IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Variability in Software Systems —
A Systematic Literature Review

Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou

Abstract—CONTEXT: Variability (i.e., the ability of software systems or artifacts to be adjusted for different contexts) became a
key property of many systems. OBJECTIVE: We analyze existing research on variability in software systems. We investigate
variability handling in major software engineering phases (e.g., requirements engineering, architecting). METHOD: We
performed a systematic literature review. A manual search covered 13 premium software engineering journals and 18 premium
conferences, resulting in 15430 papers searched and 196 papers considered for data collection. To improve reliability and to
increase reproducibility, we complemented the manual search with a targeted automated search. RESULTS: Software quality
attributes have not received much attention in the context of variability. Variability is studied in all software engineering phases,
but testing is underrepresented. Data to motivate the applicability of current approaches are often insufficient; research designs
are vaguely described. CONCLUSIONS: Based on our findings we propose dimensions of variability in software engineering.
This empirically grounded classification provides a step towards a unifying, integrated perspective of variability in software
systems, spanning across disparate or loosely coupled research themes in the software engineering community. Finally, we

provide recommendations to bridge the gap between research and practice and point to opportunities for future research.

Index Terms— Variability, systematic review, software engineering.

1 INTRODUCTION

ARIABILITY is commonly understood as the ability

of a software system or software artifact (e.g., com-

ponent) to be changed so that it fits a specific context
[1]. Variability allows us to adapt the software’s structure,
behaviour, or underlying processes. These adaptations
are enabled through wvariation points and variants as op-
tions that can be selected at these variation points. Ena-
bling variability in software systems is crucial to ensure
that systems successfully adapt to changing needs, and to
facilitate the reusability of software systems or individual
software artifacts.

So far, variability has mainly been studied in the soft-
ware product line (SPL) domain [2]. However, variability
is a “key fact of most, if not all, systems” [3] and therefore
a relevant concern of those systems. Thus, variability is
not limited to product lines or families only but imposes
challenges on software development in general. Many
other types of today’s software systems are built with
variability in mind, e.g., self-adaptive systems, open plat-
forms, or service-based systems with dynamic runtime
composition of services. Situations in which variability
must be handled include the configuration of systems,
customization of components, dynamic selection of fea-

* M. Galster is with the University of Canterbury, New Zealand.
E-mail: mgalster@ieee.org.

* D. Weyns is with the Linnaeus University, Sweden.
E-mail: danny.weyns@Inu.se.

* D. Tofan is with the University of Groningen, The Netherlands.
E-mail: d.c.tofan@rug.nl.

* B. Michalik was with the Katholieke Universiteit Leuven, Belgium.
E-mail: bartosz.michalik@gmail.com.

* P. Avgeriou is with the University of Groningen, The Netherlands.
E-mail: paris@cs.rug.nl.

Manuscript received November 2013.

tures, and runtime adaptation of a service. Variability can
be facilitated in different ways, e.g., with variant man-
agement tools, software configuration wizards and tools,
configuration interfaces of software components, and
infrastructures for dynamic runtime service composition
and adaptation. As variability is pervasive, software en-
gineers need a proper understanding, suitable methods
and tools for handling (i.e., representing, managing and
reasoning about) variability [4]. This is particularly true if
variability needs to be considered by many different
stakeholders (e.g., end users who demand variability in
the final product, coders who need to be aware where in
the code variability is implemented, or testers who need
to test all possible variants).

To get an overview of variability handling in software
engineering, this paper reports a systematic literature
review (SLR). By variability handling we mean the activi-
ty that is part of software engineering to achieve variabil-
ity in software systems (details are presented in Section
1.1). Our focus is on research studies from premium soft-
ware engineering journals and conferences. The research
method used is based on the guidelines for performing
and reporting systematic literature reviews [5]. We devi-
ated from these guidelines in that we did not perform a
pure automated search but a targeted manual search that
was complemented by a limited and targeted automated
search. A justification for this deviation is provided in
Section 2. Moreover, we used reports on practical experi-
ences with systematic literature reviews, best practices
and lessons learnt (e.g., Staples and Niazi [6], Biolchini et
al. [7], Riaz et al. [8], Zhang and Babar [9] Brereton et al.
[10]) as well as on meta-studies of systematic reviews
(Kitchenham et al. [11, 12]) when designing and conduct-
ing our review and when developing our search strategy.

XXXX-XXXX/0X/$xx.00 © 200x IEEE

1.1 Variability — An Introduction
Variability is the ability of a software system or software
artifact to be extended, customized or configured for (re-)
use in a specific context [1]. Thus, variability specifies
parts of the software that remain variable and that are not
fully defined during early design. This facilitates the de-
velopment of different versions of a software system or
software artifact. Consequently, we interpret variability
as planned or anticipated change [13], rather than change
due to errors, maintenance or new unanticipated custom-
er needs. This view on variability requires the representa-
tion of variation points and variants in software artefacts,
throughout the software life cycle [14], e.g., at develop-
ment time or runtime [15]. Furthermore, variability can
support or may be required in functional requirements
and / or non-functional requirements (i.e., quality attrib-
utes) [16]. According to Svahnberg et al. [17] one reason
to support variability is delaying concrete design deci-
sions to the latest point that is economically feasible.
Variability is a key concept in software product lines.
Product lines focus on addressing variability explicitly as
“features”, “decisions” or product configurations. On the
other hand, in software engineering in general, variability
is often looked at in a broader scope [5] and concerns
different stakeholders (e.g., requirements engineers, ar-
chitects, developers, end users). Moreover, a product line
assumes the existence of a product line infrastructure,
including related processes (e.g., core asset development,
product development, management). This is rarely the
case for many software systems which exploit variability.
Throughout this paper we use the term “handling”
variability rather than “managing” variability as widely
used in the product line community. As argued by
Svahnberg et al. [18], managing variability is only one of
several activities in the context of variability; managing
variability includes the management of dependencies
between variations, maintenance and continuous popula-
tion of variant features with new variants, removing fea-
tures, the distribution of new variants to the installed
customer base, etc. Additional activities, such as identify-
ing variability (i.e., determining where variability is
needed), reasoning about, representing and implement-
ing variability (i.e., use a variability realization technique
to resolve variability at variation points and to implement
a certain variant) exist [18]. We refer to all these activities
as “handling” variability.

1.2 Lack of Existing Reviews

To the best of our knowledge, no comprehensive study on
research related to variability in software systems exists.
Chen et al. [19] reviewed variability management in soft-
ware product lines. The study found that most current
work addresses variability in terms of features, assets or
decisions. Most work has been done on variability model-
ing. Moreover, Chen and Babar [20] assessed the evalua-
tion of variability management approaches in software
product lines. Our study differs from these two studies in
that we do not focus on the product line domain and
variability modeling, but are interested in variability
handling in software engineering to achieve variability in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

software systems in general. Moreover, rather than per-
forming a broad automated search, we perform an exten-
sive manual search on carefully selected software engi-
neering venues, complemented by a targeted automated
search.

Kontogogos and Avgeriou [21] reviewed variability in
service-based systems. Based on two types of variability
(integrated and orthogonal) as defined by Bachmann et
al. [22] and Pohl et al. [23], that study identified ap-
proaches that apply integrated variability modeling (ex-
tending software artifacts with variability) and orthogo-
nal variability modeling (adding new representations of
variability separately from existing representations) for
service-based systems. The authors found that most cur-
rent approaches for variability modeling in service-based
systems are feature-based and originate from the product
line domain. However, the study only identified a small
set of approaches, focused on variability in service-based
systems and variability modeling. Moreover, the study
cannot be considered as a systematic literature review,
but as an informal literature survey [11]. Similarly, Ka-
zhamiakin et al. [24] studied adaptation of service-based
systems in an informal review.

Furthermore, Alves et al. [25] studied variability in the
area of requirements engineering for software product
lines. The study aimed at identifying requirements arti-
facts that current product line approaches deal with, the
addressed requirements engineering activities, and prod-
uct line adoption strategies followed by current ap-
proaches. In contrast, our study goes beyond variability
in product lines and requirements engineering.

Several other interesting literature reviews in the con-
text of software product lines exist that are related but
outside the scope of the goal of our study: Rabiser et al.
[26] conducted a systematic literature review on require-
ments for product derivation support in the context of
product line engineering. Benavides et al. [27] reviewed
the automated analysis of feature models in product line
engineering. Finally, Hubaux et al. [28] investigated the
use of feature diagrams in practice.

1.3 Goals and Contributions

Research on variability has mainly been conducted in the
domain of product line engineering. A first step towards
addressing variability in a more holistic manner is to
identify and analyze existing research on handling varia-
bility in software engineering, without focusing on any
technology domain (e.g., service-oriented architectures,
component-based systems), or application domain (e.g.,
telecommunication, e-commerce, automotive). Therefore,
the objective of this study is to summarize existing re-
search related to variability handling in software engi-
neering to support variability in software systems. In
particular, we aim a) to appraise evidence of research on
variability handling, and b) to identify trends in variabil-
ity research, open problems and areas for improvement.
The outcome of the systematic review helps identify
areas for further investigation of handling variability in
specific areas, such as software architectures or service-
based systems. Also, lack of evidence could highlight the

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

need for more thorough studies that apply clear research
methods; poor evidence could mean that more data about
existing methods for handling variability should be col-
lected; research trends and open problems could point to
exciting research opportunities. Furthermore, the review
will help position new research activities: For new re-
search, we need to identify the state-of-the-art and make
clear where new research fits into the current body of
knowledge. Finally, based on our findings we propose
dimensions for variability to provide a more rigorous
understanding of variability in software engineering. This
classification for variability in different dimensions cap-
tures key facets of variability.

