
A

Architecture-Centric Support for Adaptive Service Collaborations

ROBRECHT HAESEVOETS, IBBT-Distrinet, Katholieke Universiteit Leuven, Belgium
DANNY WEYNS, Linnaeus University, Sweden
TOM HOLVOET, IBBT-Distrinet, Katholieke Universiteit Leuven, Belgium

In today’s volatile business environments, collaboration between information systems, both within and
across company borders, has become essential to success. An efficient supply chain, for example, requires
the collaboration of distributed and heterogeneous systems of multiple companies. Developing such collabo-
rative applications and building the supporting information systems poses several engineering challenges.
A key challenge is to manage the ever growing design complexity. In this article, we argue that software ar-
chitecture should play a more prominent role in the development of collaborative applications. This can help
to better manage design complexity by modularizing collaborations and separating concerns. State of the
art solutions, however, often lack proper abstractions for modeling collaborations at architectural level or do
not reify these abstractions at detailed design and implementation level. Developers, on the other hand, rely
on middleware, business process management, and Web services, techniques that mainly focus on low-level
infrastructure.

To address the problem of managing the design complexity of collaborative applications, we present Ma-
codo. Macodo consists of three complementary parts: (1) a set of abstractions for modeling adaptive collab-
orations, (2) a set of architectural views, the main contribution of this article, that reify these abstractions
at architectural level, and (3) a proof of concept middleware infrastructure that supports the architectural
abstractions at design and implementation level. We evaluate the architectural views in a controlled exper-
iment. Results show that the use of Macodo can reduce fault density and design complexity, and improve
reuse and productivity. The main contributions of this article are illustrated in a supply chain management
case.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures; Languages

General Terms: Documentation, Design, Languages

Additional Key Words and Phrases: Service-oriented architecture (SOA), collaborative systems, agent orga-
nizations , role-based modeling, software architecture, architectural views, middleware, Web services, and
empirical evaluation

ACM Reference Format:
Haesevoets, R., Weyns, D., Holvoet, T. 2013. Architecture-Centric Support for Adaptive Service Collabora-
tions. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 41 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This research is partially funded by the Interuniversity Attraction Poles Programme Belgian State, Bel-
gian Science Policy, and by the Research Fund K.U.Leuven. Danny’s research is supported by the Research
Foundation Flanders and a Marie Curie Career Integration Grant project number 303791.
Author’s addresses: R. Haesevoets, T. Holvoet, Dept. Computer Science, Kuleuven; D. Weyns, Dept. Com-
puter Science, Linnaeus University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 R. Haesevoets et al.

1. INTRODUCTION
Adaptive collaborations between information systems have become an essential ele-
ment in today’s business environments. In modern supply chains, for example, compa-
nies rely on a multitude of systems. The arrival of a new order can no longer be han-
dled by a single system, but requires complex collaborations among distributed and
heterogeneous systems. In addition, the dynamic and unpredictable market is caus-
ing a constant change in supply chain networks, requiring collaborations to be easily
adapted to current market needs. One of the primary goals of information technology
is to support the collaboration of information systems both within and across company
borders [Hugos 2011; Simchi-Levi 2008].

Collaborations can take place in different types of environments [Davidsson 2001].
Open environments, such as the Internet, provide high flexibility, but make it hard
to predict the outcome of interactions or to establish mutual trust. Restricted en-
vironments take a more pragmatic approach [Petrie and Bussler 2008; Pezzini and
Lheureux 2011]. The maintainer of the software deployed in such an environment
puts restrictions on the participants. This allows to achieve the necessary stability
and trust [Lesser 1998; Cunha 2009], while still allowing selected participants to join.
In the domain of supply chain management, third-party companies are providing such
environments, by acting as trusted integrators [Rushton and Walker 2007]. Examples
are 3PLs and 4PLs (third-party and fourth-party logistics providers), or companies like
SupplyOn (www.supplyon.com) and GXS (www.gxs.com).

Developing collaborative applications, even in a restricted environment, and build-
ing the supporting information systems, is a complex task that poses several engineer-
ing challenges. These challenges include integrating and coordinating distributed and
heterogeneous information systems. Although state of the art addresses many chal-
lenges, several problems remain open. A key problem is to manage the ever growing
design complexity of collaborative applications.

In this article, we argue that software architecture should play a more prominent
role in the development of collaborative applications. This can help to better manage
design complexity by modularizing complex collaborations and separating concerns.
State of the art solutions, however, often lack proper abstractions for modeling collab-
orations at architectural level or do not reify these abstractions at design and imple-
mentation level. Research on middleware, business process management (BPM), and
service-oriented architecture (SOA), for example, has mainly focused on individual ser-
vice interactions, isolated processes, and low-level infrastructure, while paying less
attention to the problems of how services collaborate [Singh and Huhns 2005; Pfaden-
hauer et al. 2005; Ma and Leymann 2009]. Research on role-based techniques, on the
other hand, has primarily focussed on the conceptual level, leaving the link between
conceptual modeling, software architecture, and implementation implicit [Ferber et al.
2009; Dignum et al. 2009]. We can identify the following problems with state of the art
approaches:

(1) Lack of proper decomposition mechanisms. State of the art approaches for business
process modeling provide limited or no decomposition mechanisms [Erl 2005; Pa-
pazoglou 2008], which easily results in monolithic processes that address multiple
concerns in a single model [Huhns et al. 2005; Tran et al. 2012]. In particular, most
of the existing modeling languages address collaboration management at imple-
mentation level and do not provide good mechanisms to reason about collaboration
management at a higher level of abstraction [Orriëns et al. 2003; Michlmayr et al.
2007]. Some languages for business process modeling, service orchestration, and
choreography [Ma and Leymann 2009; Charfi and Müller 2010] do provide mecha-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:3

nisms to decompose service collaborations, but they are not integrated in the current
technology stack.

(2) Focus on functional decomposition. State of the art modeling techniques that pro-
vide decomposition mechanisms typically rely on the concept of sub-process or com-
posite service [Ma and Leymann 2009; Schumm et al. 2011; OMG 2011]. The use of
sub-processes and composite services leads to a functional decomposition [Erl 2005;
Papazoglou 2008], which does not reify the underlying collaboration structures. In
such a functional decomposition, interaction logic, participant behavior, and man-
agement are easily scattered across multiple processes and services. This hampers
reasoning about collaborations and their qualities, such as reuse, modifiability, and
timing constraints.

(3) Missing reification of relevant abstractions in design and implementation. State of
the art role-based approaches in object-oriented modeling [Herrmann 2007], agent
organizations [Dignum et al. 2009; Dignum and Dignum 2011; Hübner et al. 2011],
and BPM [Ould 2005; Caetano et al. 2005] provide useful abstractions to model
and modularize collaborations. These approaches, however, primarily focus on the
conceptual level and are often hard to map to software architecture, design, or im-
plementation. Most of these techniques require specialized tools and frameworks
that are not easily integrated in mainstream software engineering.

To address these problems, we present Macodo1,2. Macodo provides architecture-
centric support for developing adaptive service collaborations, focussing on service col-
laborations that take place in a restricted collaboration environment. Macodo consists
of three complementary parts:

— Abstractions to model adaptive collaborations. The abstractions allow to modular-
ize complex service collaborations and describe collaboration management, interac-
tions, and participant behavior as separate concerns.

— Architectural views. The Macodo architectural views, the core contribution of this
article, reify the collaboration abstractions as architectural modeling elements. Ar-
chitects can use the Macodo views to design, document, and reason about collabora-
tions and their qualities in terms of common software elements3. Features include
modularizing complex service collaborations, while preserving the underlying col-
laboration structures, and describing collaboration management, interactions, and
participant behavior as separate concerns. By mapping collaboration abstractions
to common software elements, Macodo provides a close integration with the current
technology stack and mainstream software engineering.

— Proof of concept middleware support. The middleware provides a concrete platform
to develop and implement collaborations that are designed in the architectural
views. A proof of concept middleware architecture and prototype implementation
show that Macodo can be integrated in the current technology stack, without the
need for new standards.

1Macodo is an abbreviation for Middleware Architecture for COntext-driven Dynamic Organizations.
2Macodo was initially introduced in [Weyns et al. 2010a; Weyns et al. 2010b]. New contributions of this
article, with respect to [Weyns et al. 2010a; Weyns et al. 2010b], are a major revision of the underlying
abstractions, the introduction of architectural views for Macodo, the use of Macodo to modularize service
collaborations, the integration of Macodo in the Web service technology stack, and the evaluation in an
empirical study. An earlier version of the work presented in this article was part of the PhD research of the
first author [Haesevoets 2012].
3With common software elements, we refer to software modules, components, interfaces, etc. We explain this
in detail in section 5.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 R. Haesevoets et al.

The main contributions of this article, the architectural views, are evaluated in an
empirical study. In this study, performed with a group of 67 final year students of a
Master in Software Engineering program, we compare Macodo with a reference ap-
proach to design service collaborations taking place in restricted environments. Re-
sults show that the use of Macodo can reduce fault density and design complexity, and
improve reuse and productivity.

1.1. Overview
Section 2 provides required background information on middleware, BPM, SOA, and
software architecture and introduces a supply chain case that is used as running ex-
ample throughout this article. In Section 3, we discuss state of the art in service col-
laborations and pinpoint shortcomings of current approaches. Section 4 introduces the
collaboration abstractions that provide the foundation for the Macodo architectural
views. Section 5 presents the Macodo architectural views. Section 6 discusses the proof
of concept middleware for Macodo and a prototype implementation. In Section 7, we
report the empirical study of Macodo. Section 8 concludes with a reflection on the main
contributions of this article and discusses opportunities for future work.

2. BACKGROUND
To understand the contributions of this paper, some background on middleware, BPM,
SOA, and software architecture is required. We start with a brief overview of mid-
dleware, BPM, and SOA and highlight some key Web service technologies. Next, we
discuss what software architecture is and how it can be documented using architec-
tural views. Finally, we introduce a supply chain management case that we use to
illustrate the concepts and contributions of this article.

2.1. Middleware, BPM, and SOA
Middleware offers programming abstractions with supporting infrastructure to facil-
itate the development of complex distributed systems [Linthicum 2000; Alonso et al.
2004]. These abstractions can hide low-level details of hardware, networks and distri-
bution, and provide developers access to functionality that they would otherwise have
to implement from scratch. Enterprise application integration (EAI) extends conven-
tional middleware and addresses the two main concerns of intra-enterprise integra-
tion: (1) dealing with heterogeneity, and (2) defining, enacting, and managing the ac-
tual application integration and composition logic [Linthicum 2000]. Business process
management (BPM) and workflow management (WfM) provide powerful mechanisms
to define and execute integration and collaboration logic (e.g., in EAI) [van der Aalst
et al. 2003; Ould 2005].

Service-oriented architecture (SOA) addresses several challenges related to integra-
tion and collaboration in distributed, but also open, environments [Erl 2005; Papa-
zoglou 2008]. Key principles of SOA are service orchestration and choreography [Erl
2005]. Orchestration allows to combine or compose the functionality of multiple ser-
vices. Choreography defines a ‘public’ coordination or integration protocol between ser-
vices of multiple enterprises. Orchestration and choreography are typically described
using workflow-based languages and have revived the use of WfM and BPM. Web ser-
vices can be seen as another extension to conventional middleware and EAI, providing
the technology that allows companies to go from intra-enterprise integration to inter-
enterprise integration [Alonso et al. 2004].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:5

2.2. Web Service Technologies
Web services are the most prominent technology stack to realize service-oriented ar-
chitecture (SOA). Technologies that belong to this stack are often labeled ‘WS-*’. We
highlight some prominent technologies that are used in the following sections.

Web Service. A Web service is a piece of software that exposes some functionality,
or service, and makes this functionality available through standard Web technolo-
gies [Alonso et al. 2004]. It has an interface described in a machine-processable format
and other systems interact with the Web service as prescribed by its definition using
SOAP-messages [Gudgin 2003].

WSDL. WSDL (Web Services Description Language) [Christensen et al. 2001] is an
XML-based language to describe the interfaces of a Web service. The interface defi-
nition of a single Web service is called a portType. Many interactions, however, are
bidirectional or have a conversational nature. This means that each interaction part-
ner implements or realizes a Web service and uses the Web service of its partner. To
describe such a conversational relation, an extension to WSDL is used, called partner-
LinkType [OASIS 2007]. A partnerLinkType defines up to two roles, each linked to a
specific portType. An interaction participant then implements one portType and uses
the other.

WS-BPEL. Web services can be implemented and exposed using many standard pro-
gramming languages, but specialized languages, such as WS-BPEL, also exist. WS-
BPEL (Business Process Execution Language for Web Services) [OASIS 2007], is an
XML-based workflow language for Web services. It is one of the most prominent lan-
guages to define and execute service orchestrations and business processes involving
Web services. A BPEL process is defined as a sequence of activities (the workflow)
which can both use and expose Web services. The concrete interaction points with
external entities (such as Web services) are called partnerLinks. A partnerLink cor-
responds to a specific partnerLinkType, defined in a WSDL definition. Once specified,
BPEL processes can be deployed and executed on a BPEL engine (e.g., Apache ODE4).

2.3. Software Architecture
Software architecture and its documentation play an important role throughout the
lifecycle of complex software systems. The architecture of a software system can be
defined as the essential structures, which comprise software elements, the externally
visible properties of those elements, the relationships between them [Bass et al. 2003],
and the relationships with the environment [ISO/IEC 2007]. Software architecture is
concerned with managing complexity through abstraction. Software architecture man-
ifests the earliest set of design decisions and provides the main structures to realize
both the required functionalities and quality attributes. Architecture documentation
serves as a vehicle of communication for stakeholders to get mutual understanding
about a system of their interest.

The documentation of software architecture can range from informal sketches to for-
mal notations and is typically structured as a set of views. A view is a representation of
a set of system elements and the relationships associated with them [Bass et al. 2003;
ISO/IEC 2007]. A view represents a specific perspective on the system with respect
to particular concerns. Examples are the layered view, the deployment view, and the
4+1 views from Kruchten [Kruchten 1995]. Documenting an architecture is a matter of
documenting the relevant views and then adding documentation that applies to more
than one view [Clements et al. 2010]. Although no fixed set of views is appropriate

4http://ode.apache.org/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 R. Haesevoets et al.

for every system, there are three common views which allow architects to think about
software systems in three different ways [Clements et al. 2010]:
— Module Views: allow to structure the system as a set of implementation units.
— Component-and-connector (C&C) Views: allow to structure the system as a set of

software elements that have runtime behavior and interactions.
— Allocation Views: allow to relate the system to elements in its environment.

Each type of view introduces a set of architectural elements and relations between
the elements. We briefly discuss the elements and relations of the Module View and
Component & Connector View that are used in the subsequent sections.

The main elements of a module view are modules. A module represents an imple-
mentation unit of software that provides a coherent set of responsibilities. The actual
semantics of modules is only given when they are applied to a specific domain. Con-
crete examples of modules are a JAR (Java ARchive) file, an OSGi bundle file, a .NET
DLL (Dynamic-Link Library file), or an XML specification of an implementation. Three
typical types of relations between modules are ‘is part of’ (defining a part/whole rela-
tionship), ‘depends on’ (defining a dependency between modules), and ‘is a’ (defining a
generalization/specialization).

