing guarantees for required prop-
erties that span multiple systems. Similar to the second style,
promising approaches to deal with runtime uncertainties in
the collaborative adaptations style are runtime testing and
verification, and online learning. Multi-agent systems is an-
other interesting field that offers interesting techniques to
support the design of SoS with the collaborative style, such
as autonomy and interaction protocols. Interesting recent
work that deals with uncertainty issues is proposed in [15].

4. CONCLUSIONS
We have presented three basic architectural styles for self-

adaptation in SoS and discussed challenges for each of them.
The three styles provide increasing levels of knowledge shar-
ing and collaboration, allowing to mitigate uncertainty at
different scales. In the local adaptations style, feedback loops
of different systems do not interact with each other. This
truly decentralized style provides maximal autonomy to de-
signers of individual systems. However, the cost is a tradeoff
with respect to providing guarantees about uncertainties of
cross-system properties. In the collaborations style, feedback
loops interact directly with each other and collaboratively
realize adaptations. This style creates dependencies between
individual systems, but offers designers better support to
guarantee cross-system properties. The regional monitoring–
local adaptations style provides a middle ground between
the two other styles. In this style feedback loops only share
information. We belief that a selection between the styles
will be determined by the particular domain properties of
the SoS at hand.
The challenges discussed in this paper only focus on a

set of architectural styles for self-adaptation of SoS, and in
particular on coarse grained aspects of the design in relation
to uncertainties. Beyond that, supporting self-adaptation in
SoS poses numerous other challenges; to name a few: what
are appropriate standards for the interactions between the
adaptation components in SoS, how to deal with multiple
concurrent adaptation concerns that spans multiple systems
of a SoS, and how to involve the user in the adaptation
process of SoS? In summary, enhancing SoS with support for
self-adaptation offers an exiting area for future research.

5. REFERENCES
[1] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and

X. Zhu. Introduction to control theory and its
application to computing systems. In Performance

Modeling and Engineering. Springer, 2008.
[2] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and

Y. Lu. Feedback performance control in software
services. Control Systems, IEEE, 23(3), 2003.

[3] L. Bakule. Decentralized control: An overview. Annual
Reviews in Control, 32(1):87 – 98, 2008.

[4] J. Boardman and B. Sauser. System of systems-the
meaning of of. In International Conference on System

of Systems Engineering. IEEE, 2006.
[5] R. Calinescu, L. Grunske, M. Kwiatkowska,

R. Mirandola, and G. Tamburrelli. Dynamic qos
management and optimization in service-based systems.
IEEE Transactions on Software Engineering,
37(3):387–409, 2011.

[6] B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. M. Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. Kienle, J. Kramer, M. Litoiu, S. Malek,
R. Mirandola, H. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle. Software
engineering for self-adaptive systems: A research
roadmap. In Software Engineering for Self-Adaptive

Systems, volume 5525. Springer, 2009.
[7] G. Denaro, M. Pezze, and D. Tosi. Ensuring

interoperable service-oriented systems through
engineered self-healing. In ESEC/SIGSOFT FSE, 2009.

[8] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and
D. Tilbury. Using MIMO feedback control to enforce
policies for interrelated metrics with application to the
Apache Web server. In Network Operations and

Management Symposium, 2002.
[9] J. Dowling and V. Cahill. The k-component architecture

meta-model for self-adaptive software. 3rd Metalevel

Architectures and Separation of Crosscutting Concerns.
Springer, 2001.

[10] D. Garlan, S. Cheng, A. C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer, 37:46–54, 2004.

[11] D. Gil de la Iglesia and D. Weyns. Guaranteeing
robustness in a mobile learning application using
formally verified mape loops. In 8th International

Symposium on Software Engineering for Adaptive and

Self-Managing Systems, 2013.
[12] R. Hafner and M. Riedmiller. Reinforcement learning

in feedback control. Machine Learning, 84(1-2):137–169,
2011.

[13] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.
Feedback Control of Computing Systems. Wiley, 2004.

[14] J. H. Holland. Emergence: From Chaos to Order.
Redwood City, California: Addison-Wesley, 1998.

[15] W. Jiao and Y. Sun. Supporting adaptation of
decentralized software based on application scenarios.
Journal of Systems and Software, 86(7), 2013.

[16] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[17] J. Kramer and J. Magee. Self-managed systems: An

architectural challenge. Future of Software Engineering,
2007.

[18] K. Kucher and D. Weyns. A self-adaptive software
system to support elderly care. In Modern Information

Technology, MIT, 2013.
[19] R. Lemos, H. Giese, H. Mueller, M. Shaw,

J. Andersson, M. Litoiu, B. Schmerl, G. Tamura,
N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K. Goaschka,
A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer,
A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,
C. Prehofer, W. Schaefer, R. Schlichting, D. Smith,
J.-P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke.
Software engineering for self-adaptive systems: A
second research roadmap. In Software Engineering for

Self-Adaptive Systems II, volume 7475 of Lecture Notes

in Computer Science. Springer, 2013.
[20] M. W. Maier. Architecting principles for systems-

of-systems. Systems Engineering, 1(4):267–284, 1998.
[21] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough,

R. Linger, T. Longstaff, R. Kazman, M. Klein,
D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-
Large-Scale Systems - the software challenge of the
future. Technical report, SEI, Carnegie Mellon, 2006.

[22] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems,
14(3):54–62, 1999.

[23] A. P. Sage and C. D. Cuppan. On the systems
engineering and management of systems of systems and
federations of systems. Inf. Knowl. Syst. Manag.,
2(4):325–345, Dec. 2001.

[24] M. Usman Iftikhar and D. Weyns. A Case Study on
Formal Verification of Self-Adaptive Behaviors in a
Decentralized System. ArXiv e-prints, Aug. 2012.

[25] J. H. van Schuppen. Decentralized control with
communication between controllers. In Unsolved

problems in mathematical systems and control theory.
Princeton University Press, Princeton, 2004.

[26] R. Wang and N. Kandasamy. On the design of
decentralized control architectures for workload
consolidation in large-scale server clusters. In Int’l.

Conference on Autonomic Computing, 2012.
[27] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. Deucon:

Decentralized end-to-end utilization control for
distributed real-time systems. Parallel and Distributed

Systems, IEEE Transactions on, 18(7):996–1009, 2007.
[28] D. Weyns, S. Malek, and J. Andersson. Forms:

Unifying reference model for formal specification of
distributed self-adaptive systems. ACM Transactions

on Autonomous and Adaptive Systems, 7(1), 2012.
[29] D. Weyns, B. Schmerl, V. Grassi, S. Malek,

R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. Goeschka. On patterns for
decentralized control in self-adaptive systems. Lecture
Notes in Computer Science vol. 7475, Springer, 2012.

[30] T. Zheng, M. Woodside, and M. Litoiu. Performance
model estimation and tracking using optimal filters.
IEEE TSE, 34(3):391–406, 2008.