1.4 Paper Structure

In Section 2 we discuss the research method. Section 3
presents demographic information and the results we
obtained from analyzing the data extracted from re-
viewed studies. A discussion and interpretation of those
results takes place in Section 4. In Section 5, we discuss
limitations of our review. Section 6 concludes this paper.

2 RESEARCH METHOD

The systematic literature review method [5] is a well-
defined approach to identify, evaluate and interpret all
relevant studies regarding a particular research question,
topic area or phenomenon of interest [30]. This method
was chosen because we wanted to get a fair, credible and
unbiased evaluation of approaches for handling variabil-
ity in software systems. The systematic review was per-
formed as shown in Fig. 1 (adapted from [10]).

‘ 1. Specify research questions ‘

Phase 1: .

Plan review —» ‘ 2. Develop review protocol ‘
‘ 3. Validate review protocol ‘
‘ 4. ldentify relevant research ‘
‘ 5. Select primary studies ‘

Phase 2:

- ‘ 6. Assess study quality ‘

v

‘ 7. Extract required data ‘

Conduct review

‘ 8. Analyze data ‘

vy
Phase 3:
Document review

= ‘ 9. Write review report ‘

Fig. 1. Systematic literature review process (adapted from [10]).

An important step is the development of a review pro-
tocol to ensure rigor and repeatability. In order to reduce
researchers’ bias when performing this review, we
adapted the process for developing a review protocol
proposed by Ali et al. (Fig. 2) [29]. After identifying the
research questions, we decided to use a manual search as
our search strategy and defined a search scope. As part of
this step, we performed pilot searches. Then, we devel-
oped study inclusion and exclusion criteria, and defined

the search process. Also, we proposed our strategy for
assessing the quality of studies that we considered in the
review. Next, based on our research questions, we identi-
fied what data elements to extract from each study found
in the search. A data collection form was piloted with
several papers found in the pilot search. Finally, to cross-
check the selection of the primary studies identified in the
manual search we defined search terms for a targeted
limited automated search. Also, we defined our strategy
to analyze extracted data and to present the results. De-
tails are presented in the remainder of this section.

Identify research questions
(Section 2.1)

v

Pilot A Define search strategy +
searches scope (Sections 2.2 and 2.3)

v

Define inclusion + exclusion
criteria (Section 2.4)

v

Define search process + quality
criteria (Sections 2.5 and 2.6)

v
Design data extraction form 2N Pilot data
(Section 2.7) extraction

v

Define data analysis +
presentation (Section 2.8)

Fig. 2. Process to develop review protocol (adapted from [29]).

Five researchers distributed across four locations were
involved in the review. Communication took place online
and in several on-site meetings. Tools used for the review
included EndNote X4, Dropbox and Microsoft Excel.

2.1 Research Questions

We first formulated the review goal through Goal-
Question-Metric perspectives (purpose, issue, object,
viewpoint) [31]:

Purpose: analyze and characterize;
Issue: handling of variability;
Object: in software systems;

Viewpoint: from a researcher’s point of view.

Based on the goal, we derived research questions:

RQ1: What methods to handle variability in software
systems exist?

RQ1.1: What types of variability do these methods han-
dle?

RQ1.2: What activities in the software development
process are affected by these methods?

RQ1.3: What runtime and design time quality attributes
are addressed by these methods?

RQ2: What is the evidence that motivates the adoption
of existing methods?

RQ3: What are the limitations of the existing methods?

RQ1 is motivated by the need to describe the state-of-
the-art of how existing methods handle variability. RQ1 is
refined into three sub-questions that aim to answer
whether variability occurs and is treated at design time or
runtime (i.e., the types of variability), which software

development activities are addressed in current research,
and what quality attributes (e.g., performance, security)
are addressed. We are interested in quality attributes as
these are often neglected in the context of variability [32].
Based on Bass et al. [33], we differentiate design time and
runtime quality attributes. Examples for design time qual-
ity attributes include modifiability or portability. Exam-
ples for runtime quality attributes are availability or per-
formance. RQ1 allows researchers to get an overview of
approaches for handling variability. RQ1 relates to identi-
fying trends in variability research, open problems and
areas for improvement, as outlined in Section 1.3.

We formulated RQ2 to find how much evidence is
available to apply methods. By evidence we mean any
indicator that a method works to address the problem
targeted by this method. RQ?2 is of interest for researchers
to obtain evidence about what methods could be used in
practice. Also, it provides researchers with an idea about
the maturity of current approaches. RQ2 relates to ap-
praising evidence of research on variability handling, as
outlined in Section 1.3.

As we were interested in identifying gaps in current
research, we formulated RQ3. Researchers benefit from
answering RQ3 by getting an overview of issues that
could provide directions for further research. Thus, RQ3
relates to identifying trends in variability research, open
problems and areas for improvement (Section 1.3).

2.2 Search Strategy

We used a manual search and manually browsed journals
and conference proceedings. This manual search was
complemented by a targeted automated search to ensure
reliability of the studies found in the manual search and
to increase reproducibility.

Despite the high effort, a manual search tends to be
more thorough than an automated search. A pure auto-
mated search using a standard search string on electronic
data sources might miss relevant literature. This is partic-
ularly relevant for a topic that spans a variety of fields
and for which no established terminology exists, such as
variability handling. Also, targeted searches at carefully
selected venues are justified to omit low quality papers
[34]. Grey literature (i.e., published without a peer review
process, e.g., reports, theses) that would be identified in
an automated search tends to be of low quality [35]. Final-
ly, manual search allows us to find studies whose authors
have not used common terms for variability-related con-
cepts, or did not use keywords that we would have as-
sumed in paper titles, abstracts or keywords [36].

We included any study type (empirical, theoretical,
conceptual, etc.). This is because when piloting our study
we could not identify a standard study type in our prob-
lem domain. Variability affects software development at
various stages. Thus, we organized the search around five
general software engineering areas: Requirements engi-
neering (RE), architecture and design (AD), implementa-
tion and integration (II), testing and verification (TV), and
maintenance (M).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

2.3 Scope of Search and Sources Searched

Our search scope and sources are based on:

1. Preliminary searches for existing reviews (e.g.,
Chen et al. [19, 37], Williams and Carver [13]);

2. Pilot searches based on the research questions;

3. Reviews of research results (e.g., papers at the
Software Product Line Conference (SPLC), or oth-
er resources, e.g., www.variabilitymodeling.org;

4. Consultation with other researchers in the field.

The scope of our search is defined in the three dimen-
sions of time, space, and quality:

1. Publication period (time): We searched papers

published between July 2000 and (including) 2011.
July 2000 was chosen because the first SPLC (the
premium venue for variability and variability
management) was held in 2000 (before, only in-
formal workshops were held). Starting the review
in 2000 guarantees a certain maturity of studies.

2. Publication venue (space): As we performed a
manual search, we applied rigorous selection cri-
teria for venues to be searched. First, we included
SPLC and GPCE, two premium venues where re-
search related to variability is published. Second,
we included venues that are known for publishing
high quality software engineering research in gen-
eral (GSE). Third, we chose the premium venue for
each of the five software engineering areas listed
in Section 2.2.

3. Venue quality: To ensure a level of quality of pa-
pers, we used two selection criteria. First, we only
included venues which are evaluated by the Aus-
tralian Research Council higher than or equal to
level “B” [38]. We include “B” as for some soft-
ware engineering areas it was not possible to iden-
tify an “A” venue. Furthermore, rankings of scien-
tific venues are usually not conclusive and vary
between ranking systems. Second, we used the H-
index of venues as a second criterion for venue
quality! and included venues with an H-index of
at least 10. However, we included EASE, ECOOP,
FSE, SLE and ECSA, which have no or a lower H-
index because they are considered important ven-
ues in the respective communities. Searched ven-
ues had to be strictly from the software engineer-
ing domain. Other venues of very high quality and
with a high ranking and a large H-index (e.g.,
Communications of the ACM) were not included
since they target a diverse audience and are there-
fore typically do not present in-depth research
studies on specific topics, such as variability.

The selected venues are listed in Table 1 (13 journals)
and Table 2 (18 conferences). The tables also show the
software engineering areas outlined in Section 2.2. For the
manual search we did not run search queries on electron-
ic search and indexing machines, such as IEEE Xplore or
ACM Digital Library. Instead, we used these electronic
resources for targeted searches by manually browsing

1 The H-index for journals is based on http:/ /www.scimagojr.com, for
conferences we used http:/ /academic.research.microsoft.com/; last
access: May 1, 2013.

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

through tables of contents (including keywords and ab-
stracts of papers, and full papers) of journals and confer-
ence proceedings available through IEEE Xplore, ACM
Digital Library, etc. As venues are potentially indexed by
different sources, we provide an overview of the sources
we searched for each venue in Table 12 in the appendix.
Some conferences have more than one source as publish-
ers of proceedings changed over years.