The elements of a Component & Connector (C&C) View are components and con-
nectors. Components are the principal computation elements and data stores that ex-
ecute in a system. Connectors represent runtime pathways of interaction between two
or more components. Components and connectors can be composed of interconnected
components themselves. Like modules, components and connectors get their seman-
tics when applied to a concrete domain. Examples of components are an executing
JavaBean, a running OSGi bundle, a running .NET component, or a BPEL process
instance. Examples of common connectors are a persistent data structure, a message
queue, a publish-subscribe infrastructure, a message bus, etc. Components have a set
of ports (the interfaces of a component) through which they interact with other com-
ponents via connectors. Connectors embody a protocol of interaction and have a set
of connector roles (the interfaces of a connector). A connector role defines how a com-
ponent can use the connector. Two typical relations in the C&C view are attachments
and interface delegations. An attachment associates a component port with a connector
role, which results in a graph of components and connectors. An interface delegation
associates a component port or connector role with a component port or connector role
of the ‘internal’ sub-architecture of a component or connector. This allows to further
refine the internal architecture of components and connectors.

One way to look at modules and components/connectors is to see modules as types
and components and connectors as instances of these types. However, there is not al-
ways a one-to-one mapping of modules to components and connectors. Components
and connectors represent run-time elements. Their implementation may be spread
over multiple modules, or a single module can also translate to a set of components
and connectors at runtime.

2.4. Supply Chain Management: A Running Example
A supply chain consists of a network of companies, such as manufacturers, trans-
porters, warehouses, and retailers, that collaborate to create a product flow from ini-
tial supplier to final customer [Chopra and Meindl 2007]. Managing a supply chain
includes coordinating production, inventory, and transportation among supply chain
partners [Hugos 2011]. Most supply chain companies lack the required knowledge, re-
sources, and capabilities to manage a supply chain on their own. They have to rely on
third-party and fourth-party logistics providers (3PLs and 4PLs) [Rushton and Walker
2007]. 3PLs provide vertical supply chain solutions, including warehousing, trans-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:7

key

role
component

conv. role that
creates
behavior
component

conv.
connector

actor
creates
behavior
component

behavior
component

Vmi Vendor [0..1] Warehouse [0..1] Transporter [0..1]Vmi Retailer [0..*]

Call-Off BehaviorCall-Off Fulfillment
Behavior

(Caller)(Stock)

(Carrier)(Shipper)

(Seller)

Consumption Reporting
Conversation

Call-Off
Conversation

Transport
Conversation

(Consumer)

(Client)

Inventory Reporting
Behavior

(Inventory)

Inventory Reporting
Conversation

(Client)

Cmi Vendor [0..1] Warehouse [0..1] Transporter [0..1]Cmi Retailer [0..*]

Call-Off Fulfillment
Behavior

(Caller)(Stock)

(Carrier)(Shipper)

Call-Off
Conversation

Transport
Conversation

(Client)

Inventory Reporting
Behavior

(Inventory)
Inventory Reporting

Conversation

Vmi Organization

Cmi Organization
key

role

initiating
conversation
role

participating
conversation
role

conversation
role that
initiates
behavior

conversation

behavior

actor can
initiate
behavior

C
al

l-O
ff

C
on

ve
rs

at
io

n

«Conversation Role»
Caller

«Conversation Role»
Stock

Ordering

+

Reporting

+

call-off order

call-off
order

delivery info

delivery
info

delivery report

delivery report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

key

plays

actor

provided
capability

organization

role
Local Foods Network :

Vmi Organization

Acme Logistics

Groceries Inc. Network :
Cmi Organization

Groceries Inc.

Vmi Retailer

Fresh'n Good

Vmi Vendor

Warehousing Inc.

Warehouse

Local Foods
West District

Vmi Retailer

Local Foods
East District

Vmi Retailer

Food Supply

Vmi Vendor

Transporter Transporter

Warehouse

«Role»
Vmi Retailer Role

«Role Capability»
Vmi Retailer Capability

«Conversation Capability»
Inventory Reporting

Client Capability
«Behavior Capability»

Call-Off Capability

«Conversation Capability»
Consumption

Reporting Consumer
Capability

«Conversation Capability»
Call-Off Caller

Capability

«Conversation Capability»
Inventory Reporting

Client Capability

module A uses
module B

key

A
B

«Conversation Role»
Inventory Reporting
Conversation.Client

«Conversation Capability»
Inventory Reporting

Client Capability

«Behavior»
Call-Off Behavior

«Conversation Capability»
Consumption

Reporting Consumer
Capability

«Conversation Capability»
Call-Off Caller

Capability

«Behavior Capability»
Call-Off Capability

A provides
capability BA B

A requires
capablility BA B

ke
y capability

Macodo core
concept

key

capability

Macodo core
concept

A provides
capability BA B

A requires
capablility BA B

DEPRECATED

Call-Off Stock Capability

Call-Off Caller Capability
Call-Off

Conversation
Inventory Reporting Client

Capability

Inventory Reporting
Inventory Capability Inventory

Reporting
Conversation

Vmi Retailer Role

Call-Off Caller Capability

Vmi Retailer Capability

Call-Off Behavior

Inventory Reporting
Client Capability

Consumption Reporting
Consumer Capability

Cmi Retailer Role

Call-Off Caller Capability

Cmi Retailer Capability

Inventory Reporting
Client Capability

Cmi Organization

Cmi Vendor
Role

Transporter
Role

Cmi Retailer
Role

Warehouse
Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Transport
Conversation

Vmi Organization

Vmi Vendor
Role

Transporter
Role

Vmi Retailer
Role

Warehouse
Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Consumption
Reporting

Conversation

Transport
Conversation

A requires
capability B

A provides
capability BA B

A Brole
capability

conversation
capability

behavior
capability

A
B

module A uses
module B

organization
module

role
module

conversation
module

behavior
module

ke
y

callOffPort

consumptionPort

conversation
ports

inventoryPort

behavior
components Call-Off Behavior

Inactive
creation max occur.

no

no
0
0

no 0

no 0

Active Deactivating
creation max occur. creation max occur.

yes

yes
*
*

no

no
*
*

yes * no *

actor * no *

Retailer

ke
y

vendor warehouse
(3PL)

transporter
(3PL)

Retailer

retailer product
flow

Conversation

Conversation
Role

Organization

Behavior

RoleActor

has !

enables "

plays "

has !

realizes #

0..*

0..*

0..*

0..*

0..*

0..*

0..*

executes "

plays "

1

has !

Role State

Actor Capability Role$ requiresprovides "

BehaviorConversation
Role

Behavior
Capability

Conversation
Capability

requires # requires #provides #

0..* 0..*

1 1

0..*

additional
abstraction

core
abstraction

key

«Role»
Vmi Retailer Role

«Role Capability»
Vmi Retailer Capability

«Conversation Capability»
Inventory Reporting

Client Capability
«Behavior Capability»

Call-Off Capability

«Conversation Capability»
Consumption

Reporting Consumer
Capability

«Conversation Capability»
Call-Off Caller

Capability

«Conversation Capability»
Inventory Reporting

Client Capability

«Conversation Role»
Inventory Reporting
Conversation.Client

«Conversation Capability»
Inventory Reporting

Client Capability

«Behavior»
Call-Off Behavior

«Conversation Capability»
Consumption

Reporting Consumer
Capability

«Conversation Capability»
Call-Off Caller

Capability

«Behavior Capability»
Call-Off Capability

«Conversation Capability»
Replenishment
Stock Capability

«Conversation Role»
Vmi Replenishment
Conversation.Stock

«Conversation Role»
Cmi Replenishment
Conversation.Stock

key

capability

Macodo core
concept

A provides
capability BA B

A requires
capablility BA B

«Conversation Role»
Call-Off

Conversation.Caller

«Conversation Capability»
Call-Off Caller

Capability

«Conversation Role»
Consumption Reporting

Conversation.
Consumer

«Conversation Capability»
Consumption

Reporting Consumer
Capability

Vmi Organization

Transporter RoleVmi Vendor Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Consumption
Reporting

Conversation

Transport
Conversation

Vmi Retailer Role

Call-Off
Behavior

Warehouse Role

Inventory
Reporting
Behavior

Vmi Organization

Vmi Vendor
Role

Transporter
Role

Vmi Retailer
Role

Warehouse
Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Consumption
Reporting

Conversation

Transport
Conversation

Cmi Organization

Cmi Vendor
Role

Transporter
Role

Cmi Retailer
Role

Warehouse
Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Transport
Conversation module A uses

module B

organization
module

role
module

conversation
module

key

A
B

Cmi Organization

Transporter RoleCmi Vendor Role

Call-Off
Conversation

Inventory
Reporting

Conversation

Transport
Conversation

Cmi Retailer
Role

Warehouse Role
organization
module

conversation
module

role
module

behavior
module

Behavior Capability

Behavior
Module

Conversation
Capability

Behavior
Module

Provider
Interface

Consumer
Interface

Behavior Capability

Provider
Interface

Conversation Capability

Consumer
Interface

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

behavior
module

behavior
capability

conversation
capability

interface

:Role Component

:Organization Connector

:Role

:Actor Port

:Conversation Connector

:Conversation Role

:Conversation Port

attachment

interface
delegation

component
port

connector
role

component

connector

key

:Role Component

:Role

:Actor Port

:Conversation Role

:Conversation Port

:Role Component

:Role

:Actor Port

:Conversation Role

:Conversation Port

:Role Component

:Behavior
Component

:Actor Port

:Conversation Port

:Actor Port

:Behavior
Component

:Actor Port

:Conversation Port

:Conversation Port

conv. role
attached to
conv. port

initiating
conv. role

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Conversation Port»
callOffPort

«Conversation Port»
consumptionPort

Generate
Order

+

Consumption
Reporting

+

Call-Off Execution

+

initiate order
request call-off order

call-off
order

delivery
info

delivery
report

delivery
info

delivery
report

report
request

consump. report

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

ke
y

UML 2.0

[no active behavior components or conversation ports]

DeactivatingInactive Activeactivate deactivate
destroy

create

callOffPort

consumptionPort
conversation

ports

inventoryPort

Inactive
creation max occur.

no

no

0

0

no 0

Active Deactivating
creation max occur. creation max occur.

yes

yes

*

*

no

no

*

*

yes * no *

behavior
components

Call-Off Behavior no 0 actor * no *

...

...

Retailer

4. Call-Off Order

3. Replenishment

1. Inventory Report

5. Call-Off

2. Replenishment Order

Customer-Managed Inventory (CMI) Scenario

Retailer

3. Call-Off Order

2. Replenishment

1. Inventory Report

5. Consumption Reporting

4. Call-Off

Vendor-Managed Inventory (VMI) Scenario

key

vendor

warehouse
(3PL)

transporter
(3PL)

Retailer

retailer

product
flow

information
flow

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Conversation Port»
callOffPort

«Conversation Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

ke
y

UML 2.0

:Actor
Component

:Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

:Vmi Vendor [0..1] :Warehouse [0..1] :Transporter [0..1]:Vmi Retailer [0..*]

inventoryPort
(Client)

:Inventory Reporting
Behavior

inventoryPort
(Inventory)

:Inventory
Reporting

Conversation

inventoryPort
(Client)

:Call-Off Behavior:Call-Off Fulfillment
Behavior

callOffPort
(Caller)

callOffPort
(Stock)

transportPort
(Carrier)

transportPort
(Shipper)

consumptionPort
(Seller)

:Consumption Reporting
Conversation

:Call-Off
Conversation

:Transport
Conversation

consumptionPort
(Consumer)

Vmi Organization

:Cmi Vendor [0..1] :Warehouse [0..1] :Transporter [0..1]:Cmi Retailer [0..*]

:Call-Off Fulfillment
Behavior

callOffPort
(Caller)

callOffPort
(Stock)

transportPort
(Carrier)

transportPort
(Shipper)

:Call-Off
Conversation

:Transport
Conversation

inventoryPort
(Client)

:Inventory Reporting
Behavior

inventoryPort
(Inventory)

:Inventory
Reporting

Conversation

Cmi Organization

:Actor
Component

:Actor
Component

:Actor
Component

Role Port Role Port Role Port

:Organization Connector

RoleRoleRole

'plays'
attachment

organization
connector

roleactor
component

role port

ke
yke

y

organization
module

role
module

conversation
module

behavior
module

module A
uses
module B

A
B

Organization Module

Role ModuleRole ModuleRole Module

Behavior
Module

Behavior
Module

Behavior
Module

Conversation
Module

Conversation
Module

Conversation
Module

key
<instance-name>:<type>

'plays' attachment

[min..max] min & max number
of occurences

actor component

role port

organization
connector

(connector) role

Local Foods
West District:

Warehousing
Inc.:Food Supply:

localFoodsNetwork : Vmi Organization

:Vmi Vendor

Acme
Logistics:

Local Foods
East District:

:Warehouse :Vmi Retailer :Vmi Retailer :Transporter

Vmi Organization

Vmi Vendor [0..1] Warehouse [0..1] Vmi Retailer [0..*] Transporter [0..1]

:Organization Connector

Organization Connector Type

Role [min..max] Role [min..max] Role [min..max]

:Actor
Component

Role

Role Port

:Actor
Component

Role

Role Port

:Actor
Component

Role

Role Port

key
<instance-name>:<type>

'plays' attachment

[min..max] min & max number
of occurences

actor component

role port

organization
connector

(connector) role

Fig. 1. Two types of supply chain networks to be supported by the 4PL.

portation, and other logistics activities. 4PLs operate horizontally across the supply
chain, acting as integrators that assemble resources, capabilities and services of dif-
ferent supply chain partners and 3PLs [Christopher 2005]. A key role of a 4PL is to
provide a managed collaboration environment that allows to integrate the information
systems of all companies involved in the supply chain.

As a running example, we use a 4PL that has to support two types of supply chain
scenarios, as shown in Fig. 1. Each scenario involves four companies (vendor, ware-
house, retailer, and transporter) that have to collaborate . All communication between
the companies passes through the 4PL using standard Web services. The first scenario
uses a vendor-managed inventory (VMI), where the vendor is responsible for managing
the inventory. Products in the inventory, kept in an intermediate warehouse, remain
property of the vendor until consumed, or called-off, by the retailer. The warehouse
regularly reports inventory levels to the vendor (flow 1). Based on these inventory lev-
els, the vendor replenishes the warehouse (flow 2). The retailer can call-off products
from the warehouse (flow 3-4), after which it reports the consumption to the vendor
(flow 5). The second scenario uses a customer-managed inventory (CMI), where the
customer manages its own inventory. Products in the inventory, kept in an intermedi-
ate warehouse, are already property of the retailer. The warehouse regularly reports
inventory levels to the retailer (flow 1). The retailer can request a replenishment from
the vendor (flow 2-3), and can call-off products from the warehouse (flow 4-5).