TABLE 1
Searched Journals
ID Area |Journal Rank |H-index
ASE] GSE |Automated Software Engineer-|A 23
ing Journal
ESE GSE |Empirical Software Engineering:|A 28
An International Journal
IEEE SW |GSE |IEEE Software B 57
IST GSE |Information and Software Tech-|B 37
nology
JSS GSE |Journal of Systems and Software [A 43
REJ RE |Requirements Engineering|A 23
Journal
SCpP GSE |(Science of Computer Program-|A 35
ming
SMRP M |Software Maintenance and|B 21

Evolution: Research and Practice

SoSyM |GSE |Software and Systems Modeling |B 19

SPE GSE |Software: Practice and Experi-|A 41
ence

STVR TV |Software Testing, Verification|B 25
and Reliability

TOSEM |GSE |ACM Transactions on Software|A* 44
Engineering Methodology

TSE GSE |IEEE Transactions on Software|A* 88
Engineering

We complemented the manual search with a limited
targeted automated search on Scopus. The automated
search was targeted and limited in that it covered the
same time period as the manual search and venues in-
cluded in the manual search. We used keywords and
their variations (e.g., plural) that are common in our do-
main of interest: “variability”, “variation point”, “vari-
ant”, “feature model”, “feature diagram”, “product fami-
ly” and “product line” (complete search string can be
found in [39]). Furthermore, we searched each conference
individually using the search engines available from the
databases listed for each conference in Table 12 and ap-
plying the same time range and keywords as for the
search on Scopus. We did this because the description of
Scopus with regard to the inclusion of all editions of all
conferences in Table 12 is not clear. The automated search
resulted in 1503 papers out of which we identified 91
papers also in the manual search (for example, we found
several of the papers related to software product lines
such as studies 20 and 146 in the list of papers included in
the review as shown in Table 15 in the appendix). Fur-

2 FSE includes the European Software Engineering Conference (ESEC)
for years in which FSE and ESEC were co-located.

3 Before 2005, MODELS was the International Conference on the Uni-
fied Modeling Language, Modeling Languages and Applications (UML).

4 First edition of SLE took place in 2008.

thermore, the automated search found 1412 papers that
we had not selected in our manual search. They were not
included in our review because they did not meet the
inclusion criteria or met exclusion criteria (e.g., preface to
the special issue on software evolution, adaptability and
variability in SCP, or papers about software prediction or
investigating source code, without focusing on variabil-
ity). Finally, the automated search also found 28 papers
that were relevant to our study but which we missed in
our manual search and thus were added to the manual
search results and included in the 91 papers found in both
searches (e.g., study 193, 195, 196). Thus, the automated
search helped us get a more complete set of studies for
our review. However, the manual search found 105 stud-
ies whose authors have not used common terms for vari-
ability-related concepts, or did not use keywords that we
would have assumed in paper titles, abstracts (e.g., study
1). This confirms our initial assumption that a pure auto-
mated search using a standard search string on electronic
data source would miss relevant literature.

TABLE 2
Searched Conferences

ID Area |Conference Rank |H-index

ASE GSE |Automated Software Engineer-|A 44
ing Conference

CAiSE GSE |International Conference on|A 29
Advanced Information Sys-
tems Engineering

EASE GSE |Evaluation and Assessment in|A n/a
Software Engineering

ECOOP |II |European Conference on|A n/a
Object-oriented programming

ECSA AD |European Conference on|n/a |8
Software Architectures

FSE? GSE |Foundations of Software Engi-|A n/a
neering

GPCE GSE |Generative Programming and|B 27
Component Engineering

ICSE GSE |International Conference on|A 118
Software Engineering

ICsM M |(International Conference on|A 57
Software Maintenance

ICsT TV |International Conference on|C 12
Software Testing, Verification
and Validation

ISSTA TV |International Symposium on|A 35
Software Testing and Analysis

MODELS?|GSE |International Conference on|B 24
Model Driven Engineering
Languages and Systems

OOPSLA |II Object-Oriented Programming, |A 59
Systems, Languages, and
Applications

QoSA AD |[Conference on the Quality of|A 10
Software Architectures

RE RE |International Requirements|A 47
Engineering Conference

SLE* GSE |International Conference on|B n/a
Software Language Engineer-
ing

SPLC GSE |International Product Line|n/a |28
Conference

WICSA |AD |Working Conference on Soft-|A 25
ware Architecture

When searching journals, we ignored calls for papers
or participation, society or journal information, covers,
etc. We excluded tutorial or workshop reports, poster
sessions and companions when searching conferences.

2.4 Inclusion and Exclusion Criteria

Inclusion and exclusion criteria helped identify studies
directly related to our research questions. We are interest-
ed in empirical studies, but also in studies that propose
new concepts and use empirical methods for evaluation.
By having strict search venue selection criteria, we had
already applied some inclusion criteria before the initial
manual search at Stage 1.1 of the search process (Fig. 3),
e.g., excluded studies that were not from an acceptable
source). Inclusion and exclusion criteria were applied
during the initial search as well as later to studies that
had been identified through the initial search. A paper
was selected as a primary study if it met all inclusion
criteria and eliminated if it met any exclusion criterion.

* Inclusion criterion 1: Study is internal to software
domain. We are only interested in variability in the
software domain. Studies about hardware or other
types of systems are not relevant.

* Inclusion criterion 2: Study comes from an accepta-
ble source. We aim at gaining solid information
about variability and thus ignored lower-quality
sources. This criterion was implicitly met by care-
fully choosing the search venues.

* Inclusion criterion 3: Study is about extending,
changing or customizing software systems or soft-
ware artifacts.

* Inclusion criterion 4: Study is about reusing software
systems or software artifacts in different contexts.

* Inclusion criterion 5: Study discusses how to design
parts of the software that remain variable and are
not fully defined during early design.

* Inclusion criterion 6: Study is about planned / antic-
ipated change / reuse, rather than about unfore-
seen change.

* Exclusion criterion 1: Study is an editorial, abstract,
position paper, short paper, tool paper, poster
summary, keynote, opinion, tutorial summary,
conference summary (or introduction to conference
proceedings), workshop summary or panel sum-
mary. Editorials, abstracts, etc. do not provide a
reasonable amount of information.

* Exclusion criterion 2: Study is about general soft-
ware maintenance or evolution independent of var-
iability (such as corrective change or bug fixing).
We are only interested in planned adaptation.

2.5 Search Process

We used a staged process (Fig. 3). At Stage 1.1, each jour-
nal and conference venue was manually reviewed by two
researchers, who read title, keywords, and abstract to
determine a paper’s relevance. Differences were recon-
ciled collaboratively. Stage 1.2 searched studies identified
in related reviews, namely [19], and followed up on refer-
ences in studies found at Stage 1.1. Duplicates from Stage
1.1 and Stage 1.2 were removed and results merged.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

1.1: Initial search: manually
search journals, proceedings

1.2: Primary studies identified in
related work

L Remove duplicates and merge J

v

2: Apply inclusion / exclusion criteria by reading title,
abstract, keywords, conclusions

v

‘ 3: Read full papers and critically appraise work

Fig. 3. Search process.

At Stage 1.1, if there was any doubt whether a study
should be included, it was added to the list of potentially
relevant studies. Abstracts might be insufficient to rely on
when selecting studies [10]. Thus, at Stage 2 if necessary,
we also decided about study inclusion based on the con-
clusions of studies. Full copies of studies were obtained
for remaining studies (i.e., studies left after filtering at
each stage). Final inclusion / exclusion decisions were
made after full texts had been retrieved (Stage 3). In case
of multiple studies referring to the same method, only the
most recent was included. After each stage, one research-
er randomly distributed the remaining studies between
the reviewers. “Randomly” means that we did not ask
reviewers to pick their favorite papers, but simply created
batches of papers in the order they occurred in the refer-
ence manager tool. The batches given to reviewers were
the same, but different reviewers may have reviewed
different batches (i.e., not the same two reviewers always
reviewed exactly the same batches, but one pair of re-
viewer reviewed the same batch).

2.6 Quality Criteria

For systematic literature reviews it is critical to assess the
quality of primary studies [5]. Thus, all studies were as-
sessed through a quality check. As proposed in [40], pa-
pers were assessed using questions (Table 3). We pre-
ferred this approach instead of using the study design
hierarchy for software engineering proposed in [30]. This
is because a study design hierarchy classifies empirical
studies. However, as previous reviews have shown (e.g.,
[20]) we cannot expect to find many empirical studies.
This means, elements of a study design hierarchy (e.g.,
experimental studies, case control studies) would not
apply to many studies.

TABLE 3
Questions to Assess Study Quality

|Question

Q1|Is there a rationale provided for why the study was undertaken?
Q2(Is there an adequate description of the context (industry, labora-
tory setting, products used, etc.) in which the research was
carried out?

Q3|Is there a justification and description for the research design?
Q4(Is there a clear statement of findings, including data that sup-
ports findings?

Q5(Did the researcher(s) critically examine his / her (their) own
role, potential bias, and influence during the study?

Q6| Are limitations and credibility of the study discussed explicitly?