3. STATE OF THE ART
The central contribution of this paper is a set of architectural views that provide better
mechanisms to decompose and modularize complex service collaborations. Therefore,
we focus our discussion of state of the art on approaches for decomposing and mod-
ularizing service collaborations. We can observe two main directions: process-based
approaches and role-based approaches. Process-based approaches rely on middleware,
BPM, and SOA to develop service collaborations. Role-based approaches use alterna-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 R. Haesevoets et al.

tive abstractions, such as roles and organizations. For both directions, we discuss the
state of the art and use the running example to pinpoint shortcomings of existing ap-
proaches.

3.1. Process-Based Approaches
Business processes and workflows play a key role in engineering collaborative applica-
tions and are the foundation of several state of the art techniques. In this section we
discuss the most prominent research efforts based on business processes, such as sub-
processes, aspect-based approaches, view-based approaches, and commitment-based
approaches. The selection of research work is based on their relevance to our work
(i.e., the ability to engineer complex service collaborations) and the prominence within
their research domains. Our particular focus is on how existing approaches allow to
model, decompose, and modularize complex collaborations.

3.1.1. Sub-Processes and Sub-Workflows. Sub-processes and sub-workflows can be used
to decompose business processes and workflows. A common approach is workflow or
process ‘fragmentation’ [Adams et al. 2006; Ma and Leymann 2009; Eberle et al. 2009].
A fragment is a reusable piece of process or workflow code, created from scratch or ex-
tracted from existing processes, that can be used to compose processes or workflows.
Fragmentation can be done by hand or in a semi-automatic manner, in which a modeler
is supported by a set of algorithms. Fragments can also be stored in shared libraries
to be used for service composition [Schumm et al. 2011]. In current Web service stan-
dards these concepts have limited support. WS-BPEL [OASIS 2007] and WS-CDL [Ka-
vantzas et al. 2005] do not provide any support for decomposition. BPMN [OMG
2011], a graphical language for business processes, supports sub-processes and sub-
choreographies, which can be used as a visual aid to manage complexity (i.e., col-
lapsing parts of a diagram) or to define reusable process or choreography definitions.
Sub-processes have been studied in the context of WS-BPEL [Kloppmann et al. 2005;
Trickovic 2005], but have not yet found their way into the BPEL standard or execution
platforms.

Sub-processes and sub-workflows provide first-class concepts to decompose processes
and workflows in terms of functionality. They do not, however, provide any concepts
that reify the underlying collaboration structure. When applying these approaches to
our running example, the 4PL can use these techniques to decompose each supply
chain collaboration into a set of (sub-)processes. Because of the functional decompo-
sition and the lack of collaboration structure in the decomposition, responsibilities of
participants, and even interactions, are easily scattered over multiple processes and
services. This makes it hard to maintain or adapt such software. What we need are ad-
ditional modeling concepts that allow to decompose collaborations while maintaining
the underlying collaboration structure.

3.1.2. Aspect-Based Approaches. Aspect-oriented programming (AOP) is a well known
technique to support the separation of crosscutting concerns, by modularizing them in
aspect modules [Kiczales et al. 1997]. These aspect modules can then be woven into
existing code at specific ‘join points’. Several authors advocate an aspect-oriented ap-
proach for Web service composition [Charfi and Mezini 2004; Courbis and Finkelstein
2004]. A prominent example is AO4BPEL [Charfi and Mezini 2007; Charfi and Müller
2010], an aspect-oriented workflow language in which each BPEL activity is a possible
join point. Supporting AO4BPEL at runtime requires the extension of existing BPEL
engines. Like AspectJ, however, AO4BPEL focusses on modularization at implementa-
tion level and lacks high-level abstractions to structure the architecture of a system.

Similar to sub-processes, applying aspect-based approaches to our running exam-
ple results in a set of fragments or aspects that encapsulate functional parts of the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:9

collaboration. For example, we could have a base process for a call-off from the ware-
house and an aspect encapsulating the functionality for consumption reporting. The
aspect would then be triggered after a successful call-off. Although more modular then
a monolithic process, such a decomposition fails to represent the underlying collabora-
tion structures.

3.1.3. View-Based Approaches. View-based approaches rely on the concept of a pro-
cess ‘view’ to provide a better decomposition and modularization of business pro-
cesses. These approaches allow focusing on a single business process or on cross-
organizational collaborative workflows. In the context of cross-organizational work-
flows, views have been used to integrate existing workflows of different organizations,
where organizations expose a view on their local or private workflow [Chiu et al. 2002;
Chebbi et al. 2006]. [Tran et al. 2007; Tran et al. 2012] propose a view-based and
model-driven approach for developing service-oriented architectures, called the View-
based Modeling Framework (VbMF). They rely on a set of extensible views to describe
business processes. Example are the orchestration view, focusing on the internal struc-
tures of a process, the collaboration view, focussing on the external services with which
a process interacts, and the information view, focussing on the data exchanged by a pro-
cess. Using model transformations, they can combine views and generate executable
BPEL code.

Most view-based approaches do not directly decompose processes or collaborations.
Instead, the description of processes is decomposed in different views, focussing on
different aspects such as structure, external services, and data, making the documen-
tation of a process more manageable.

3.1.4. Commitment-Based Approaches. Commitment-based approaches [Singh et al.
2009] provide an alternative to traditional process modeling, by treating interactions
at the level of ‘business semantics’ instead of messaging, using commitments. A com-
mitment is a reification of a directed obligation [Singh 1999] and can be compared to
a social norm used in multi-agent systems [Dignum 1999]. An example of a commit-
ment is C(companyA, companyB, invoicePayed), meaning, company A is committed to
company B for paying the invoice. Commitments can be used to specify business pro-
tocols [Desai et al. 2007; Telang and Singh 2012]. Messages are given business mean-
ing by specifying how they affect commitments. Amoeba [Desai et al. 2008] describes
a methodology for using commitment-based protocols as building blocks to compose
more complex business processes. Amoeba allows to specify how messages of one pro-
tocol effect the commitments in another protocol and constrain the order of messages
between different protocols.

Applying a commitment-based approach to our running example would result in a
specification in terms of commitments of each supply chain partner and how each ac-
tion affects these commitments. This specification, similar to a service choreography,
can then be used by each supply chain partner to implement their local business pro-
cesses, compliant with this specification. As illustrated by this example, commitment-
based approaches are mainly concerned with the specification and validation of cross-
organizational business processes. Although commitment-based approaches do bring
more business meaning to the process definition, they still lack higher-level abstrac-
tions. Instead of composing at the level of individual messages, composition is done
at the level of individual commitments. Meta-models based on commitments [Telang
and Singh 2012] do introduce additional concepts, such as tasks and goals, but they
still represent low-level concepts like individual business activities. What we need are
high-level, but reusable, building blocks, such as behaviors and interactions, that can
be composed into collaborations. These collaborations should easily translate in to both

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 R. Haesevoets et al.

implementation units (modules) and runtime software elements (components and con-
nectors).

3.2. Role-Based Approaches
Role-based abstractions provide an interesting alternative to develop collaborative ap-
plications. Roles have a rich history in social science [Parsons 1956], organization the-
ory [Carley and Gasser 1995; Pfeffer 1997], and multi-agent systems [Demazeau and
Costa 1996; Jennings 2000; Dignum 2009]. Roles are also recognized as an important
modeling concept in object-oriented and conceptual modeling [Steimann 2000; Guiz-
zardi 2005] and business process modeling [Ould 2005; Caetano et al. 2005]. Never-
theless, the concept of role has not received the attention it deserves. Additionally,
there is no consensus on the definition of roles or how they should be integrated in es-
tablished modeling frameworks and mainstream programming languages [Steimann
2000; Guizzardi 2005; Herrmann 2007]. This section discusses a selection of the most
relevant and prominent role-based techniques in BPM and multi-agent systems.

3.2.1. Roles in Business Process Management. Most BPM approaches rely on a procedu-
ral or data-oriented view of a process. Processes are described as activities and the data
flows between them. This leads to a functional and often hierarchical decomposition,
in which activities carried out by individual systems or people are scattered through-
out one or more models. This makes it hard to abstract away from the details of the
process, or to capture the interactions between systems or people who carry out the
activities [Phalp et al. 1998; Caetano et al. 2005]. [Ould 2005] calls for collaboration-
centric BPM in which a collaboration is a primitive to model processes. BPM systems
should support roles and mediate their interactions to make the intended collaboration
happen.

A number of researchers have proposed role-based BPM techniques. Prominent ex-
amples are Role Interaction Nets [Singh and Rein 1992] (RIN), Role Activity Diagrams
(RAD) [Ould 1995], and Riva [Ould 2005], a BPM method based on RAD. RIN and RAD
are modeling languages that have a formal underpinning and are based on organiza-
tional role theory. Key concepts in RIN and RAD are roles and interactions. In RIN,
a ‘role interaction network’ is composed of a set of roles. The behavior of each role is
described as a set of interactions with itself and other roles. In RAD, a process is a
coherent set of activities, carried out by a collaborating set of roles to achieve a goal.
Roles define a responsibility within a process and are described as a set of actions and
interactions with other roles. RAD is used to model an individual process. To combine
processes, Riva relies on the notion of process interaction. When processes interact, at
least one role is shared. Multiple processes are synchronized by shared states of the
role.

When applying RAD or Riva to our running example, we can model the different
parts of our scenarios (e.g., call-off and consumption reporting) as individual processes
in terms of roles and interactions between these roles. To relate these processes, we can
use process interactions. Riva, however, tries to avoid encapsulation or the concept of
subprocess. Even with interacting processes, Riva assumes you are modeling the same
process but just not showing everything, for example, only the shared roles and states.
As a result, there is little focus on reuse. Another challenge is to translate RAD models
to a concrete software architecture and implementation. Since the focus of RAD and
Riva is on modeling, this translation is left to the developer.

Although roles provide an interesting concept to model processes, in current main-
stream BPM, roles only play a minor part. In WS-BPEL [OASIS 2007] roles are
used to distinguish the interfaces (or portTypes) defined in partnerLinkTypes. In
BPMN [OMG 2011], a ‘PartnerRole’ can be used to represent a participant in a col-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:11

laboration (i.e., a message exchange between two or more processes) similar to roles
in UML interaction diagrams. Lanes (or swim-lanes) can also be used to represent
roles, but BPMN does not define their semantics, so they can be used at the designers
will [OMG 2011]. In WS-CDL [Kavantzas et al. 2005], role types define the observable
behavior of a party within a collaboration. Each behavior is defined as an interface.
The choreography specifies the actual interaction. In most of these approaches roles
are only used to name the endpoint of binary relationships and to identify participants
in an interaction.

3.2.2. Roles in Multi-Agent Systems. Organizations and roles are often used to study,
design, and engineer multi-agent systems (MASs). In its most general form, an or-
ganization can be seen as a cooperation pattern, or process, that constraints the ac-
tions and interactions of agents towards some purpose [Castelfranchi 1998]. In a more
specific form, an organization can also refer to a collective entity with an explicit
identity [Scott 2003]. Prominent agent methodologies have adopted organizations [De-
mazeau and Costa 1996; Zambonelli et al. 2003], logics and languages exist to describe
agent organizations [Dignum and Dignum 2011; Hübner et al. 2011], and several re-
searchers have proposed meta-models to model MAS using organizations. Prominent
examples are AGR (Agent/Group/Role) [Ferber and Gutknecht 1998], Electronic Insti-
tutions (EIs) [Esteva and Rodrı́guez-Aguilar 2001; Solaz et al. 2011], Moise [Hannoun
et al. 2000; Hübner 2010], and OperA [Dignum et al. 2005].

Many of these approaches rely on multiple dimensions or structures to describe or-
ganizations [Ferber et al. 2009]. Three common structures are:

— An organization or social structure that defines the organization in terms of roles
and how roles relate.

— A functional or interaction structure that describes the functional aspects of an
organization (e.g., in terms of tasks, goals, or interactions).

— A normative structure that defines the rights and obligations of agents in the orga-
nization.

These dimensions, however, often remain at a conceptual level, while it is unclear
how they can be mapped to common software elements (e.g., modules, components,
connectors). Some techniques provide runtime support [Ricci et al. 2009; Hübner et al.
2009; Schmitt et al. 2011], but mainly through specialized frameworks and tools.

To decompose the functional aspects of an organization, most organization models
use scenes (e.g., Electronic Institutions and OperA) or goal-decomposition trees (e.g.,
Moise). Little-Jil [Wise et al. 2000], a language for coordinating agents, uses a tech-
nique similar to goal-decomposition trees. Scenes and goal-decomposition trees are of-
ten combined with norms, which are social conventions on how agents should behave
and interact with each other [Dignum 1999]. Scenes describe possible interactions be-
tween roles of an organization. They can be combined in a more complex structure
that defines how an organization achieves it goals. This structure can be compared to
a global workflow where individual scenes are sub-workflows that describe individual
interactions. Norms are used to define which scenes agents can or should execute [Es-
teva and Rodrı́guez-Aguilar 2001; Dignum et al. 2005]. The actual functionality of an
organization is realized by agents executing scenes.

Goal-decomposition trees focus on the division of tasks, in terms of goals and plans
that are assigned to agents, roles, or groups. Interactions are not modeled explicitly,
but are the results of one or multiple goals or tasks that make agents interact. Norms
are used to define which goals agents can or should realize. A norm can read like
‘when an agent A: (1) is committed to a mission M that (2) includes a goal G, and (3)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 R. Haesevoets et al.

the mission’s scheme is well-formed, and (4) the goal is feasible, then agent A is obliged
to achieve the goal G before its deadline D’ [Hübner 2010].

When applying a scene-based approach to our running example, we can model the
different parts of our scenarios (e.g., call-off and consumption reporting) as different
scenes. Using norms, we can then, for example, define that consumption reporting
should take place after a call-off. Applying goal-decomposition trees to our running
example requires our scenarios to be translated into a set of goals and norms that
define relations between these goals. For example, one goal can be to perform a call-
off, which in turn obliges the agent to the goal of reporting the consumption.

Both scenes and goal-decomposition trees, however, do not provide support to prop-
erly encapsulate the behaviors and interactions within an organization. Scenes do pro-
vide an abstraction for reusable interaction, but do not support encapsulation of indi-
vidual behaviors, making them hard to reuse. Behavior of agents is partly defined by
scenes, partly by scene transitions, and partly by normative rules. Goal-decomposition
trees lack proper concepts to model more complex behaviors as well as interactions
as reusable units. Concrete behavior and interactions are the result of a set of com-
plex norms that define which goals each role has to achieve. Although normative
rules provide an expressive and fine-grained mechanism to control the behavior of
agents [Hübner et al. 2011], from an engineering perspective, designing norms and
managing the vast amount of rules that are required to define a complex systems
poses some serious challenges.

4. ABSTRACTIONS FOR ADAPTIVE COLLABORATIONS
To support the development of collaborative applications at architectural level, we first
need good modeling abstractions. This section presents the Macodo model, a set of role-
based abstractions to model collaborative applications. The model focusses on collabo-
rations that take place in a restricted collaboration environment, managed by a trusted
party, such as a 4PL. The Macodo model builds upon earlier research results [Weyns
et al. 2010a; Haesevoets et al. 2010] and borrows concepts from object-oriented mod-
eling [Steimann 2000; Guizzardi 2005], BPM [Ould 2005; Caetano et al. 2005], and
agent organizations [Dignum 2009]. An overview of the Macodo model is shown in
Fig. 2. This section describes the key concepts of the Macodo model and illustrates
them in the running example.

4.1. Actor
An actor is an entity that has access to the collaboration environment and is capable
of participating in collaborations by playing roles. In a concrete system, actors can be
business entities, software agents, services, or even people. For example, the concrete
supply chain partners are actors in the running example.

4.2. Collaboration
A collaboration is a controlled process, taking place in the collaboration environment,
of a group of actors working together towards a set of goals. For example, each supply
chain network in the running example can be modelled as a collaboration (Vmi Colla-
boration and Cmi Collaboration). A collaboration consists of a set of roles, representing
the different actors and their responsibilities in the collaboration, and a set interac-
tions between the actors of these roles. Collaborations are reusable and can be created
and destroyed by the manager of the collaboration. For example, as the manager, a
4PL can create or destroy collaborations in the running example.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:13

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Collaboration

InteractionRoleBehavior " between

1

0..* 0..*

2..* 0..*10..*

!
executes participates in !

0..*0..*

Actor1 2..*

provides !

Capability

requires $

0..*

0..*

0..*

0..*

plays !

0..*

0..1

Collaboration A

Role X Role Y

Interaction 1

Role Z

Behavior 1

Interaction 2 Interaction 3

ke
y

module A uses
module B

module

A
B

key
<instance-name>:<type>

collaboration
connector

connector role

component port

Actor
component

attachment: Collaboration A

Actor 1:

Role X

Actor 2:

Role Y

Actor 3:

Role Z

Collaboration A

Role X
Role Y

Role Z

Behavior 1

Behavior 2

Interaction 1

Interaction 2

ke
y

module A uses
module B

module

A
B

Fig. 2. The key concepts of the Macodo model and their relations.

4.3. Role
A role is the embodiment of the participation of an actor in a collaboration that defines
the actor’s responsibilities in that participation. When an actor enters a collaboration,
a new role is created. When the actor leaves the collaboration, the corresponding role
is destroyed. Within the context of a role, an actor can execute behaviors and partici-
pate in interactions with other actors in the collaboration. For example, to define the
responsibilities in our Vmi Collaboration and Cmi Collaboration, we can specify a set
of roles, such as Vendor, Warehouse, Retailer, and Transporter.

4.4. Behavior
A behavior is a coherent unit of reusable functionality that is executed in the context
of a role. A behavior is typically application-specific and can encapsulate the execution
of a task or the participation in an interaction. The latter is useful when the partici-
pation in an interaction is a complex task (e.g., following a complex protocol), or when
a task involves participation and synchronization over multiple interactions (e.g., get
data from role X using interaction A and pass it to role Y using interaction B). In our
running example, the roles of our collaborations can be refined in terms of behaviors.
For example, we can define a behavior Inventory Reporting Behavior for the Warehouse
role to collect inventory levels and pass it to another role using an interaction.

4.5. Interaction
An interaction is a controlled exchange of information between the actors of a set of
roles in a collaboration. An interaction can have an application-specific protocol. For
example, to realize the required functionality in our supply chain collaborations, we
can define interactions such as the Inventory Reporting Interaction (to send inventory

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 R. Haesevoets et al.

levels to interested parties), the Call-Off Interaction (to call-off products from a ware-
house), and the Transport Interaction (to request a transport from a transporter).

4.6. Capability
A capability is the ability to correctly realize an application-specific functionality. Ca-
pabilities are provided by actors. Capabilities are used to describe the requirements
to play a role, participate in an interaction, or execute a behavior. A role, for example,
requires a specific set of capabilities to be played. Actors can only play those roles for
which they provide the required capabilities. In our running example, a capability can
be the ability to perform or realize a call-off, to organize a transport, etc.

5. MACODO ARCHITECTURAL VIEWS
The Macodo model provides abstractions to model collaborative applications. At archi-
tectural level, however, architects reason in terms of software elements. When reason-
ing about implementation units in a system, architects use modules, when reasoning
about the runtime properties of a system, architects use components and connectors.
To use the abstractions of the Macodo model at architectural level, we introduce the
Macodo views. The Macodo views are domain-specific architectural views that map the
abstractions from the Macodo model to common architectural elements and element
relationships. These views allow to design, document, and reason about collaborations
and their qualities in terms of software elements, while preserving the underlying col-
laboration structures.

In the Macodo views we use a one-on-one mapping of modules to components and
connectors. Modules can then be seen as reusable types and components and connec-
tors as instances of these types. There are three Macodo views, each taking a different
perspective on the collaborations in a system:

— The Collaboration View models reusable types of collaborations and their struc-
ture. The structure shows how collaborations are modularized and decomposed into
reusable units (e.g., roles, behaviors, and interactions).

— The Collaboration & Actor View models how collaborations are concretely used, that
is, which concrete instances of collaborations are active in the system and which
actor is playing which role.

— The Role & Interaction View models how a collaboration works in detail (i.e., its
internal architecture).

Since Macodo views are specializations of standard views (i.e., Module View, Com-
ponent & Connector View), they provide a close integration with existing architec-
tural modeling techniques. In fact, architects need to combine Macodo views with
traditional views to design and document the architecture of a complete system. The
deployment of collaborations, for example, can be described using regular allocation
views [Clements et al. 2010].

Table I provides an overview of how Macodo abstractions are mapped to architec-
tural concepts in every view. Since each view takes a different perspective, not all
abstractions are present in each view. To make the mapping more clear, we add the
word ‘module’, ‘component’, or ‘connector’ to the Macodo terms. When working within
a specific view, we typically omit these additional words. For example, in the Collabo-
ration & Actor View, a ‘collaboration’ and ‘collaboration connector’ refer to the same
concept. The rest of this section discusses the Macodo views in detail and illustrates
them in the running example.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:15

Table I. Mapping of Macodo abstractions to architectural concepts.

Macodo Model Collaboration View Collaboration & Actor
View

Role & Interaction
View

Actor / Actor Component /
Collaboration Collaboration Module Collaboration Connector /
Role Role Module Connector Role Role Component
Behavior Behavior Module / Behavior Component
Interaction Interaction Module / Interaction Connector
Capability Software Interfaces Runtime Interfaces Runtime Interfaces

5.1. Collaboration View
The Collaboration View is a Module View that models collaborations as reusable mod-
ules and how they are decomposed into reusable submodules (i.e., roles, interactions,
and behaviors) (Fig. 3). Each module represents a reusable type of which concrete
instances can be created. These instances can be modeled using the Collaboration &
Actor View and the Role & Interaction View. The uses-relation [Bass et al. 2003] allows
to express how a collaboration relies on roles, interactions, and behaviors.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

! executes participates in !

0..*0..*

1 1..*

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Collaboration

InteractionRoleBehavior " between

1

0..* 0..*

2..* 0..*10..*

! executes participates in !

0..*0..*

Actor1 1..*

provides !

Capability

requires $

0..*

0..*

0..*

0..*

plays !

0..*

1

Collaboration A

Role X Role Y

Interaction 1

Role Z

Behavior 1

Interaction 2 Interaction 3

ke
y

module A uses
module B

module

A
B

key
<instance-name>:<type>

collaboration
connector

connector role

component port

Actor
component

attachment: Collaboration A

Actor 1:

Role X

Actor 2:

Role Y

Actor 3:

Role Z

Collaboration A

Role X
Role Y

Role Z

Behavior 1

Behavior 2

Interaction 1

Interaction 2

ke
y

module A uses
module B

module

A
B

Fig. 3. Types of collaborations, roles, behaviors, and interactions are represented as modules.

Capabilities, which define the requirements to play a role, participate in an interac-
tion, or execute a behavior, translate to software interfaces of role modules, interaction
modules, and behavior modules. More specifically, each capability defines a pair of in-
terfaces (Fig. 4): a provider interface and a consumer interface. A module that requires
(or consumes) a capability realizes the consumer interface and uses the provider inter-
face. A module that provides a capability realizes the provider interface and uses the
consumer interface. Capabilities allow to group, structure, and reuse the interfaces of
roles, interactions, and behaviors.

Usage. The Collaboration View is used to describe the collaborations in a system in
terms of implementation units. The view promotes reuse, modularity, and modifiabil-
ity, by decomposing collaborations into reusable modules. Architects can use this view
to identify responsibilities of modules and to express and reason about commonalities
and variations among modules.

Example. With the Collaboration View, we can model the Vmi Collaboration and
Cmi Collaboration as reusable modules (Fig. 5). By modularizing these modules, we
can also reuse submodules, such as the Warehouse Role and Transporter Role, and sev-
eral interactions. In addition, the encapsulation of roles, behaviors, and interactions as
separate modules allows improves the modifiability of a collaboration. We can, for ex-
ample, alter the implementation of the Inventory Reporting Behavior without affecting
the implementation of the Inventory Reporting Interaction.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 R. Haesevoets et al.

key
<instance-name>:<type>

attachment

Actor
component

component port

organization
connector

connector role

LocalFoodsNetwork : Vmi Organization

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Organization

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Conversation Transport Conversation

Call-Off Conversation Consumption Reporting
Conversation

...

Cmi Organization

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Conversation Transport Conversation

Call-Off Conversation

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Vmi Vendor Warehouse TransporterVmi Retailer

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Seller

Consumption Reporting
Conversation

Call-Off
Conversation

Transport
Conversation

Consumer

Client

Inventory Reporting
Behavior

Inventory

Inventory Reporting
Conversation

Client

Cmi Vendor Warehouse TransporterCmi Retailer

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Conversation

Transport
Conversation

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Conversation

Vmi Organization

Cmi Organization

......

......

......

......

«Conversation Connector»
Conversation 2

«Role Component»
Role X

«Organization Connector»
Organization A

«Conversation Connector»
Conversation 1

«Role Component »
Role Y

«Role Component»
Role Z

«Role» «Role» «Role»

A

A B C D

B C D

«Role Component»
Role Y

«Behavior Component»
Behavior 2

«Behavior Component»
Behavior 1

B C

key

component port
attached to
connector role

conversation
connector

role
component

behavior
component

Role YRole X Role Z

A

Conversation 1

Behavior 1

Behavior 2
DC

Conversation 2

B

key

component port
attached to
connector role

conversation
connector

role
component

behavior
component

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

Role Z:

D

D

Role X:

A

A

! between

1

0..* 0..*

2..* 0..*

1

0..*

0..*1

Organization

ConversationBehavior Role

Actor

executed in
context of

plays

executes participates in

Organization

Conversation

Actor

RoleBehavior

plays "

! between

Instances

1

0..* 0..*

2..* 0..*

1

0..*

10..*

" executes participates in "

0..*0..*

1 1..*

Organization
Type

Conversation
TypeBehavior Type Role Type

Types

0..* 0..*

0..*

0..*0..* ! between1..* 0..*

0..*

Actor Capability Role Type! requiresprovides # 0..* 0..*

Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Fig. 4. Capabilities are used to organize, group, and reuse the interfaces of role modules, interaction mod-
ules and behavior modules.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Conversation
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Fig. 5. The Collaboration View allows to model the collaborations of the running example as reusable mod-
ules, such Vmi Collaboration and Cmi Collaboration (dots (“. . . ”) indicate the specification is incomplete).

5.2. Collaboration & Actor View
The Collaboration & Actor View is a Component & Connector View that models the
actors in a system and the concrete collaboration instances between them. In this view,
actors are represented as components, and collaborations as connectors (Fig. 6). Actors
have a set of ports (the runtime interfaces of a component), which correspond to a
set of provided capabilities. The roles of a collaboration are mapped to connector roles
(the runtime interfaces of a connector), which correspond to a required capability. The
‘plays’ relation of the Macodo model is represented as an attachment between the port
of an actor, and a role of a collaboration. Since an actor can only play roles for which
it provides the required capabilities, attachments are only valid if the port of the actor
provides the capabilities required by the collaboration role.

Usage. The Collaboration & Actor View is used to describe the runtime architecture
of a system in terms of actors and the collaborations between them. The view allows
to assign responsibilities to actors while making abstraction of collaboration details.
Architects can use this view to express and reason about runtime qualities of collabo-
rations in terms of roles and actors, and to describe and document how collaborations
and roles are created and destroyed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:17

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

! executes participates in !

0..*0..*

1 1..*

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Collaboration

InteractionRoleBehavior " between

1

0..* 0..*

2..* 0..*10..*

! executes participates in !

0..*0..*

Actor1 1..*

provides !

Capability

requires $

0..*

0..*

0..*

0..*

plays !

0..*

1

Collaboration A

Role X Role Y

Interaction 1

Role Z

Behavior 1

Interaction 2 Interaction 3

ke
y

module A uses
module B

module

A
B

key
<instance-name>:<type>

collaboration
connector

connector role

component port

Actor
component

attachment: Collaboration A

Actor 1:

Role X

Actor 2:

Role Y

Actor 3:

Role Z

Collaboration A

Role X
Role Y

Role Z

Behavior 1

Behavior 2

Interaction 1

Interaction 2

ke
y

module A uses
module B

module

A
B

Fig. 6. Actors are represented as components and the concrete collaborations between these actors as con-
nectors.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Conversation
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Fig. 7. The Collaboration & Actor View can be used to document the concrete collaborations in our running
example.

Example. Using the Collaboration & Actor View, we can model concrete collabora-
tions between actors, such as Local Foods Network, which is an instance of the Vmi
Collaboration (Fig. 7). Each supply company is represented as an actor. Acme Logis-
tics, for example, is a company playing the role of Transporter. Acme Logistics has a
port that is attached to the corresponding role of the Local Foods Network. We can also
use the Collaboration & Actor View to describe additional runtime qualities, by relat-
ing qualities or SLAs to specific actors and roles, such as defining a maximum delivery
time for the Transporter role. These SLAs can be attached to the required capabilities
of a role, making sure only actors that can deliver on time will play the role.

5.3. Role & Interaction View
The Role & Interaction View is a Component & Connector View that models the inter-
nal runtime architecture of a collaboration in detail. This view allows to document the
concrete role and interaction instances in a collaboration, the active behaviors of roles,
and how roles delegate the participation in interactions to behaviors. In the Role & In-
teraction View (Fig. 8), roles are represented as components5 (shown as vertical lanes),
interactions as connectors between roles (shown as horizontal lines), and behaviors as
sub-components of roles (shown as blocks within roles).

A behavior is always executed in the context of a specific role, giving the actor of the
role access to the interfaces of the behavior. This is modeled by placing the behavior
inside the role. For example, in Fig. 8, Role Y has two active behaviors (Behavior 1 and
Behavior 2). Interactions have a set of connector roles, representing the runtime inter-

5Every connector role of a collaboration connector in the Collaboration & Actor View is internally realized
by a role component in the Role & Interaction View.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 R. Haesevoets et al.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

C
al

l-O
ff

B
eh

av
io

r
«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Collaboration

InteractionRoleBehavior " between

1

0..* 0..*

2..* 0..*10..*

!
executes participates in !

0..*0..*

Actor1 1..*

provides !