Similar as Ali et al. [29], we adopted the quality as-
sessment instrument used in [41]. This instrument uses a

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

three-point scale to answer each question, either as “yes”,
“to some extent” or “no”. By including “to some extent”
we avoided neglecting statements where authors provid-
ed only limited information to answer the assessment
questions [29]. Each quality assessment question was
answered by assigning a numerical value (1 = “yes”, 0 =
“no”, and 0.5 = “to some extent”). Then, a quality score
was given to a study by summing up the scores for all
questions for a study [29]. As can be seen in Table 3, these
scores refer to the quality of the reporting of a study,
rather than its actual quality. Note that quality criteria
were not used for filtering purposes to include or exclude
primary studies in the review but to assess the quality of
all included studies. Furthermore, the quality criteria
were applied to all studies included in the review, rather
than only to papers that report empirical studies.

2.7 Data Collection

For each study, the information shown in Table 4 was
collected. Studies were read in detail to extract the data.
Three researchers read the selected studies in parallel. For
each paper, data was extracted by one researcher and
checked against the paper by another researcher. Disa-
greements were resolved by discussions between re-
searchers or by consulting an additional researcher.

TABLE 4
Data Collection Form

|Field Research question
F1 [Author(s) n/a
F2 |Year n/a
F3 |Title n/a
F4 |Venue (journal or conference) n/a
F5 |Keywords n/a
F6 |Abstract n/a
F7 |Citation count RQ2
F8 |Quality score RQ2
F9 |Runtime quality attributes RQ1.3
F10 [Design time quality attributes RQ1.3
F11 |Level of tool support RQ3
F12 |Evidence level RQ2
F13 |Activities addressed by approach RQ1.2
F14 |Limitations RQ3
F15 | Types of variability RQ1.1
F16 |Type of study RQ2

Data for F1 to F6 were collected for documentation
purposes to keep meta-information of papers. F7 records
the citation count for each paper, based on Google Scholar
(as of May 2013). F8 records the quality score for each
paper, based on criteria introduced in Section 2.6. F9 and
F10 record quality attributes. We recorded quality attrib-
utes that are addressed in studies, or by proposed tech-
niques. F11 records if there is any tool support. Tool sup-
port could be automatic, semi-automatic or manual. The
evidence level (F12) of a study is critical for researchers to
identify new topics for empirical studies, and for practi-
tioners to assess the maturity of a particular method or
tool. Kitchenham proposed five levels of study design
[30]. We used a revised classification to make the assess-
ment more practical [25]. From weakest to strongest, the

classification is as follows: 0 = no evidence; 1 = evidence
from demonstration or toy examples; 2 = evidence from
expert opinions or observations; 3 = evidence from aca-
demic studies (e.g., controlled lab experiments); 4 = evi-
dence from industrial studies (e.g., causal case studies); 5
= evidence from industrial practice. According to Alves et
al. [25], industrial practice indicates that a method has
already been approved and adopted by industrial organi-
zations. Thus, practice shows convincing evidence that
something works and is thus ranked strongest. Activities
addressed (F13) are requirements engineering, architec-
ture / design, implementation, testing and verification,
and maintenance. Limitations (F14) and types of variabil-
ity (F15) were recorded as text. Types of variability are
dynamic variability (i.e., variability resolved at runtime)
and static variability (i.e., variability resolved during
design / development time). F16 records if a study is an
empirical paper or not.

2.8 Data Analysis

Data from studies were collated to answer the research
questions. Most papers in our review are grounded in
qualitative research. As argued by Dyba and Dingsoyr
[42], meta-analysis might not be suitable for synthesizing
qualitative data. Thus, the data was manually reviewed in
the spreadsheets where it was stored. As found by other
researchers, tabulating the data was useful during aggre-
gation [10]. On parts of the data we used descriptive sta-
tistics and frequency analysis. Frequency analysis has
been used by systematic reviews which deal with qualita-
tive data [20].

2.9 Protocol Review

The protocol was reviewed by all researchers involved in
the review as well as by external researchers not involved
in the review. Revisions to the protocol were made ac-
cordingly (e.g., clarification of research questions and the
data collection form, refinement of search venues). More-
over, the systematic review was validated as follows:

1. Researchers used a subset of resources to test the
search process. Problems in replicating the process
were identified and the process revised.

2. Gaps in search venues were identified and venues
changed to include relevant venues.

3. The reliability of data extraction was tested. A re-
searcher was given a set of papers and asked to fill
in the data extraction form. Based on the feedback
revisions were made to the protocol.

During the review we deviated from the original pro-
tocol at some points. Initially we planned to record the
type of study for each paper (e.g., empirical study, theo-
retical study), if papers include a discussion on impact
assessment of variability, or if there is any sort of feature
handling used. However, it turned out that this infor-
mation was difficult to obtain; in particular, differentiat-
ing types of studies turned out to be not possible. Thus,
the corresponding data fields were removed from the
data form.

3 REsuLTS

3.1 Demographic Data

We manually searched 15430 papers. We looked at 7991
journal papers (Table 13 in appendix) and 7439 confer-
ence papers (Table 14 in appendix). The number of papers
after Stage 2 was 390 (168 journal papers + 222 conference
papers). Five papers also resulted from the targeted au-
tomated search. During data collection, more papers were
removed due to their lack of relevance for the study (see
also Section 2.5). This resulted in 196 papers for the final
review (see Table 15 in the appendix). Fig. 4 shows the
number of papers included in the review, per journal. Fig.
5 shows the number of papers per conference.

30

25
25

20

Q
[
g 15
.g' 11 10
» 10
Q 7
-g 5 5 4 | 6
3 5 3
e =K
0 S Il 8 I N
ﬂLugl—(Dﬂﬂ_ﬂ.ELLIILLI§
w
590522 ¢ g Zs 2 f
< w 5 9 17 o
w @ i
w

Journal

Fig. 4. Number of papers per journal.

noon
o o

(]

Number of papers
o

o o 5
ASE ;t‘o
CAISE |
EASE_] N
ECOOP | ©
ECSA | o
FSE | ~
GPCE [o
ICSEA ©
icsm]|
IcsT | ©
ISSTA | ©
MODELS | | |
OOPSLA _] -
Qosa]| ~
RE |] |«
SLE []| »
SPLC |

Conference

Fig. 5. Number of papers per conference.

We compared our primary studies with related re-
views listed in Section 1.2. We noticed only a small over-
lap between our primary studies and primary studies
included in other reviews. For example, Chen and Babar
(“A systematic review of evaluation of variability man-
agement approaches in software product lines”) reviewed
97 papers. Only 14 papers are also included in our re-
view. The complete comparison is available as supple-
mentary material in a technical report [39]. The limited
overlap is due to the different goals and foci of the stud-
ies. On the other hand, we conclude that our extended
scope (beyond product lines) is indeed reflected in the
studies included in our final review.

JSS has been the most prominent journal to publish
variability-related research, whereas SPLC is the most
prominent conference for variability research. Searching

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

the two venues that focus on empirical research (EASE
and ESE) did not result in a significant number of studies.
This confirms other reviews that also could not identify a
study on variability modeling published in ESE [20]. Fur-
thermore, none of the testing and verification venues
(ICST, ISSTA, STVR) or development-related conferences
(ECOOP, OOPSLA) seems to be attractive venues for
variability research.

Fig. 6 shows the distribution of studies based on the
venues related to the software engineering areas intro-
duced in Section 2.2. Fig. 6 shows that most studies have
been published in general software engineering venues.

Implementation
/ integration
0%

Testing /
verification
0%

Architecture /
design
8%

Maintenance

/ 4%

Requirements

engineering \
3%

General SE
85%

Fig. 6. Studies per software engineering area of publication venue.

Finally, Fig. 7 shows the distribution of studies over
the years from 2000 to the end of 2011. This figure shows
an increasing trend for publishing variability research
until 2008. After 2008, the increase in publications seems
to slow down. One factor that explains this trend could be
the emerging interest in the use of variability in dynamic
service composition.

35

30

N AN
20

. a4

10

) \/\J

Number of papers

2004
2005
2006
2007 4
2008
2009

2000
2001
2002 4
2003
2010
2011

Fig. 7. Studies per year.

Q@

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

3.2 RQ1: What Methods to Handle Variability in
Software Systems Exist?

We now discuss studies on variability in software sys-

tems (studies are listed in the appendix, Table 15).

3.2.1 RQ1.1: What Types of Variability do these
Methods Handle?

To answer this question, we drew on data extracted based
on F15 (types of variability) from the data extraction form.
Overall, 128 studies focus on design time variability and
50 studies on runtime variability. The remaining 18 stud-
ies do not clearly differentiate between runtime and de-
sign time variability.

Observations. Design time variability can be consid-
ered the current trend in variability research. However,
recent trends, such as self-adaptive systems [43] runtime
orchestration of service-based systems [44] and the
emerging domain of dynamic product lines [45] has led to
increasing attention for runtime variability.

3.2.2 RQ1.2: What Activities in the Software
Development Process are Affected by these
Methods?

To answer this question, we used data extracted based on

F13 (activities addressed by approach) from the data ex-

traction form. We were interested in variability that could

occur anywhere in the software development cycle. De-
velopment activities addressed are similar to the software
engineering areas used for selecting search venues. There-
fore, the activities used during data analysis were re-
quirements engineering, architecture, design, implemen-
tation, testing and verification, and maintenance. We
found that some studies did not explicitly address any of
these activities, whereas other studies addressed more
than one activity. In cases where more activities were
addressed, we assigned studies to all activities they ad-

dress. Thus, the sum of the second column in Table 5

exceeds the number of studies.

Observations. Overall, 130 studies only address one
single activity. Table 5 shows that most studies deal with
variability in the architecture and design phase. Addi-
tionally, we found that 22 studies address both activities,
architecture and design (studies 39, 59, 61, 62, 65, 76, 80,
136, 138, 143, 146, 167, 169, 170, 171, 172, 173, 174, 187,
189, 191, 193). Only one study (ID 51) addresses six activi-
ties (all except design).

TABLE 5
Software Engineering Activities Addressed by Studies
Absolute %
Requirement engineering 32 13.0
Architecture 72 29.2
Design 86 34.8
Implementation 25 10.1
Testing and verification 5 2.0
Maintenance 27 10.9

3.2.3 RQ1.3: What Runtime and Design Time Quality
Attributes are Addressed by these Methods?

To answer RQ1.3, we used data extracted based on F9
(runtime quality attributes studied) and F10 (design time
quality attributes studied). To collect all possible quality
attributes and to be not limited to a fixed list, we did not
apply a predefined list of quality attributes. Instead, the
list of quality attributes emerged from the quality attrib-
utes extracted from the studies. Runtime quality attrib-
utes that have been mentioned in studies are:

* Availability (20 studies): Ability to be operational
and accessible when required for use [46].

* Evolvability (7 studies) and flexibility (21 studies):
Ability of a system to accommodate changes in re-
quirements through lifespan with low cost while
maintaining architectural integrity.

* Interoperability (4 studies): Ability to interact with
one or more specified system [47].

* Performance (24 studies): Ability to accomplish
designated functions within given constraints in
terms of speed, accuracy, or memory usage [46].

* Reliability (3 studies): Ability to perform required
functions under stated conditions for a specified
period of time [46].

* Scalability (3 studies): Ability of handling increase
in computing capacity [48].

* Security (2 studies): Ability of system to resist un-
authorized usage while still providing its service to
legitimate users [33].

* Safety (1 study): Ability to avoid catastrophic con-
sequences on the users and the environment [48].

Seven studies mention Quality of Service (QoS) in the

context of variability, without further specifying what
quality attribute QoS exactly refers to. Furthermore, some
approaches do not mention any runtime quality attribute
at all. Similarly, most studies do not explicitly discuss
design time quality attributes. Design time quality attrib-
utes addressed by studies include the following:

* Evolvability (4 studies)

* Flexibility (13 studies)

* Modifiability (including
maintainability; 4 studies)

* Portability (2 studies)

* Reusability (6 studies)

Observations. We could not identify sets of commonly

addressed runtime or design time quality attributes.
Runtime quality attributes are addressed more extensive-
ly than design time quality attributes. However, our re-
sults indicate that handling variability in quality attrib-
utes is usually not the focus of current approaches, i.e.,
variability in quality attributes is usually not expressed
explicitly. A reason for this is that many papers stem from
the product line domain which traditionally focuses on
variability in features (with features understood as sets of
functionality).

reconfigurability and

3.3 RQ2: What is the Evidence that Motivates the
Adoption of Existing Methods?

Evidence to adopt proposed methods is derived from
three types of information: The quality scores (F8) and the
evidence level (F12). Furthermore, we used the type of
study (F16) to investigate if there is a difference between
empirical and non-empirical papers. Finally, we used the
citation count to identify if there is any correlation be-
tween evidence and citations of a paper (F7).

Fig. 8 shows a frequency analysis of the scores for each
quality question in Table 3. Furthermore, Fig. 8 differenti-
ates scores for empirical and non-empirical studies. Most
studies provide a rationale for why the proposed work
would be needed (Q1). Also, most studies describe (at
least partially) the context in which they have been con-
ducted (Q2). However, most studies do not properly de-
scribe a research design (Q3) and fail to critically examine
the role of researchers involved in the study (Q5). Most
studies present only partial data that would support find-
ings from a study (Q4). Similarly, most studies present
only a limited discussion of their credibility (Q6). To iden-
tify whether there is a difference between empirical pa-
pers and non-empirical papers with regard to quality
scores, we performed a Mann-Whitney U test on two
independent groups (empirical papers, non-empirical
papers). The test showed a statistically significant differ-
ence with regard to all six quality questions. In general,
empirical studies achieved higher scores across all ques-
tions. This observation confirms that empirical studies are
conducted and reported in a more systematic and strict
manner. However, it is interesting that even the minority
of empirical papers critically examines the role of re-
searchers (Q5).

160

140

a

120

100

80

60

Frequency of scores

40

20

0

@Non-empirical DEmpirical

Fig. 8. Frequency analysis of quality scores for each question.

Fig. 9 shows the distribution of total quality scores.
The maximum total score is 6 (if a study received a score
of 1 for every quality question). Most studies received a
score between 1.5 and 3.5. This means, on average the
quality of the studies is neither perfect, nor does it sug-
gest that studies are completely flawed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

30

25

| ﬁ
15 4

Frequency of total scores

0 05 1 15 2 25 3 35 4 45 5 55
Total score

(o]

Fig. 9. Distribution of total quality scores.

In Table 6 we list the studies with the highest quality
scores (i.e., a quality score of 6 and 5.5). Study identifiers
(Study ID) used throughout the paper refer to the identi-
fiers of studies as used in Table 15 in the appendix.

TABLE 6
Studies with a total Quality Score of 6 and 5.5
Study ID |Quality score
5 6
16 6
42 6
46 6
57 6
17 55
52 5.5
59 55
66 5.5
144 55
146 5.5
187 55

In Table 7 we list the studies with at least 100 citations.
We list studies with the highest quality scores and a cita-
tion counts because these studies are more likely to be
used by researchers and practitioners. A citation count of
100 is chosen because this is the citation count of the top
15% papers. However, these numbers are only used as an
arbitrary threshold to point out high-quality studies. Ta-
ble 7 also includes the number of average citations until
2013, based on the publication year. There is no correla-
tion between the average citation count and the total
quality score for all 196 papers (Pearson’s correlation
coefficient r = 0.1167; r = 0.0396 if correlation between
total citation count and total quality score is computed).

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

TABLE 7

Studies with Citation Count > 100

Study ID |Citation count Average citation|Total quality
count score

5 428 71 6.0
7 198 15 1.0
11 130 12 45
14 168 17 3.5
17 229 25 55
20 126 14 2.5
29 173 35 25
33 491 49 3.5
35 192 21 2.0
38 197 20 5.0
45 107 13 35
50 150 30 2.5
54 202 29 45
75 114 19 4.0
76 193 21 3.0
81 128 11 4.5
85 108 12 4.0
96 116 11 3.0
97 124 11 3.0
113 171 21 4.0
124 218 44 35
134 101 34 2.5
135 197 20 1.5
145 380 48 1.5
170 345 43 2.0
173 681 52 2.5
185 167 28 2.0
192 225 25 1.5
194 106 35 45

The distribution of evidence levels is shown in Fig. 10
(according to evidence levels in Section 2.7). This figure
shows that most studies have a low evidence level and
evidence has only been obtained from demonstrations or
toy examples. On the other hand, there is no study that
shows industrial evidence. Furthermore, Fig. 10 shows
that many studies have the same evidence level (evidence
level 1) and thus cannot be differentiated based on the
evidence level. Finally, we list studies with the highest
evidence level in Table 8. Again, these studies are poten-
tially most relevant for researchers and practitioners.
Pearson’s correlation coefficients for evidence level versus
both the average citation count and the total citation
count are close to zero. Fifty-five papers are empirical
papers (i.e., include an empirical study, e.g., as part of
evaluating a method). The average quality score of empir-
ical papers is 3.8. The average quality score of other pa-
pers is 2.8. Similar as with quality scores, we found no
correlation between the average citation count and the
evidence levels of all papers (Pearson’s correlation coeffi-
cient r = 0.0344; r = -0.0084 for correlation between total
citation count and evidence levels).

Observations. Authors provide a description of the
motivation and context for the research, but research
design, data to support findings, and critical reflection are
poorly described. The total quality scores for the studies
are moderate, and although these numbers refer to the
way studies are reported, it is difficult to judge the quali-
ty of a study if it is poorly reported. Finally, most studies

have a low evidence level. Several researchers in the wid-
er software engineering community have repeated the
need for systematic evaluation, e.g., [49, 50]. Our study
confirms that this observation also applies to the variabil-
ity handling in software engineering.

Level 0, 19,
Level 5, 0, 0% 10%
Level 4, 25,

13%

Level 3, 26,
13%

Level 2, 20,
10%

Level 1, 106,
54%

Fig. 10. Distribution of evidence levels.

TABLE 8
Studies with Highest Evidence Level

Study ID’s Evidence level
3,6,17,19, 46,51, 57,74,87,92, 97,113, 116, 117,
118,122,126, 128, 129, 132, 146, 151, 165, 166, |4

195

3.4 RQ3: What are the Limitations of Existing
Methods?

To answer this question, we used field F14 of the data
collection form. Also, we analyzed data about tool sup-
port provided in studies (F11); lack of tool support would
be a limitation for the practical applicability of an ap-
proach. Based on the data from F14, we identified the
following recurring themes in reported limitations:

* Correctness and consistency are difficult to guaran-
tee; authors report the need for verification, con-
sistency checking, etc.