Capability

requires $

0..*

0..*

0..*

0..*

plays !

0..*

1

Collaboration A

Role X Role Y

Interaction 1

Role Z

Behavior 1

Interaction 2 Interaction 3

ke
y

module A uses
module B

module

A
B

key
<instance-name>:<type>

collaboration
connector

connector role

component port

Actor
component

attachment: Collaboration A

Actor 1:

Role X

Actor 2:

Role Y

Actor 3:

Role Z

Collaboration A

Role X
Role Y

Role Z

Behavior 1

Behavior 2

Interaction 1

Interaction 2

ke
y

module A uses
module B

module

A
B

Fig. 8. Roles are represented as components, interactions as connectors between roles, and behaviors as
sub-components of roles.

faces of the interaction. Roles have a set of interaction ports, representing the runtime
interfaces to participate in interactions. When a role participates in an interaction,
there is an attachment between an interaction port of the role and a connector role of
the interaction. Connector roles that are attached to interaction ports are shown as
small squares on the interactions. For example, in Fig. 8, interaction port A of Role X
is attached to connector role A of Interaction 1, indicating that Role X participates in
Interaction 1.

For every interaction in which a role participates, the corresponding interaction port
can be delegated to the actor of the role (in which case the actor has direct access to the
interaction), or to a behavior (in which case the behavior mediates the participation).
To indicate that an interaction port is delegated to the actor, the interaction port is
placed directly in the role. For example, interaction ports A, B, and D are delegated to
the actor of the corresponding roles. To indicate that an interaction port is delegated
to a behavior, the interaction port is placed in the behavior. For example, interaction
port C is delegated to Behavior 2.

Usage. The Role & Interaction View is used to describe the runtime architecture of
a collaboration in detail. The view allows to focus on the internal architecture and
runtime qualities of a collaboration without considering how it is used in a specific
system. The Role & Interaction View can also be used to document collaboration and
role dynamics, and the internal specification of behaviors and interactions. Collabora-
tion and role dynamics are documented in terms of possible interactions between roles,
role life-cycles, and possible role states. Behaviors and interactions can be documented
using notations such as BPMN or UML sequence diagrams. Complex behaviors and
interactions can also be documented in separate views.

Example. With the Role & Interaction Viewwe can model the internal runtime ar-
chitecture of the Vmi Collaboration and Cmi Collaboration (Fig. 9). In the Vmi Col-
laboration, for example, we can document the possible interactions between the roles.
The Inventory Reporting Interaction, for example, takes place between the Vmi Ven-
dor, Warehouse, and Vmi Retailer role. In the Cmi Collaboration, the same interaction
takes place between the between the Warehouse and Cmi Retailer role.

We can also document the possible behaviors of roles. The Warehouse role, for exam-
ple, has two behaviors. The Inventory Reporting Behavior collects inventory levels and
passes it to the inventory reporting interaction. By separating the behavior from the
interaction role, we separate two concerns: collection of inventory data, and distribu-
tion of inventory data. The Call-Off Fulfillment Behavior encapsulates the functional-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:19

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Collaboration

InteractionRoleBehavior " between

1

0..* 0..*

2..* 0..*10..*

!
executes participates in !

0..*0..*

Actor1 1..*

provides !

Capability

requires $

0..*

0..*

0..*

0..*

plays !

0..*

1

Collaboration A

Role X Role Y

Interaction 1

Role Z

Behavior 1

Interaction 2 Interaction 3

ke
y

module A uses
module B

module

A
B

key
<instance-name>:<type>

collaboration
connector

connector role

component port

Actor
component

attachment: Collaboration A

Actor 1:

Role X

Actor 2:

Role Y

Actor 3:

Role Z

Collaboration A

Role X
Role Y

Role Z

Behavior 1

Behavior 2

Interaction 1

Interaction 2

ke
y

module A uses
module B

module

A
B

Fig. 9. The runtime architecture of the Vmi Collaboration and Cmi Collaboration connector using the al-
ternative notation.

ity to initiate a Transport Interaction to fulfill the call-off. Other behaviors encapsulate
similar functionalities. The Call-Off Behavior of Retailer, for example, initiates a Con-
sumption Reporting Interaction after a successful call-off.

The Role & Interaction View can also be used to model additional runtime qualities,
such as throughput of interactions or robustness of behaviors. We can, for example,
specify that the Call-Off Fulfillment Behavior should always reply to a Call-Off Inter-
action, even if the actor of the Warehouse role is not reacting.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 R. Haesevoets et al.

Table II. Mapping of Macodo architectural elements to Web service tech-
nology.

Architectural Elements Web Service Technology

Collaboration Module XML specification
Role Module XML specification
Behavior Module XML and BPEL specification
Interaction Module XML and BPEL specification
Capability partnerLinkType (WSDL)

Actor Component External system
Collaboration Connector Persistent data structure
Role Component Persistent data structure
Behavior Component BPEL process
Interaction Connector BPEL process
Connector Role / Component Port partnerLink (BPEL)

6. PROOF OF CONCEPT MIDDLEWARE FOR MACODO
The Macodo abstractions and architectural views allow to model and document collab-
orative applications. Without proper support at downstream design and implementa-
tion level, however, the abstractions and views quickly become useless. In this section,
we present a proof of concept middleware for Macodo. This middleware provides a
platform to design and implement collaborative applications that are modeled in the
Macodo architectural views. The platform supports the Macodo abstractions as pro-
gramming abstractions by mapping them to existing Web service technology. A proto-
type implementation of the middleware shows that Macodo can be integrated in the
current technology stack without the need for new standards. We start by mapping
the Macodo architectural elements to existing Web service technology. This provides
the foundation of the Macodo middleware. Next, we discuss how to implement, deploy
and use collaborations with the Macodo middleware. Finally, we give a brief overview
of the middleware architecture and prototype implementation.

6.1. Middleware Mapping
Table II provides an overview of the mapping of the Macodo architectural elements to
Web service technology. In this mapping, modules translate to XML and BPEL specifi-
cations. Capabilities are mapped to partnerLinkTypes, specified in WSDL, to define a
set of ‘bi-directional’ Web services. Providing and requiring a capability thus translates
to the ability to expose and use a set of Web services. At runtime, interaction connec-
tors and behavior components are executed as BPEL processes. BPEL provides good
support to model individual behaviors and interactions. Connector roles of interaction
connectors and component ports of behavior components become partnerLinks of these
BPEL processes. Actor components, collaboration connectors, and role components do
not have a direct mapping to Web service technology. Collaboration connectors and role
components map to persistent data structures maintained by the Macodo middleware.
Actor components are not part of the middleware and become external systems.

An graphical representation of the middleware mapping is shown in Fig. 10. Actor
components communicate with interactions and behaviors using SOAP over HTTP, a
standard way for Web services to communicate. The middleware uses the persistent
data structures, containing the current collaborations and roles, to mediate the infor-
mation flow between actors, interactions, and behaviors accordingly. Actor components
can also use a management service, exposed as a Web service by the Macodo middle-
ware.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:21

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Fig. 10. An informal overview of the mapping of Macodo abstractions to Web service technology.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

C
al

l-O
ff

B
eh

av
io

r

«Actor Port»
actorPort

«Interaction Port»
callOffPort

«Interaction Port»
consumptionPort

call-off order

Call-Off Execution

+

call-off
order

Consumption
Reporting

+

report
request

consump. reportdelivery
info

delivery
report

delivery
report

delivery
info

consump.
report

key

partner

process

collapsed
sub-process+

initial receive
activity

end
activity

control flow

message flow

Fig. 11. The BPEL definition of the Call-Off Behavior.

6.2. Implementing Collaborations
The Collaboration View (Sect. 5.1) allows to model collaborative applications in terms
of implementation units or modules. With the Macodo middleware, each of these mod-
ules, can be implemented using XML, WSDL, and WS-BPEL. Interactions and behav-
iors are specified by an XML file and an accompanying BPEL definition. Roles and col-
laborations are fully specified by an XML file. Capabilities are specified using WSDL.

Example. The Call-Off Behavior can be defined using an XML file and a BPEL def-
inition. The BPEL definition (Fig. 11) provides the specification of the actual behavior
in the form of a workflow. Each activity is a step that should be performed when exe-
cuting the behavior. The XML file defines an actor port (the component port to interact

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 R. Haesevoets et al.

with the actor of the role) and the interaction ports of the behavior. Each port has a
required or provided capability and maps to a corresponding partnerLink of the BPEL
definition:

1 <behaviorModule name=” CallOffBehavior ”
2 behaviorSpeci f i cat ion=” InvRepBehavior . bpel ”>
3 <actorPort requiredCapabil ity=” CallOffCapabil i ty ”
4 partnerLink=” ActorPort ” />
5 <interact ionPort name=” ca l lOf fPort ”
6 providedCapability=” Cal lOffCal lCapabi l i ty ”
7 partnerLink=” ca l lOf fPort ” />
8 <interact ionPort name=” consumptionPort ”
9 providedCapability=

10 ” ConsumptionReportingConsumerCapability ”
11 partnerLink=” consumptionPort ” />
12 < / behaviorModule>

The Vmi Retailer Role can be defined using only an XML file. This file defines the
interaction ports, the possible behaviors, and which interaction ports are delegated to
behaviors:

1 <roleModule name=” VmiRetailer ”>
2 <interact ionPort name=” inventoryPort ”
3 providedCapability=” InventoryCapability ” />
4 <interact ionPort name=” ca l lOf fPort ”
5 providedCapability=” StockCapability ” />
6 <interact ionPort name=” consumptionPort ”
7 providedCapability=” ShipperCapability ” />
8

9 <behavior name=” CallOffBehavior ”
10 behaviorModule=” CallOffBehavior ” />
11

12 <interfaceDelegation behavior=” CallOffBehavior ”
13 behaviorInteractionPort=” ca l lOf fPort ”
14 ro leInteract ionPort=” ca l lOf fPort ” />
15 <interfaceDelegation behavior=” CallOffBehavior ”
16 behaviorInteractionPort=” consumptionPort ”
17 ro leInteract ionPort=” consumptionPort ” />
18 . . .
19 < / roleModule>

6.3. Deploying and Using Collaborations
Once specified, collaboration modules can be loaded in the Macodo middleware. The
management service of the middleware (see Fig. 10) can then be used to register actors
and to manage the life-cycle of concrete collaboration and role instances. After a role
has been assigned to an actor, the actor can ‘play’ the role. To play a role, an actor
uses interactions and behaviors. The information flow between the actors, interactions,
and behaviors is mediated by the middleware, which routes messages to the correct
interactions, behaviors, and actors (Fig. 12). Messages between the middleware and
actors contain additional Macodo data, which uniquely identifies the role to which a
message belongs.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:23ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting

Conversation

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

organization
connector

connector role

Local Foods Network : Vmi Organization

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Organization

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Conversation Transport Conversation

Call-Off Conversation Consumption Reporting
Conversation

...

Cmi Organization

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Conversation Transport Conversation

Call-Off Conversation

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Vmi Vendor Warehouse TransporterVmi Retailer

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Seller

Consumption Reporting
Conversation

Call-Off
Conversation

Transport
Conversation

Consumer

Client

Inventory Reporting
Behavior

Inventory

Inventory Reporting
Conversation

Client

Cmi Vendor Warehouse TransporterCmi Retailer

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Conversation

Transport
Conversation

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Conversation

Vmi Organization

Cmi Organization

......

......

......

......

«Conversation Connector»
Conversation 2

«Role Component»
Role X

«Organization Connector»
Organization A

«Conversation Connector»
Conversation 1

«Role Component »
Role Y

«Role Component»
Role Z

«Role» «Role» «Role»

A

A B C D

B C D

«Role Component»
Role Y

«Behavior Component»
Behavior 2

«Behavior Component»
Behavior 1

B C

key

component port
attached to
connector role

conversation
connector

role
component

behavior
component

Role YRole X Role Z

A

Conversation 1

Behavior 1

Behavior 2
DC

Conversation 2

B

key

component port
attached to
connector role

conversation
connector

role
component

behavior
component

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Organization

Conversation

Actor

RoleBehavior

plays !

" between

Instances

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

Organization
Type

Conversation
TypeBehavior Type Role Type

Types

0..* 0..*

0..*

0..*0..* " between1..* 0..*

Actor Capability Role Type" requiresprovides # 0..* 0..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Conversation 2

A

Conversation 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Organization

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Conversation

Call-Off
Conversation

Consumer

CarrierShipper
Transport

Conversation

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Conversation

Cmi Organization

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Conversation

Transport
Conversation

key

role
component

behavior
component

conversation
port attached to
connector role

conversation
connector

key

role
component

behavior
component

conversation
port attached to
connector role

conversation
connector

Macodo Middleware

Management
Service

BehaviorBehaviorConversationBehaviorBehaviorBehavior
Conversation
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Organizations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Fig. 12. An example of an actor executing the Call-Off Behavior. The middleware creates the behavior and
mediates the messages.

6.4. Middleware Realization
A prototype implementation of the Macodo middleware was built using Java EE6 and
Open ESB7. An overview of the middleware architecture is given in Fig. 13. Inter-
actions and behaviors are hosted in interaction and behavior containers. These con-
tainers, which are deployed on a separate BPEL engine, have three main responsibili-
ties: configuring new interactions and behaviors, managing their life-cycle, and adding
Macodo data to all outgoing messages8. To realize these responsibilities, the interac-
tion and behavior containers use collaboration mediator components, which are re-
sponsible for mediating the interactions between actors, interactions, and behaviors,
according to the current collaboration structure.

The collaboration manager components are responsible for managing collaborations
and roles. They provide a management service which actors can use to register them-
selves, and to manage the life-cycle of roles and collaborations. To serve multiple
clients in parallel, the collaboration manager and collaboration mediator components
run as stateless session beans9 on a Java EE server. Actors and middleware compo-
nents interact using normal Web services. This allows to distribute and deploy actors
and middleware components on different platforms. The collaboration manager and
collaboration mediator components use as set of shared data repositories to store data,
communicate, and synchronize their actions. This simplifies synchronization, and al-
lows to replicate and deploy middleware services on multiple servers to improve per-
formance and increase availability.

6Java EE (Enterprise Edition) provides a platform for developing and running enterprise software. Java EE
includes support for distributed and multi-tier architectures, but also Web services.
7Open ESB is a Java-based open source enterprise service bus. Open ESB provides support for enterprise
application integration and building service-oriented architectures.
8The prototype implementation relies on the instrumentation of the BPEL definitions of interactions and
behaviors. Instrumentation means that certain activities, such as service calls and variable assignments are
automatically added or weaved into an existing BPEL definition. Instead of explicitly hosting interactions
and behaviors in a container, container logic is instrumented in the original BPEL definitions. The resulting
instrumented BPEL definitions are directly deployed on a BPEL engine.
9Session beans are objects inside a J2EE server that perform work for clients of the server. Session beans
can be exposed as a Web service to clients. A session bean is similar to an interactive session and can only
have one client at a time. To serve multiple clients in parallel, session beans can be replicated. In contrast
to a stateful session bean, a stateless session bean does not maintain a conversational state for a particular
client.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 R. Haesevoets et al.