* Limitations regarding quality attributes, in particu-
lar performance overhead, lack of support for secu-
rity needs and dynamic features, such as runtime
upgradability.

* Poor user-friendliness, e.g. in terms of flexibility
and user support for variability handling.

* Limitations regarding the identification of variabil-
ity and variants, e.g., some authors report that
more advanced techniques such as data mining
could be applied.

Other limitations are related to specific issues, such as
notations or models to be used. With regard to tool sup-
port (F11) we found that 104 studies include some sort of
tool support. Sixty-seven studies do not provide tool
support and the remaining studies do not discuss any
tool support. Other limitations related to poor validation
or study quality have been discussed in Section 3.3.

Observations. The reported data confirm several find-
ings we already discussed, in particular, limited coverage
of quality attributes, poor validation, and the need for
better tool support. In addition, two identified tracks of

research that are required are the need for formal meth-
ods to provide guarantees about variability (consistency,
correctness), and disciplined approaches for composition
(variant binding), in particular runtime composition.
While additional costs are also reported as a limitation,
most studies do not provide details on the exact cost of
the proposed approaches, let alone a cost-benefit analysis.

4 DIScUSSION OF RESULTS

4.1 Application of Methods to Handle Variability in
Software Engineering

The results to RQ1 in Section 3.2 present the state-of-the-
art methods to handle variability. A further analysis of
papers showed that 46 papers are related to SOA. These
papers include 27 papers that are about runtime variabil-
ity. The data are available as supplementary material in a
technical report [39]. This could imply that there is a
strong belief in the research community that SOA is one
way of handling variability. On the other hand, SOA in
general seems to be a popular research area in the period
of our search that started in the year 2000. However, even
though SOA provides some “built-in” flexibility by dy-
namic service binding, a pure service-based solution is
not enough to thoroughly address variability. For exam-
ple, service-based systems are changed at runtime [51].
Consequently, to fully support variability in service-
based systems, events that occur in such systems must be
linked to rules to reason about variants. Also, as software
services may be consumed by anonymous consumers, it
becomes very difficult, if not impossible, to have a cen-
tralized authority that handles variability in the individu-
al parts of the system. Moreover, services are developed
and deployed independently in a networked environ-
ment and developers integrate services, third-party appli-
cations, organization-specific systems and legacy systems.
Thus, coordinating variability between different instances
of a system becomes difficult. This is particularly true
when considering the results in Section 3.2.2, which sug-
gest that many activities are affected by variability han-
dling. Additional research is required to tackle the chal-
lenges of variability handling in open service environ-
ments.

Furthermore, our results indicate that a fair share of
studies also concerns the activities of requirements, im-
plementation and maintenance. This confirms our state-
ment from the introduction that variability is a pervasive
topic, relevant throughout the software engineering cycle.
We only found one activity, testing, where variability has
been poorly addressed. Thus, investigating testing in the
context of variability is an interesting topic for future
research. Some initial work on testing in the context of
variability has been proposed in the product line domain
[52, 53].

With regard to quality attributes we found that per-
formance is addressed most, whereas quality attributes
such as security or safety are rarely a concern of variabil-
ity handling approaches. Overall, quality attributes still
play a minor role in the context of handling variability.
This is surprising because the importance of quality at-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

tributes has been acknowledged in the software architec-
ture domain. Consequently, studying the relationship
between quality attributes and variability is a promising
area for future work.

Another observation is that no particular technology
receives special attention in current work. This has the
benefit of current work being potentially widely applica-
ble. On the other hand, specifics of certain domains and in
particular complex domains (e.g., telecommunication,
medical devices, etc.) often require domain-specific solu-
tions. We consider the extension of variability approaches
for specific domains as a promising direction for future
work.

4.2 Applicability of Results in Practice

The results of RQ2 in Section 3.3 present available evi-
dence for the validity of approaches for variability han-
dling in software engineering. We obtained these findings
from the premium software engineering venues. Howev-
er, the moderate quality of how studies are reported
(quality questions) as well as the low evidence levels
imply that we should carefully interpret the validity of
approaches reported. On the other hand, the lack of any
sort of tool support (research prototypes, demos, plug-ins
for commerecial tools, etc.) makes it difficult for practition-
ers to use or at least explore any existing method and thus
inhibits the transfer of results from research into software
engineering practice. Researchers should provide more
tools in order to make the use of new approaches attrac-
tive for practitioners.

Another issue is that proposed methods have been ap-
plied to small systems but not to industry-scale projects.
Another concern of practitioners could be how approach-
es would affect development activities and where to
“plug in” variability handling. We have shown in Section
3.2.2 that most approaches relate to architecture and / or
design. However, we did not find clear information about
the real overhead involved in using systematic approach-
es for handling variability, compared to ad-hoc variability
handling.

To further analyze the applicability of the reported
methods for variability handing in practice, we evaluated
the relevance and rigor of current research. Relevance
refers to the potential impact of research on academia and
industry. To evaluate relevance, Ivarsson and Gorschek
use the realism of the environment in which studies are
conducted (e.g., the scale and context of a study). Thus,
we used evidence levels to evaluate relevance. As rec-
ommended in [54], relevance is scored binary; that is,
evidence level 4 or 5 are scored 1 for relevance, whereas
evidence levels 1 to 3 are scored 0 [55].

Rigor is about how an evaluation is performed and
how it is reported. If a study is poorly reported, rigor of
the evaluation cannot be evaluated properly [54].
Ivarsson and Gorschek propose a score for rigor based on
the extent to which context, study design, and validity are
described [54]. We mapped quality questions (Table 3) to
these factors as follows: "Q2: Is there an adequate de-
scription of the context in which the research was carried
out? ” was mapped to the ”Context” aspect, “Q3: Is there

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

a justification and description for the research design?”
was mapped to "Study design”, and “Q6: Are limitations
and credibility of the study discussed explicitly?” was
mapped to ”"Validity”. We used a similar numerical scor-
ing system as introduced in Section 2.6 to calculate the
rigor value (1 = “Strong”, 0 = “Weak”, and 0.5 = “Medi-
um”). A total rigor score was given to each study by
summing up the scores for all the questions (i.e., rigor =
Q2 + Q3 + Q6). Figure 11 shows the results for rigor and
relevance of the studies. The size of the bubbles in Figure
11 reflects the number of papers.

2

Relevance

Rigor

Fig. 11. Relevance versus rigor.

The five papers with highest rigor and relevance are
papers 17, 46, 51, 57 and 146. Three of these papers (17,
46, 146) address the design activity, architecting (51, 57,
146) and implementation (17, 46, 51). Testing is addressed
by one paper (51) and requirements engineering by two
papers (46, 51). Similarly, the papers with lowest rigor
and relevance are papers 10, 111, 138, 178, 181, 182, 183,
194, 186, 190 and 193. All these papers address different
development activities. Thus, relevance and rigor of stud-
ies do not depend on the development activity.

Overall, the center of gravity in Figure 11 shows that
relevance and rigor of the research studies is rather poor.
This confirms our finding of RQ2 that some reservation is
recommended when interpreting the validity of reported
approaches regarding applicability in practice.

4.3 Dimensions of Variability

The primary studies from the survey offer a basis to pro-
vide a more rigorous and holistic characterization of vari-
ability in software systems, beyond the mere notion of
variability as the ability to change or customize a system.
In this section, we present a classification of variability in
different dimensions that capture key facets of variability.
The goal of the classification is to establish a baseline
from which key aspects of variability of different types of
software systems can be identified and compared. It is not
our ambition to be conclusive, nor do we claim this is the
only possible classification of variability in software sys-
tems. However, we believe that the empirically grounded
set of core dimensions of the classification offers a basis
towards defining a comprehensive classification of key
properties of variability in software systems.

4.3.1 Definition of Dimensions

To define the dimensions, we started from an initial set of
candidate dimensions that we derived from insights
gained from the literature review and related studies that
classify aspects of variability and adaptability, including
[18, 24, 56]. The identified dimensions concern both the
description of variability and the realization and effects of
variant binding. The initial set consisted of 17 dimen-
sions.> Some of the identified dimensions related directly
to data collected during the literature review, others re-
lated only indirectly. For example, based on runtime
quality attributes (F9) and design time quality attributes
(F10), we identified requirement type as a dimension.
Similarly, we identified automation based on tool support
(F11). For each dimension, we identified a range of possi-
ble options (for example, dimension requirements type
has the options “functional” and “quality”). Then, we
performed a pilot study in which we applied the candi-
date dimensions to a representative set of primary studies
of this literature review: For each of the activities ad-
dressed by the studies (F14) we searched the top 20% of
studies with the highest quality score (F8). This selection
guarantees that we cover studies with the best quality of
reporting in the different phases of the software devel-
opment cycle. Each study was searched independently by
two reviewers and conflicts were resolved in discussion
with at least one extra reviewer.