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Conversation
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

Fig. 13. A high-level overview of the Macodo middleware architecture.

7. EVALUATION: A CONTROLLED EXPERIMENT
We have presented a model, a set of architectural views, and a proof of concept middle-
ware for Macodo. An important question that remains is whether Macodo does improve
the development of collaborative applications. To answer this question, we performed
an empirical study of Macodo. The goal of the empirical study is to address the follow-
ing research questions:

Do the architectural modeling abstractions provided by Macodo: (1) reduce
fault density, (2) reduce design complexity, (3) increase the level of reuse,
and (4) increase productivity, when designing centrally managed service col-
laborations?

As reference approach, we use standard SOA design principles and technologies.
This reference approach consists of WSDL for Web service description, SOAP for Web
service messaging and interaction, UDDI for Web service registry and discovery, WS-
BPEL for describing and executing business processes, and BPMN for conceptual mod-
eling of business processes. There are several arguments to motivate this selection as
a fair point of reference:

— Each of the selected principles and technologies is considered the de facto standard
in their domain [Alonso et al. 2004; Erl 2005; Papazoglou 2008].

— The reference approach not only represents the de facto standard, it also represents
the current way of thinking in these domains. Most state of the art techniques build
upon these technologies and paradigms [Ma and Leymann 2009; Eberle et al. 2009;
Tran et al. 2012].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:25

Sweden
(37 students)

Ukraine
(30 students)

Group D
(19 students)

Group A
(18 students)

Group B
(19 students)

Group C
(11 students)

Experiment Session I
(Reference Approach)

Experiment Session II
(Macodo)

Assignment 1

Assignment 2 Assignment 1

Assignment 2

Assignment 1

Assignment 2 Assignment 1

Assignment 2

Sweden
(28 students)

Ukraine
(25 students)

Group D
(11 students)

Group A
(16 students)

Group B
(12 students)

Group C
(14 students)

Experiment Session I
(Reference Approach)

Experiment Session II
(Macodo)

Assignment 1

Assignment 2 Assignment 1

Assignment 2

Assignment 1

Assignment 2 Assignment 1

Assignment 2

Week:

Home
Assignment

(Reference)

Practical
Assignment

(BPEL)

Home
Assignment

(Macodo)

Graded Test +
Experiment Session II

(Reference)

1 2 3 4 5 6 7 8 9

Graded Test +
Experiment Session I

(Reference)

Part II: advanced techniques
for Web services

Part I: Web services
state of practice

evaluationhome studylectureske
y

Assignment A

Assignment B

Experiment Session I
(Reference)

Experiment Session II
(Macodo)

30 subjects
(16 Sweden + 14 Ukraine)

23 subjects
(12 Sweden + 11 Ukraine)

30 subjects
(16 Sweden + 14 Ukraine)

23 subjects
(12 Sweden + 11 Ukraine)

Week:

Home
Assignment

(Reference)

Practical
Assignment

(BPEL)

Home
Assignment

(Macodo)

Graded Test +
Experiment Session II

(Reference)

1 2 3 4 5 6 7 8 9

Part II: advanced techniques
for Web services

Part I: Web services
state of practice

Feedback +
Model Solution

Test +
Experiment
Session I
(Reference)

1

2

3

4

5

6

7

8

9

Home assignment (Macodo)

Feedback & Model solution

Test II + Experiment Session II (Macodo)P
ar

t I
I:

ad
va

nc
ed

te

ch
ni

qu
es

fo
r W

eb
 s

er
vi

ce
s

Test I + Experiment Session I (Reference)

Practical BPEL assignment + Feedback & Model solution

Home assignment (Reference)

week

key

lectures

home study

evaluation

1

2

3

4

5

6

7

8

9 Test II + Experiment Session II (Macodo)

P
ar

t I
: W

eb
 s

er
vi

ce
s

st
at

e
of

 p
ra

ct
ic

e
P

ar
t I

I:
ad

va
nc

ed

te
ch

ni
qu

es
fo

r W
eb

 s
er

vi
ce

s

Test I + Experiment Session I (Reference)

week

P
ar

t I
: W

eb
 s

er
vi

ce
s,

B

P
M

, a
nd

 S
O

A

Fig. 14. Overview of the course in which the experiment takes place.

— The selected technologies and principles provide a stable basis for comparison that
can be used by other researchers in their evaluation.

— Many evaluations, including the one presented in this section, are realized as ‘class-
room’ experiments, where students have to learn the techniques used in the experi-
ments. The reference approach allows students to learn relevant current techniques.

An alternative would be to select a more recent or novel approach as reference. How-
ever, this would make it hard to assess whether this approach is a good representative
of the domain and state of the art in general. In addition, the available material and
tools for such approaches tend to be too limited to perform a complete evaluation.

The empirical study is based on an extensive pilot study10 of Macodo. The objects
of the empirical study are Macodo and the reference approach. The subjects are 67
final year students of a Master in Software Engineering program from a university in
Sweden and two universities in Ukraine. The study takes place as part of a nine-week
master course on Web services. The course is split into two parts of five and four weeks
(Fig. 14). In part I, students are educated on BPM, Web services, and SOA, which
fully covers the reference approach. In part II, students are educated on advanced
techniques for Web services, which includes Macodo.

The experiment itself is split into two sessions. In each session (of three hours), sub-
jects receive an assignment to create (using pen and paper) a design (architecture +
detailed design) of a system that supports a set of service collaborations, using a spe-
cific approach. The experiment is conducted as a block subject-object quasi-experiment.
Blocked subject-object means that each subject receives both treatments (the reference
approach and Macodo). This allows paired comparison of samples. The experiment is
a quasi-experiment [Campbell and Stanley 1963] because it is performed on a single
group and there is no randomization of the order in which the treatments are applied
to the subjects.

10The pilot study was performed with 11 computer science master students, as part of an advanced course
on software architectures for distributed systems. Students had to create and document two software ar-
chitectures, one using the reference approach and standard architectural views, and another using the Ma-
codo architectural views.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 R. Haesevoets et al.

The rest of this section discusses the assignments, hypotheses, sample response,
measures, analysis, discussion, threats to validity, and conclusions. All the material of
the complete study can be found in [Haesevoets and Weyns 2012].

7.1. Assignments
In each experiment session, subjects receive an assignment to complete within three
hours. An assignment is a small project in which subjects are asked to create a design
for a system that supports a number of centrally managed collaborations between a set
of external entities. Communication between the entities and the system is done using
predefined Web services. The system can be seen as a platform that realizes service
orchestrations according to a set of predefined collaboration types. Collaborations can
be dynamically instantiated between different entities.

We use two different assignments (A and B) with equal complexity and required
functionality. Having multiple assignments, allows to have subjects solve a different
assignment in multiple experiment sessions. Assignment A is based on an eHealth
case in which different health care providers have to collaborate on different types of
hospital floors. An extract of assignment A can be found in Appendix A. Assignment
B involves a set of automated production lines in a manufacturing company, where
different resources have to collaborate to manufacture a specific product type. Each
type of hospital floor, and each type of production line, is a collaboration type to be
supported.

Both assignments have a requirements document, which has the following elements:
(1) a short problem description; (2) a set of functional scenarios to be supported, in
terms of interactions between the external Web services; and (3) a set of predefined
Web services (parnterLinkTypes) that allow the external entities to interact with the
system and vice versa. The assignments ask for two deliverables: (1) an architecture of
the system in terms of modules/processes, and (2) a detailed design of each module/pro-
cess using a simplified version of a standard process notation11. All deliverables have to
be written down using pen and paper on seven provided answering sheets. Section 7.4
discusses a sample response to the assignments.

7.2. Hypotheses Formulation
We formulate four null hypotheses (H0) and four alternative hypotheses (Ha):

— H01: There is no difference in fault density between a design created using the refe-
rence approach and a design created using Macodo.

H01 : µfault.densityRef = µfault.densityMac (1)

Ha1 : µfault.densityRef > µfault.densityMac (2)

— H02: There is no difference in design complexity between a design created using the
reference approach and a design created using Macodo.

H02 : µcomplexityRef = µcomplexityMac (3)

Ha2 : µcomplexityRef > µcomplexityMac (4)

11We use BPMN, but allow subjects to make abstraction of specific correlation mechanisms and trivial
‘assign’ activities can be omitted. To ease the notation on paper, a process is divided in swimlanes. Each
swimlane represents an external partner of the process. Placing a send or receive activity in such as lane,
means the activity sends to or receives from the corresponding partner.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:27

— H03: There is no difference in the level of reuse between a design created using the
reference approach and a design created using Macodo.

H03 : µreuseRef = µreuseMac (5)

Ha3 : µreuseRef < µreuseMac (6)
— H04: There is no difference in productivity when between the reference approach or

using Macodo.
H04 : µproductivityRef = µproductivityMac (7)

Ha4 : µproductivityRef < µproductivityMac (8)

7.3. Dependent Variables
The experiment measures four dependent variables to test our hypotheses.

Fault Density. We measure fault density as the amount of change that is required to
make the design work [Fenton and Pfleeger 1998]. Size is measured as the amount of
functionality (function points) that is supported by the design.

fault density =
changes

supported function points
(9)

Design Complexity. We use two representative measures for complexity: (1) activ-
ity complexity (AC) per function point, and (2) average control flow complexity (CFC)
per module. The activity complexity (AC) of a module or process is defined as the
number of activities in the module or process [Cardoso 2005]. Control flow complex-
ity (CFC) [Cardoso 2006] also takes splits, joins, loops, ending points, and starting
points into account.

AC per function point =

�
m � modules AC(m)

supported function points
(10)

CFC per module =

�
m � modules CFC(m)

modules
(11)

Level of Reuse. We use a measure proposed by [Frakes and Terry 1996]. A module is
considered reused only if it is used by more than one other procedure or module [Frakes
and Terry 1996].

level of reuse =

�
m � reused modules AC(m)�

m � modules AC(m)
(12)

Productivity. Productivity is defined as the amount of functionality that developers
can design per time unit. We measure productivity as follows [Fenton and Pfleeger
1998]:

productivity =
supported function points

time spend on design
(13)

7.4. Sample Response
Before presenting the actual analysis of the results, we briefly discuss a typical, repre-
sentative response to the assignments. Appendix B shows the (uncorrected) architec-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 R. Haesevoets et al.

ture and detailed design (using the simplified process notation) of subject x for assign-
ment A using the reference approach (Fig. 17 and Fig. 18) and for assignment B using
Macodo (Fig. 19 and Fig. 20).

When using the reference approach, the subject modularizes the system into two
processes: MainProcess and GeneralPartOfReportInteractionProcess (Fig. 17). These
processes can interact with each other, a set of external partners (Nurse, Head Nurse,
Doctor on Call, and Doctor), and a service repository (Repository). Although the as-
signment requires specific types of collaborations to be supported, the decomposition
of the processes is practically random and lacks any underlying collaboration struc-
ture. MainProcess handles most of the functionality and GeneralPartOfReportInterac-
tionProcess only handles a small non-reusable part. None of the two processes can be
considered reused. As a result, the detailed design of the MainProcess becomes com-
plex (given the relatively simple assignment) and prone to faults.

When using Macodo, the subject modularizes the system into three types of collab-
orations: Basic Line, Normal Line, and Priority Line (Fig. 19). These collaborations
have a clear mapping to the collaborations required by the assignment. The collabo-
rations are further decomposed into interactions (Product Interaction, Direct Product
Interaction, and Dispatch Interaction) and behaviors (Behavior 1). Several of these in-
teractions and behaviors are reused across the different types of collaborations. Due
to the high level of modularity, the detailed design of each interaction and behavior
(Fig. 20), becomes a lot less complex, which reduces the chance for faults.

7.5. Analysis
In total, 52 subjects provided usable data for paired comparison12 of fault density,
complexity, and reuse, and 42 subjects provided usable data for paired comparison
of productivity. Table III and Fig. 15 describe the measurements for all dependent
variables, and the paired difference between the treatments. The paired difference Zi

is defined as:

Zi = Mi −Ri for i = 1, ..., n (14)

Mi and Ri are the measurements of subject i for respectively Macodo and the reference
approach; n is the number of subjects that produced usable data for both treatments.
Table III also provides the number of subjects that performed better, equal, or worse
for Macodo

To select the proper statistical test for our hypotheses, we compared the distribu-
tion of Zi for each dependent variable with the standard normal distribution, using
the Anderson-Darling test [Gibbons and Wolfe 2003]. With a significance level (α) of
0.05, we can accept Zi to be normally distributed only for the dependent variables ‘AC
per function point’, and ‘productivity’. Based on this assumption, we use the paired
t-test [Wohlin et al. 2000] to test our hypotheses for ‘AC per function point’, and ‘pro-
ductivity’, and the Wilcoxon signed-rank test [Hollander and Wolfe 1999] to test our
hypotheses for the other dependent variables. This results in the following p-values for
our hypotheses:

12Some subjects provided incomplete or inconsistent data or did not attent both experiment sessions, making
their data unusable for paired comparison.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:29

!

!

!

!

!

!

treatment

fa
ul

t d
en

si
ty

(#
 c

ha
ng

es
 p

er
 s

up
po

rte
d

fu
nc

tio
n

po
in

t)

Reference Macodo

0.0

0.5

1.0

1.5

2.0

!
!
!

!
!

paired diff.
(M−R)

−2

−1

0

1

2

(a) Fault density.

outlier

upper quartile + 1.5 x IQR

upper quartile

median

lower quartile

lower quartile - 1.5 x IQR

mean

upper quartile = cuts off highest 25% of data
median = cuts data set in half
lower quartile = cuts off lowest 25% of data
IQR = upper quartile - lower quartile

outlier

Q3 + 1.5 x IQR

Q3

median

Q1

Q1 - 1.5 x IQR

mean

Q1
median

Q3
IQR

= cuts off lowest 25% of data
= cuts data set in half
= cuts off highest 25% of data
= Q3 - Q1

(b) Key.

!

!

!

treatment

ac
tiv

ity
 c

om
pl

ex
ity

 (A
C

)
pe

r s
up

po
rte

d
fu

nc
tio

n
po

in
t

Reference Macodo

0.5

1.0

1.5

2.0

2.5

3.0

!

!

paired diff.
(M−R)

−2

−1

0

1

2

(c) Activity complexity (AC) per function point.

!

!

!

!

!

!

!

!

!!!!

treatment

co
nt

ro
l f

lo
w

 c
om

pl
ex

ity
 (C

FC
)

pe
r m

od
ul

e

Reference Macodo

0

100

200

300

400

!

!

!

!

!
!
!
!

paired diff.
(M−R)

−400

−200

0

200

400

(d) Average control flow complexity (CFC) per mod-
ule.

!

!

treatment

le
ve

l o
f r

eu
se

(p
er

ce
nt

ag
e)

Reference Macodo

0

20

40

60

80

100

paired diff.
(M−R)

−100

−50

0

50

100

(e) Level of reuse.
treatment

pr
od

uc
tiv

ity
(#

 s
up

po
rte

d
fu

nc
tio

n
po

in
ts

 p
er

 m
in

ut
e)

Reference Macodo

0.0

0.2

0.4

0.6

0.8

1.0

paired diff.
(M−R)

−1.0

−0.5

0.0

0.5

1.0

(f) Productivity.