During the initial phase of the pilot (in two iterations,
after collecting data for four and eight studies), we re-
vised the dimensions by removing several dimensions
because they are domain-specific rather than variability-
specific, including predictability, criticality and frequency
of binding; openness was removed as it was meant to
describe to what extent systems with variability are con-
strained, but differentiating between degrees of “con-
strainedness” is rather subjective; time to bind (i.e., how
long does it take to bind variants) was removed as this
information is rarely provided in studies. This resulted in
a stable set of eight dimensions that we used for the re-
mainder of the pilot. During data collection for this pilot,
we excluded primary studies that do not focus on particu-
lar aspects of variability and their use in software sys-
tems, such as taxonomies. We also added a few additional
options to some of the dimensions. For example, we add-
ed “scenario” as an option for artifact and “code genera-
tion” as an option for realization technique.

4.3.2 Overview of the Dimensions

Table 9 gives an overview of the dimensions. For each
dimension, we provide different options (“domain”) and
the number of studies of the pilot assigned to an option.
A detailed overview of the dimensions with examples
from the pilot is provided in Table 10 and Table 11.

The eight dimensions are grouped in two clusters. The
first cluster, type of variability, refers to the introduction

5 The initial set of dimensions included requirement type, variability
introduction phase, anticipation of variability, time of binding, frequency
of binding, trigger for variability, artifact affected by variability, variabil-
ity realization technique, binding entity, time to bind, locality of variabil-
ity, predictability of variability, impact of variability, criticality of varia-
bility, openness, orthogonality, and uniformity of variability.

and specification of variability. Based on the data collect-
ed in the pilot, we observe that the requirements that
variability addresses are approximately equally divided
between functional and quality requirements (require-
ment type). The dominating approaches to represent
variability are rules / conditions and variant labels/ an-
notations in software artifacts (representation). The pri-
mary elements that are subject of variability are architec-
ture and component (artifact), and the majority of the
studies specify variability in separated distinct artifacts
(orthogonality).

The second cluster, mechanisms of variability, refers to
the way variability is actually realized. The trigger to bind
variants mostly comes from stakeholders, followed by the
environment of the system (trigger). The dominant tech-
nical approaches for the realization of variability are se-
lection of variants followed by reorganization of system
artifacts (realization technique). The time when variants
are bound is approximately equally distributed over
software construction/evolution and runtime (time of
binding), and almost all studies provide some kind of tool
support to bind variants to variation points (automation).

TABLE 9
Dimensions of Variability

Type
Introduction and specification of variability

Dimension Domain (number of studies in pilot)

Functional (15)

Quality (17)

Feature model (4)
Rules/conditions (15)

Variant labels/annotations (7)
Profiles (4)

Change scenarios (2)

Requirement type

Representation

Artifact Scenario (5)
Business process (1)
Architecture (14)
Component (14)
Code fragment (5)

Variable (2)
Separated (15)
Integrated (7)
Mechanisms
How does variability take place or is brought about
Stakeholder (14)
Business process (1)
System (5)
Environment (8)

Orthogonality

Trigger

Realization technique |Reorganization (7)
Selection (18)
Value assignment (2)

Code generation (2)

Time of binding Software construction/evolution (10)
Runtime (13)
Automation Manual (3)

Semi-automatic (10)
Automatic (9)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

4.3.3 Evaluation of Dimensions

Evaluating a classification framework is in general a diffi-
cult task. A systematic evaluation, such as the one pro-
posed by Gomez-Perez [57], would require a formal spec-
ification of our classification framework, which is beyond
the scope of this study. Based on [57], we discuss three
important evaluation criteria of the proposed classifica-
tion: consistency, completeness, and expandability. Con-
sistency refers to whether it is possible to obtain contra-
dictory conclusions from applying the dimensions. After
an initial phase of the pilot, we defined accurate descrip-
tions of the dimensions and their options were straight-
forward to apply. While there are obvious relationships
between the dimensions, based on our experiences with
collecting the data during the pilot, we can conclude that
the dimensions cover disjoint but complementary facets
of variability. Completeness refers to the coverage of the
dimensions, and dimensions that may have been over-
looked. As explained, the intended scope of the classifica-
tion is not to be complete, but to define a set of core di-
mensions to describe and compare key facets of variabil-
ity. From our experiences with the review in general and
the pilot in particular, we conclude that the classification
covers a representative set of core dimensions for describ-
ing variability. As we used only a subset of primary stud-
ies, the ranges of some of the dimensions will not be
complete. For example, more options for realization tech-
nique may appear when the dimensions will be applied
to other studies. This brings us to expandability, which
refers to the ability for extending the classification (i.e.,
adding new dimensions to the classification and new
options to existing dimensions), without altering the set
of well-defined properties. The “open” nature of the pro-
posed classification allows researchers to easily add new
dimensions or options for dimensions.

4.3.4 Usefulness of the Classification

The classification offers a vocabulary for researchers and
engineers that allows specifying and comparing the vari-
ability properties under consideration in their studies and
projects. The dimensions can be used both during system
realization and reverse engineering activities. The dimen-
sions support software engineers with handling and de-
scribing the key facets of variability in their systems ex-
plicitly, which is crucial to make informed decisions.

The classification also enables comparison of variabil-
ity solutions across different systems and different do-
mains. If extended to a full classification that covers all
primary studies in this literature review, the classification
would be a great asset for identifying related work in a
specific area of variability, and identifying specific areas
in variability research that deserve further attention. We
leave this effort for future work.

In conclusion, we believe that this empirically ground-
ed classification provides a solid step towards a unifying,
integrated perspective of variability in software systems,
spanning across currently disparate or loosely coupled
research themes in the software engineering community.
Such unifying perspective has the potential to accelerate
the exchanges of ideas across research themes, reducing

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

duplicate efforts, and encouraging best practices. As an
example, we notice a high potential for exchanging ideas
between researchers from the areas of software product
lines and dynamic service adaptation. Applications of
variability in dynamic service adaptation offer solutions
that can be exploited to postpone variant binding in

product lines until runtime. Likewise, dynamic service
adaptation can exploit models for representing variability
from the area of software product lines. Two other areas
where the exchange of ideas offers interesting opportuni-
ties for research are variability in business processes and
variability in software architecture.

TABLE 10
Dimensions of Variability — Type Cluster

Requirement type - the type of requirement that variability should address

Functional: Variability addresses a function of a software system (or a part of it), i.e., a required functionality in terms of inputs, behavior,
and outputs.

Study 11 supports different types of missions of a command and controller simulator that are provided by optional components. In study
42, a workflow of a wine production process is extended with new variants of particular regions in the process to accommodate the pro-
duction of new wines differently branded.

Quality: Variability addresses a quality property of a system (or a part of it), that is, a non-functional property that indicates how well the
system delivers its functionality.

Study 47 supports interoperability of a Web Service implementation by a reconfigurable proxy that dynamically selects, tests and deploys
a proper set of adaptors when a new service is bound to the service API In study 2, an alternative service is selected and invoked when
the original service is not available.

Representation - the way variability is described

Feature model: Variability is represented as a compact, typically graphical description of all the valid products of a family of systems in
terms of combinations of features.

Study 118 uses a feature graph and links between features and requirements specifications to model requirements variability of a product
line.

Rules/conditions: Variability is represented by (or the representation is supported by) a set of rules or conditions that refer to elements or
artifacts that document/realize the system or family of systems.

Study 13 uses logical expressions and conditions that refer to elements of design patterns to express variants of the patterns. Study 146
employs decisions - which are defined by a name, type, condition, attributes, and effects - to describe variation points in a product line
and choices to derive products.

Variant labels/annotations: Variability is represented by (or the representation is supported by) labels or annotations added to artifacts
that document/realize the system or family of systems.

Study 54 annotates components with properties (e.g., required resources) to discriminate between alternatives, enabling dynamic selec-
tion of proper variants with highest utility for a given context.

Profiles: Variability is represented by profiles that provide descriptive summaries of users or artifacts in the environment (e.g., in the
form of a table, model or a set of expressions). Profiles are typically combined with other types of representations.

Study 81 employs meta-data (composition policy) together with a description of contextual information to dynamically select and add
services (extensions) to application components on a per usage basis (e.g., add authentication).

Change scenarios: Variability is represented by (or the representation is supported by) change scenarios that describe events, sequences
of events or options and how they affect a change of a system or family of systems.

In study 92, architects map a set of strategic scenarios (i.e., possible developments of the world relevant to the domain) to a set of architec-
ture scenarios, each specifying a specific set of choices in the variation model of a view; analysis of the scenarios supports decision mak-
ing for variability of the product line.

Artifact - element subject to variability

Scenario: The subject of variability is a scenario related to any aspect of the system or family of systems.

Study 24 distinguishes scenario variants based on annotated information, supporting evolution and traceability of scenarios. Study 28
employs a variability meta model to document requirements artifacts across product lines; the requirements artifacts specify the abstract
variants by using scenarios among others.

Business process: The subject of variability is a business process, i.e., a collection of related, structured activities or tasks that produce a
specific service or product.

Study 42 dynamically adapts/updates a workflow by selecting and replacing a new variant of a region in the workflow.

Architecture: The subject of variability is the software architecture of the system or family of systems.

Study 17 compares two or more candidate software architectures and selects the optimal candidate for different change scenarios. In

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

study 38, a chain of services is dynamically reconfigured to the most optimal configuration according to an adaptation policy.