Fig. 15. Box plots for all measurements.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 R. Haesevoets et al.

Table III. Measurements for all dependent variables. The table also provides the number
of subjects that performed better, equal, or worse for Macodo.

Fault density (number of changes per supported function point)
mean (µ) median st.dev better equal worse

Reference 0.451 0.306 0.459
42 4 7Macodo 0.157 0.082 0.237

Paired Diff (Mi −Ri) -0.293 -0.176 0.369

Activity complexity (AC) per function point
mean (µ) median st.dev better equal worse

Reference 1.120 1.070 0.372
51 1 1Macodo 0.588 0.508 0.153

Paired Diff (Mi −Ri) -0.531 -0.465 0.353

Average control flow complexity (CFC) per module
mean (µ) median st.dev better equal worse

Reference 83.300 56.000 79.600
51 1 1Macodo 7.690 8.000 0.878

Paired Diff (Mi −Ri) -75.600 -48.000 79.600

Level of reuse (percentage)
mean (µ) median st.dev better equal worse

Reference 1.84 0.00 9.77
51 2 0Macodo 68.90 87.10 27.20

Paired Diff (Mi −Ri) 67.00 87.10 27.60

Productivity (number of supported function points per time unit)
mean (µ) median st.dev better equal worse

Reference 0.289 0.300 0.134
39 0 4Macodo 0.542 0.530 0.229

Paired Diff (Mi −Ri) 0.253 0.236 0.184

p-value statistical test
Fault density 2.80× 10−08 Wilcoxon signed-rank test

AC per function point 2.04× 10−15 paired-t test
CFC per module 1.76× 10−10 Wilcoxon signed-rank test

Level of reuse 1.53× 10−9 Wilcoxon signed-rank test
Productivity 1.16× 10−11 paired-t test

With a significance (α) of 0.05, every null hypothesis is rejected.

7.6. Discussion
The descriptive analysis shows that there is a clear improvement for each dependent
variable between experiment session I, in which subjects used the reference approach,
and experiment session II, in which subjects used Macodo. This is confirmed by the
statistical tests, which reject all four null hypotheses with a significance level (α) of
0.05.

There are several explanations for these improvements. Macodo allows to better
modularize design, as illustrated in the example response. On average, there are al-
most double the amount of modules per supported function point for Macodo (0.0812),
compared to the reference approach (0.0476). In combination with a better separation
of concerns, and the use of higher-level abstractions, this can reduce the design com-
plexity. This reduction in complexity, has a clear effect on the fault density. Modulariza-
tion not only effects complexity, it also improves reuse and productivity. In fact, for the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:31

reference approach, only two subjects have any form of reuse, while for Macodo only
two subjects have no reuse. Abstractions provided by the reference approach, such as
sub-process or composite service, are not well suited to model reusable collaborations.
Macodo, however, provides explicit collaboration concepts, and capabilities allow inter-
action and behaviors to be easily reused in different collaboration and role types.

We can also compare the effort required to learn and use Macodo to the effort re-
quired to learn and use the reference approach. Subjects had five weeks to learn the
reference approach and four weeks to learn Macodo from scratch. The results under-
pin that Macodo can be learned in a reasonable amount of time, leading to a clear
improvement in developer productivity.

7.7. Threats to Validity
The design of the experiment introduces some threats to validity [Cook and Stanley
1979; Wohlin et al. 2000]. We briefly discuss the main threats.

7.7.1. Threats to Construct Validity. Fault density and complexity are measured in terms
of individual modules. Wiring of different modules, for example, is not accounted for.
To avoid bias of subjects towards treatments, subjects never have any direct contact
with the main author of Macodo, and students are not aware of the experiment. In
addition, experiment sessions are executed by external instructors, and students are
graded (and aware of this) on both experiment sessions equally.

7.7.2. Threats to Internal Validity. For all subjects, the effect of the first treatment (re-
ference approach) is observed in experiment session I (week 5), and the effect of the
second treatment (Macodo) is observed in experiment session II (week 9). This intro-
duces three potential threats:

Increased Understanding. A subject’s understanding of certain concepts can in-
crease between the first and the second observation. In each experiment session, sub-
jects have to create an architectural design and a detailed design of individual mod-
ules/processes. This threat mainly affects the detailed design, for which subjects use
the same standard process notation in both experiment sessions. The architectural
design is less affected, since subjects use different techniques in each experiment ses-
sion. As a result, it is mainly fault density and possibly productivity that are affected
by this threat, since the level of reuse and the complexity per module are largely deter-
mined in the architectural design and the decomposition of the system into individual
processes. To reduce this threat, the students have five weeks to learn the process no-
tation before the first experiment session. They are asked to fully master this notation
and are aware that they will be graded on it. After the first experiment session, the
course considers the notation to be known and no longer spends any time on it, limiting
additional learning effects.

Maturing. Subjects can mature between the two observations, for example, by tak-
ing the experiment more serious. This threat is reduced by keeping the subjects un-
aware of the experiment (during the experiment), but aware that they will be graded
on each experiment session.

Learning the type of Questioning. Subjects can learn the type of questioning, making
them better prepared in the second experiment session. To reduce this threat, we use
a home assignment for each part of the course. This home assignment uses the same
questioning as the actual experiment assignments. The home assignment serves as a
‘dry run’ and allows subjects to get acquainted with the way the assignments work. By
using the same home assignment twice, subjects are less likely to get any additional
insights related to the assignments between the two observations.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 R. Haesevoets et al.

7.7.3. Threats to External Validity and Conclusion Validity. We use final year students of a
Master in Software Engineering program as subjects for our study. Although these
students do not represent expert software engineers, they are the next generation of
software professionals and are relatively close to the population of interest [Kitchen-
ham et al. 2002].

The experiment relies on a set of two assignments. To avoid a bias towards Macodo,
the assignments were reviewed by two independent course instructors.

In addition, we made a number of decisions out of practical necessity that should be
taken into account when generalizing our findings:
— using pen and paper to write down designs;
— allowing subjects to make certain assumptions about the systems and their context;
— using a simplified notation for process definitions;
— using predefined Web services to define external entities.

7.8. Conclusions of Study
Given the practical constraints, the experiment was designed as a quasi-experiment.
Taking potential threats to validity into account, the results give a strong indication
that, within the restrictions of the experiment, Macodo provides a significant improve-
ment over the reference approach in terms of fault density, design complexity, level of
reuse, and productivity.

8. CONCLUSIONS AND FUTURE WORK
In this article, we argued that software architecture should play a more prominent
role in the development of collaborative applications. This can help to better manage
design complexity by modularizing complex collaborations and separating concerns.
State of the art solutions do not provide proper support to model collaborations at ar-
chitectural level, or do not reify architectural abstractions at downstream design and
implementation level. To address these problems, we presented Macodo. Macodo sup-
ports the development of collaborative applications at architectural level by introduc-
ing a model, a set of views, and a proof of concept middleware. The Macodo model
introduces abstractions to decompose complex collaborations into reusable units. The
Macodo architectural views reify the Macodo modeling abstractions at architectural
level and allow to design, document, and reason about collaborations and their quali-
ties in terms of software elements. The Macodo middleware provides a proof of concept
platform to implement collaborations defined using the Macodo architectural views.
The evaluation of Macodo, an extensive empirical study, shows that Macodo can in-
deed improve the architectural support for developing collaborative applications. This
improvement is evident from a reduction in fault density and design complexity, and
an increase in reuse and productivity.

A number of challenges remain to be solved in order to provide complete
architecture-centric support for developing collaborative applications. A key challenge
is a better integration of Macodo with existing development techniques and methodolo-
gies. Other challenges relate to the current limitations of Macodo. Macodo focusses on
service collaborations that take place in a restricted collaboration environment, man-
aged by a trusted third-party. This excludes collaborative applications where there can
be no central control or with an explicit need to decentralization. The middleware in-
frastructure presented in this article is intended as a proof of concept for Macodo. An
essential step in providing complete architecture-centric support is to build a mature
middleware infrastructure that fully supports Macodo and its features. Finally, an im-
portant trade-off of Macodo is that developers need to learn Macodo, the abstractions,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:33

Platform

Repository

Nurse Head
Nurse

Doctor on
Call Doctor

key

repository

portable
computer

serviceservice
client

Fast Alarm

Alarm

Report
after alarm

Floor Type

Basic Normal Emergency

!

!

!

!

!

!

Direct Production
Dispatch

at any time

Production

Line Type

Basic Normal Priority

!

!

!

!

!

!

Platform

Repository

Planner Manager Producer Dispatcher
key

repository

unit

serviceservice
client

Report
at any time

Dispatch
after production

Fig. 16. (left) An overview of the platform. (right) 3 types of hospital floors and their properties.

the views, and the middleware. This can steepen the learning curve of Macodo. From
the empirical study, however, it is clear that the Macodo basics can be learned in a
reasonable amount of time.

APPENDIX
A. EXTRACT OF ASSIGNMENT
This appendix provides an extract of assignment A. Specifications of interactions, pre-
defined Web services, and the repository are not included, but can be found in [Hae-
sevoets and Weyns 2012].

An Orchestration Platform for an Automated Hospital Floor
A hospital has several floors. There are 4 healthcare providers on each floor that have
to collaborate: 1 Nurse, 1 Head Nurse, 1 Doctor on Call, and 1 Doctor. To streamline
the interactions on each hospital floor, the hospital has decided to give each health-
care provider a portable computer that can interact with an orchestration platform
(Fig. 16, left), using a set of predefined Web services. The orchestration platform has
to orchestrate the interactions between the different healthcare providers.
We consider 3 types of hospital floors (Fig. 16, right) and focus on a subset of interac-
tions to be supported.

— Basic: The basic hospital floor enables 2 interactions: the Alarm Interaction and
the Report Interaction. A Nurse can start an Alarm Interaction at any time, and a
Doctor on Call can start a Report Interaction at any time.

— Normal: The normal hospital enables the same interactions as the basic hospital
floor (Alarm Interaction and Report Interaction). But on this floor, the Doctor on
Call is not free to start a Report Interaction at any time. Instead, the platform
automatically starts a Report Interaction after each Alarm Interaction (if the Head
Nurse confirmed the alarm).

— Emergency: The emergency hospital floor is similar to the normal floor (Report
Interaction is automatically started), but instead of the Alarm Interaction, it uses
the Fast Alarm Interaction.

The platform has to support multiple hospital floors of each type at the same time.
For each hospital floor it supports, the platform has to interact with 1 Nurse, 1 Head
Nurse, 1 Doctor on Call, and 1 Doctor.

The responsibility of the platform can be summarized as follows: when a Nurse sends
an alarm to the platform, the platform starts and orchestrates an Alarm Interaction
or a Fast Alarm Interaction, depending on the type of hospital floor, with the other
healthcare providers of the hospital floor.

If the floor is Normal or Emergency, the platform automatically starts the Report
Interaction after the Alarm Interaction (if the Head Nurse confirmed) or Fast Alarm

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 R. Haesevoets et al.

Interaction. If the floor is Basic, the Doctor on Call can send a report to the platform
at any time, and the platform starts the Report Interaction.

To realize this orchestration, the platform has access to a repository, containing all
information on the hospital floors and the involved health care providers. This reposi-
tory can be used to get the other healthcare providers of a hospital floor and to find out
the type of hospital floor.

B. SAMPLE RESPONSE

Fig. 17. Subject x’s architecture for assignment A, using the reference approach.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:35

Fig. 18. Part of subject x’s detailed design (Main Process) for assignment B, using the reference approach.
Note that the subject uses the simplified notation. Each swimlane represents an external partner of the
process. Placing a send or receive activity in such as lane, means the activity sends to or receives from the
corresponding partner.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 R. Haesevoets et al.

Fig. 19. Subject x’s architecture for assignment B, using Macodo.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:37

Fig. 20. Subject x’s detailed design (using the simplified notation) for assignment B, using Macodo.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 R. Haesevoets et al.

References
M. Adams, A.H.M. Hofstede, D. Edmond, and W.M.P. van der Aalst. 2006. Worklets: A service-oriented

implementation of dynamic flexibility in workflows. On the Move to Meaningful Internet Systems CoopIS
DOA GADA and ODBASE 4275 (2006), 291–308.

Gustavo Alonso, Fabio Casati, Harumi Kuno, and V Machiraju. 2004. Web Services: Concepts, Architectures
and Applications. Springer. 354 pages.

L. Bass, P. Clements, and R. Kazman. 2003. Software Architecture in Practice, 2nd Edition. Addison Wesley
Publishing Comp.

Artur Caetano, Marielba Zacarias, Antonio Rito Silva, and Jose Tribolet. 2005. A Role-Based Framework
for Business Process Modeling. In Proceedings of the 38th Annual Hawaii International Conference on
System Sciences. IEEE.

Donald T. Campbell and Julian C. Stanley. 1963. Experimental and quasi-experimental designs for research.
Vol. 20. Rand McNally. 84 pages.

Jorge Cardoso. 2005. Control-flow Complexity Measurement of Processes and Weyukerś Properties. Engi-
neering and Technology 8, October (2005), 213–218.

Jorge Cardoso. 2006. Process control-flow complexity metric: An empirical validation. In International Con-
ference on Services Computing. IEEE Computer Society, 167–173.

M. C. Carley and L. Gasser. 1995. Computational Organization Theory. Routledge, Chapter Social Dil, 201–
253.

Cristiano Castelfranchi. 1998. Modelling social action for AI agents. Artificial Intelligence 103, 1-2 (1998),
157–182.

Anis Charfi and Mira Mezini. 2004. Aspect-oriented web service composition with AO4BPEL. Web Services
3250 (2004), 168–182.

Anis Charfi and Mira Mezini. 2007. AO4BPEL: An Aspect-oriented Extension to BPEL. World Wide Web
Internet And Web Information Systems 10, 3 (2007), 309–344.

Anis Charfi and H. Müller. 2010. Aspect-Oriented Business Process Modeling with AO4BPMN. ECMFA
(2010), 48–61.

I. Chebbi, S. Dustar, and S. Tata. 2006. The view-based approach to dynamic inter-organizational workflow
cooperation. Data & Knowledge Engineering 56, 2 (2006), 139–173.

D.K.W. Chiu, Kamalakar Karlapalem, Qing Li, and Eleanna Kafeza. 2002. Workflow View Based E-
Contracts in a Cross-Organizational E-Services Environment. Distributed and Parallel Databases 12,
2-3 (2002), 193–216.

Sunil Chopra and Peter Meindl. 2007. Supply Chain Management: Strategy, Planning and Operation. Pear-
son Prentice Hall. 567 pages.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. 2001. Web Services De-
scription Language (WSDL) 1.1. (2001). http://www.w3.org/TR/wsdl

M. Christopher. 2005. Logistics and supply chain management: creating value-added networks. Pearson
Education. 305 pages.

P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and J. Stafford. 2010.
Documenting Software Architectures: Views and Beyond (2 ed.). Addison-Wesley Professional. 592 pages.

T.D. Cook and J.C. Stanley. 1979. Quasi-experimentation: Design & analysis issues for field settings.
Houghton Mifflin Company.

C. Courbis and A. Finkelstein. 2004. Towards an aspect weaving BPEL engine. The Third AOSD Workshop
on Aspects Components and Patterns for Infrastructure Software ACP4IS Lancaster UK March (2004).

Manuela Cunha. 2009. Environments for Virtual Enterprise Integration. International Journal of Enterprise
Information Systems 5, 4 (2009), 71–87.

P. Davidsson. 2001. Categories of Artificial Societies. In Engineering Societies in the Agents World II (ESAW)
(Lecture Notes in Artificial Intelligence), Vol. 2203. Springer-Verlag, 1 – 9.

Yves Demazeau and A.C.R. Costa. 1996. Populations and organizations in open multi-agent systems.. In
Proceedings of the 1st National Symposium on Parallel and Distributed AI. 1–13.

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. 2007. Representing and Reasoning About Commit-
ments in Business Processes. Artificial Intelligence 22, 2 (2007), 1328–1333.

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. 2008. Amoeba: A methodology for modeling and
evolving cross-organizational business processes. ACM Transactions on Software Engineering and
Methodology (TOSEM) 19, 2 (2008), 1–45.

Frank Dignum. 1999. Autonomous agents with norms. Artificial Intelligence and Law 7, 1 (1999), 69–79.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:39

Frank Dignum, Virginia Dignum, Julian Padget, and Javier Vázquez-Salceda. 2009. Organizing web ser-
vices to develop dynamic, flexible, distributed systems. Proceedings of the 11th International Conference
on Information Integration and Web-based Applications & Services - iiWAS ’09 (2009), 225.

Virginia Dignum. 2009. Handbook of research on multi-agent systems: semantics and dynamics of organiza-
tional models. Information Science Reference, Hershey, New York, USA. 631 pages.

Virginia Dignum and Frank Dignum. 2011. A Logic for Agent Organizations. Logic Journal of IGPL 20, 1
(2011), 220–240 pp.

Virginia Dignum, Frank Dignum, and John Meyer. 2005. An agent-mediated approach to the support of
knowledge sharing in organizations. The Knowledge Engineering Review 19, 02 (2005), 147–174.

Hanna Eberle, Tobias Unger, and Frank Leymann. 2009. Process Fragments. In On the Move to Meaningful
Internet Systems OTM 2009 Part I (Lecture Notes in Computer Science), R Meersman, T Dillon, and
P Herrero (Eds.), Vol. 5870. Springer, 398–405.

Thomas Erl. 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall.
792 pages.

Marc Esteva and Juan-Antonio Rodrı́guez-Aguilar. 2001. On the Formal Specification of Electronic Institu-
tions. Agent mediated electronic commerce 1991 (2001), 126–147.

Norman E. Fenton and Shari L. Pfleeger. 1998. Software Metrics: A Rigorous and Practical Approach, Re-
vised. Course Technology.

J. Ferber and O. Gutknecht. 1998. A meta-model for the analysis and design of organizations in multi-agent
systems. In Proceedings International Conference on Multi Agent Systems. IEEE, 128–135.

Jacques Ferber, Tiberiu Stratulat, and John Tranier. 2009. Towards an integral approach of organizations
in multi-agent systems: the MASQ approach. Multiagent Systems Semantics and Dynamics of Organi-
zational Models Virginia Dignum eds IGI March (2009), 1–23.

W. Frakes and C. Terry. 1996. Software reuse: metrics and models. Comput. Surveys 28, 2 (1996), 415–435.
Jean Dickinson Gibbons and Douglas A. Wolfe. 2003. Nonparametric Statistical Inference. Technometrics

(2003), 185–194.
Martin Gudgin. 2003. SOAP Version 1.2. (2003). http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
G. Guizzardi. 2005. Ontological foundations for structural conceptual models. Ph.D. Dissertation. University

of Twente.
Robrecht Haesevoets. 2012. Macodo: Architecture-Centric Support for Dynamic Service Col-

laborations. Ph.D. Dissertation. Katholieke Universiteit Leuven, Leuven, Belgium.
https://lirias.kuleuven.be/handle/123456789/332545.

Robrecht Haesevoets and Danny Weyns. 2012. Evaluation of Macodo: A controlled experiment. Technical
Report CW 626. Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium.
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW626.abs.html.

Robrecht Haesevoets, Danny Weyns, M. H. Cruz Torres, Alexander Helleboogh, Tom Holvoet, and Wouter
Joosen. 2010. A middleware model in Alloy for supply chain-wide agent interactions. In Agent Ori-
ented Software Engineering (AOSE) (Lecture Notes in Computer Science), Vol. 6788. Springer, Toronto,
Canada.

Mahdi Hannoun, Olivier Boissier, Jaime Simão Sichman, and Claudette Sayettat. 2000. MOISE: An or-
ganizational model for multi-agent systems. In IBERAMIASBIA. LNAI, Vol. 1952. Springer-Verlag,
156–165.

Stephan Herrmann. 2007. A precise model for contextual roles: The programming language ObjectTeams/-
Java. Applied Ontology 2, 2 (2007), 181–207.

M. Hollander and D. A. Wolfe. 1999. Nonparametric statistical methods. Vol. 2. Wiley-Interscience. 787
pages.

Jomi F. Hübner. 2010. Moise specifications - draft. Technical Report. 28 pages. http://moise.sourceforge.net/
doc/moise-spec.pdf

Jomi F. Hübner, Olivier Boissier, and Rafael H. Bordini. 2011. A normative programming language for
multi-agent organisations. Annals of Mathematics and Artificial Intelligence 62, 1-2 (2011), 27–53.

Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. 2009. Instrumenting multi-agent or-
ganisations with organisational artifacts and agents. Autonomous Agents and Multi-Agent Systems 20,
3 (April 2009), 369–400.

Michael Hugos. 2011. Essentials of Supply Chain Management (3rd ed.). Wiley. 348 pages.
M. Huhns, M. Singh, M. Burstein, K. Decker, E. Durfee, T. Finin, L. Gasser, H. Goradia, N. R. Jennings,

K. Lakartaju, H. Nakashima, V. Parunak, J. Rosenschein, A. Ruvinsky, G. Sukthankar, S. Swarup, K.
Sycara, M. Tambe, T. Wagner, and L. Zavala. 2005. Research directions for service-oriented multiagent
systems. IEEE Internet Computing 9, December (2005), 65–70.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 R. Haesevoets et al.

ISO/IEC. 2007. ISO/IEC 42010 - Systems and software engineering architectural description. ISO, Geneva,
Switzerland.

N.R. Jennings. 2000. On agent-based software engineering. Artificial Intelligence 177, 2 (2000), 277–296.
Nickolas (Oracle) Kavantzas, David (Commerce One) Burdett, Gregory (Novell) Ritzinger, Tony (Choreology)

Fletcher, Yves (W3C) Lafon, and Charlton (Adobe Systems Incorporated) Barreto. 2005. Web Services
Choreography Description Language Version 1.0. Technical Report. W3C. http://www.w3.org/TR/2005/
CR-ws-cdl-10-20051109/

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. 1997. Aspect-
Oriented Programming. In European Conference on Object-Oriented Programming (Lecture Notes in
Computer Science, Vol. 1241). Springer-Verlag, Berlin, Heidelberg, New York.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg.
2002. Preliminary guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering 28, 8 (2002), 721–734.

Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rickayzen, Claus Von Riegen,
and Ivana Trickovic. 2005. WS-BPEL Extension for Sub-processes BPEL-SPE. Joint white paper IBM
and SAP 2006, September (2005), 1–17.

P. Kruchten. 1995. The 4+1 View Model of Architecture. IEEE Software 12, 6 (1995), 42–50.
Victor R. Lesser. 1998. Reflections on the Nature of Multi-Agent Coordination and Its Implications for an

Agent Architecture. Autonomous Agents and MultiAgent Systems 1, 1 (1998), 89–111.
David S. Linthicum. 2000. Enterprise application integration. Addison-Wesley Longman Ltd., Essex, UK.

400 pages.
Zhilei Ma and Frank Leymann. 2009. BPEL Fragments for Modularized Reuse in Modeling BPEL Processes.

2009 Fifth International Conference on Networking and Services (2009), 63–68.
A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustar. 2007. Towards recovering recovering

the broken SOA triangle: a software engineering perspective. In 2nd international workshop on Service
oriented software engineering. ACM, 22–28.

OASIS. 2007. Web Services Business Process Execution Language (WS-BPEL) Version 2.0. OASIS (Organiza-
tion for Advancement of Structured Information Standards). http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

OMG. 2011. Business Process Model and Notation (BPMN) version 2.0. OMG (Object Management Group).
http://www.omg.org/spec/BPMN/2.0/

Bart Orriëns, Jian Yang, and Mike P. Papazoglou. 2003. Model driven service composition. In ICSOC.
Springer-Verlag, 75–90.

M. Ould. 1995. Business processes: modelling and analysis for re-engineering and improvement. John Wiley
& Sons. 224 pages.

M. Ould. 2005. Business Process Management: A Rigorous Approach. Meghan-Kiffer Press.
M. P. Papazoglou. 2008. Web Services: Principles and Technology. 752 pages.
T. Parsons. 1956. Suggestions for a Sociological Approach to the Theory of Organizations-I. Administrative

Science Quarterly 1, 1 (1956), 63–85.
Charles Petrie and Christoph Bussler. 2008. The Myth of Open Web Services: The Rise of the Service Parks.

IEEE Internet Computing 12, 3 (2008), 96–95.
Massimo Pezzini and Benoit Lheureux. 2011. Integration platform as a service: moving integration to the

cloud. Technical Report. Gartner, Inc., Stamford, CT.
Konrad Pfadenhauer, Schahram Dustdar, and Burkhard Kittl. 2005. Challenges and Solutions for Model

Driven Web Service Composition. Information Systems Journal (2005), 126–134.
J. Pfeffer. 1997. New Directions for Organization Theory: Problems and Prospects. Oxford University Press.

viii, 264p. pages.
Keith T Phalp, P Henderson, R J Walters, and G A Abeysinghe. 1998. RolEnact: role-based enactable models

of business processes. Information and Software Technology 40, 3 (1998), 123–133.
Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. 2009. Environment Programming in

CArtAgO. Communication (2009), 259–288.
Alan Rushton and Steve Walker. 2007. International logistics and supply chain outsourcing: from local to

global (1 ed.). Kogan Page, London, UK. 424 pages.
Pierre Schmitt, Cédric Bonhomme, Jocelyn Aubert, and Benjamin Gâteau. 2011. Programming Electronic

Institutions with Utopia. In Information Systems Evolution, Will Aalst, John Mylopoulos, Norman M
Sadeh, Michael J Shaw, Clemens Szyperski, Pnina Soffer, and Erik Proper (Eds.). Lecture Notes in
Business Information Processing, Vol. 72. Springer Berlin Heidelberg, 122–135.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Architecture-Centric Support for Adaptive Service Collaborations. A:41

David Schumm, Dimka Karastoyanova, Frank Leymann, and Steve Strauch. 2011. Fragmento: Advanced
Process Fragment Library. In Information Systems Development, Jaroslav Pokorny, Vaclav Repa, Karel
Richta, Wita Wojtkowski, Henry Linger, Chris Barry, and Michael Lang (Eds.). Springer New York,
659–670.

W. Richard Scott. 2003. Organizations: Rational, Natural, and Open Systems. Vol. 8. Prentice Hall. 340
pages.

D. Simchi-Levi. 2008. Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies
(3rd ed.). McGraw-Hill. 528 pages.

B. Singh and Gail L. Rein. 1992. Role Interaction Nets (RIN): A process description formalism. (1992).
Munindar P. Singh. 1999. An ontology for commitments in multiagent systems. Artificial Intelligence and

Law 7, 1 (1999), 97–113.
Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. 2009. Commitment-Based Service-Oriented Archi-

tecture. Computer 42, 11 (2009), 72–79.
Munindar P. Singh and Michael N. Huhns. 2005. Service-oriented computing: semantics, processes, agents.

John Wiley & Sons.
Mario Solaz, Bruno Gui, Juan Rodrguez-Aguilar, Vicente Inglada, and Carlos Casamayor. 2011. Mixing

Electronic Institutions with Virtual Organizations: A Solution Based on Bundles. In Highlights in Prac-
tical Applications of Agents and Multiagent Systems, Javier Prez, Juan Corchado, Mara Moreno, Vicente
Julin, Philippe Mathieu, Joaquin Canada-Bago, Alfonso Ortega, and Antonio Caballero (Eds.). Advances
in Intelligent and Soft Computing, Vol. 89. Springer Berlin / Heidelberg, 143–150.

F. Steimann. 2000. On the representation of roles in object-oriented and conceptual modelling. Data &
Knowledge Engineering 35, 1 (2000), 83–106.

Pankaj R. Telang and Munindar P. Singh. 2012. Comma : A Commitment-Based Business Modeling Method-
ology and its Empirical Evaluation. In AAMAS. 4–8.

Huy Tran, Uwe Zdun, and Schahram Dustdar. 2007. View-based and Model-driven Approach for Reducing
the Development Complexity in Process-Driven SOA. Intl Working Conf on Business Process and (2007),
105–124.

Huy Tran, Uwe Zdun, Taid Holmes, Ernst Oberortner, Emmanuel Mulo, and Schahram Dustdar. 2012.
Compliance in service-oriented architectures: A model-driven and view-based approach. Information
and Software Technology 54, 6 (2012), 531–552.

I. Trickovic. 2005. Modularization and reuse in ws-bpel. Technical Report. SAP Developer Network.
W.M.P. van der Aalst, A.H.M. Hofstede, and Mathias Weske. 2003. Business Process Management : A Sur-

vey. Business 2678, 1 (2003), 1–12.
Danny Weyns, Robrecht Haesevoets, and Alexander Helleboogh. 2010a. The MACODO organization model

for context-driven dynamic agent organizations. ACM Transactions on Autonomous and Adaptive Sys-
tems 5, 4 (2010), 16:1–16:29.

Danny Weyns, Robrecht Haesevoets, Alexander Helleboogh, Tom Holvoet, and Wouter Joosen. 2010b. The
MACODO middleware for context-driven dynamic agent organizations. ACM Transactions on Au-
tonomous and Adaptive Systems 5, 1 (February 2010), 3:1–3:29.

A. Wise, A. G. Cass, B. Staudt Lerner, E. K. McCall, L. J. Osterweil, and Jr. S. M. Sutton. 2000. Using
Little-JIL to Coordinate Agents in Software Engineering. In Proceedings of the Automated Software
Engineering Conference ASE 2000 Grenoble France. IEEE Comput. Soc, 155–163.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2000. Experimentation in Soft-
ware Engineering: An Introduction. Software Engineering, Vol. 15. Kluwer Academic Publishers. 228
pages.

F. Zambonelli, N. Jennings, and M. Wooldridge. 2003. Developing Multiagent Systems: The Gaia Methodol-
ogy. ACM Transactions on Software Engineering and Methodology 12, 3 (2003), 317–370.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