Component: The subject of variability is a component of the software system or family of systems.

In study 37, a service can be dynamically adapted by selecting a replacement from a pool of services that fits best the current context.
Study 59 discusses an imaging server that offers images to clients, where a variant of the requested image is selected (scaled) with optimal
resolution based on the quality of client connections, arrival rate of requests, and CPU load.

Code fragment: The subject of variability is a fragment of source code of the system or family of systems.

Study 73 dynamically updates applications by adding, removing, or replacing methods of classes based on the difference between differ-
ent variants of the classes.

Variable: The subject of variability is a variable defined in the system or family of systems.

Study 54 supports parameterization of program variables allowing fine-grained adaptation at runtime. Study 146 supports fine-grained
variability in a steel plant automation system (among other types) with configuration variables for features such as colors and speed.

Orthogonality - separation of variability specification from the software systems

Separated: Variability is specified in distinct artifacts, separated from the artifacts that document/realize the system or family of systems.

Study 146 describes variability with a decision model (comprising a set of decisions, see rules/conditions option of representation) to-
gether with an asset model that describes the solution space to derive products in terms of assets, such as components, resources, etc.

Integrated: The specification of variability is interwoven within other artifacts that document/realize a system or family of systems.

Study 51 associates variant labels to data elements of a database to capture the variants to which the elements apply. In study 11, variabil-
ity is embedded in the implementation of the classes by means of an inheritance refinement hierarchy and state machines.

TABLE 11
Dimensions of Variability — Mechanism Cluster

Trigger - the source that initiates the binding of variants to variation points

Stakeholder: Variant binding is initiated by a stakeholder, i.e., a person with an interest in the system or family of systems.

In study 56, user commands trigger the selection of variants of GUI forms that guide a user through a process of generating legal docu-
ments.

Business process: A business process triggers variant binding.

In study 42, the firing conditions of a transition in a business process trigger the execution of a variant of a region of the process.

System: Variant binding is triggered by the system.

In study 5, a service system optimizes its workflow by replacing services with services of better quality when the current quality of ser-
vice differs from the prediction by more than a given threshold.

Environment: An artifact in the environment triggers variant binding.

In study 54, changes of the context, including computing resources, quality of the network, and physical location trigger the system to
replace components by variants that guarantee better utility.

Realization technique - technical approach to realize variability

Reorganization: Variability is realized by reorganizing the structure or behavior of the system artifacts.

In study 38, environmental changes trigger a configuration manager to dynamically reconfigure a service chain according to an adapta-
tion policy. In study 42, different variants of a region in a business process can be triggered for execution, each determining a different
flow in the execution of the business process.

Selection: Variability is realized by selection of a variant among a set of variants and binding that variant to a variation point.

In study 118, product line requirements are specified using annotations that represent features. Feature selection results in product-
specific requirements specifications. In study 5, when a service invocation fails, a new service is selected among available variants that
optimizes the overall quality of service of the composite service.

Value assignment: Variability is realized by assigning a value to a variation point.

In study 146, values are assigned to configuration parameters of a steel plant automation system for features such as colors, UI appear-
ance, speed, and amount.

Code generation: Variability is realized by generating the code of a variant that is bound to a variation point.

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

Study 51 employs variant labels attached to data elements of a database or relations between data elements to generate variant specific
code for a product of an avionic product line.

Time of binding - time when variants are bound to variation points

Software construction/evolution: Variants are bound to variation points during system construction (design, realization, instantiation),
or evolution.

In study 13, a designer selects alternatives and options specified in a design pattern to derive a pattern variant for the problem at hand. In
study 17, an analyst selects the best architecture among a set of variants during system development based on the impact analysis for a

set of modifiability scenarios.

Runtime: Variants are bound to variation points during system operation.

ing matching services from a repository of variants.

Study 55 supports dynamic content adaptations of mobile devices based on device profiles and users’ service level agreements by select-

Automation - degree of support to automate variant binding

Manual: Variant binding is a manual effort.

In study 92, architects select a specific set of choices in the variation models of different architectural views for different change scenarios;
these choices provide variants that are used for strategic decision making about supported variability.

Semi-automatic: Variant binding is performed manually but supported by tools.

variability information for a product line of interest.

Study 24 provides automation support for managing scenario evolution by enabling users to define new scenarios and select a scenario
among the available variants. In study 28, a tool supports users to model requirements variability across a set of product lines and select

Automatic: Variant binding is fully automated.

In study 81, interceptors intercept component interactions and dynamically determine which services (extensions) need to be selected and
deployed based on a composition policy and context information of the current execution.

4.4 Variability Handling in Software Engineering
versus Variability Management in SPL
Some of our findings confirm results from recent reviews
on variability management in software product line engi-
neering [19, 20, 58]. For example, no study on variability-
related issues has been published in empirical venues. On
the other hand, reviews on variability management in
product lines found that the premium event of product
line engineering (SPLC) does not have a clear dominance
when it comes to studies on variability. In contrast, we
found that SPLC is the dominating conference for pub-
lishing variability-related research. This difference could
be due to the fact that Chen and Babar [19] performed an
automated search on many sources. This caused the re-
sults being spread across a large number of venues. Fur-
thermore, Chen and Babar’s study has a smaller scope,
i.e., variability management instead of handling variabil-
ity.
Also, similar to the reviews on variability management
in product lines, we found that most current work does
not provide sufficient support for the claimed utility of
proposed approaches and uses less rigorous evaluation.
This could also be a reason why no studies on variability
have been published in empirical venues.

Finally, approaches for variability management in
product lines share significant commonalities (e.g., the
notion of feature and feature modeling). However, we did
not find such commonalities in the context of variability
handling in software engineering. Thus, a reference mod-
el for variability handling as suggested by Chen and Ba-

bar might be difficult to achieve in software engineering
in general.

5 DEVIATIONS FROM REVIEW GUIDELINES,
THREATS TO VALIDITY AND ASSESSMENT OF
REVIEW

5.1 Deviations from Systematic Literature Review
Guidelines

Even though we followed Kitchenham’s and Charters’

procedures for systematic reviews [5], we deviated from

these guidelines in two ways.

First, the search was performed as a manual search, in-
cluding a set of specific journals and conference proceed-
ings, rather than using an automated search. We believe
that this is a valid deviation: As argued by Brereton et al.
[10], current search engines for software engineering
venues are not designed to support systematic literature
reviews. Using a manual search is consistent with strate-
gies followed by other researchers (such as [11]). Com-
pared to [11], our study includes almost twice as many
venues as well as covers a broader time range. A more
detailed justification for the manual search was presented
in Section 2. However, a limitation of the targeted manual
search is that we may have missed some relevant studies
published at venues that we did not include in our search,
and therefore provided an incomplete insight into varia-
bility in software systems. In particular, we have missed
articles published in national journals or conferences, or
workshops. We also have missed articles in conferences

aimed at specific software engineering topics, outside the
generic phases of software engineering. We have also
omitted an extensive search of technical reports and the-
ses as good quality grey literature would eventually ap-
pear as journal or conference papers. Thus, our results
must be qualified as applying to studies published in
major international software engineering journals and
conferences. To mitigate the problem of missing studies
published in major international software engineering
journals and conferences, we conducted a limited target-
ed automated search.

Second, for each study a single researcher extracted the
data and another researcher checked the data extraction.
Even though this deviates from Kitchenham’s and Char-
ters” guidelines, this practice has been suggested by Brere-
ton et al. [10]. A consequence of our approach is that
some of the data that we collected may be erroneous. As
outlined by Turner et al. [59], such an extractor / checker
mode can lead to problems in cases where a large number
of studies has to be analyzed. This is particularly true for
the quality assessment, as the evaluation of quality crite-
ria may be subjective. On the other hand, having several
extractors per paper is even less feasible for a large num-
ber of studies, and having no checker per paper would
have caused more erroneous data.

5.2 Threats to Validity

First, the review process assumed a common understand-
ing among all reviewers about the search and analysis
methods. Misunderstandings of concepts could potential-
ly cause biased results. This threat was mitigated by hav-
ing the review protocol provided to all reviewers and
discussed before the start of the review to ensure a selec-
tion process as unbiased as possible.

Second, during the review we found that some papers
poorly describe approaches or did not provide enough
information to appropriately collect the data as outlined
in the protocol. Therefore, we had to infer certain pieces
of information during the data extraction process. To
minimize the possibility of introducing inaccuracy in the
extracted data, we a) recorded data as presented in the
study, and b) discussed among researchers to clarify am-
biguity during the review process.

Third, we limited the search by starting in the year
2000. This may affect the completeness of our search re-
sults as our review does not include research published
before the year 2000. However, as shown in a previous
study, only a very small number of papers on variability
management has been published in the product line do-
main before the year 2000 [20]. Furthermore, we limited
the search based on selected venues using the ranking of
the Australian Research Council and the H-index. Differ-
ent ranking and quality indicators could lead to different
venues included in the search.

Fourth, we could have collected additional infor-
mation, e.g., about the scalability of approaches, or the
size of models used in approaches. However, this kind of
data is often not reported in studies and thus would re-
quire speculation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

5.3 Assessment of Review

We evaluate our systematic review against a set of four
quality questions for systematic reviews proposed by
Kitchenham et al. [11]:

1. Are inclusion and exclusion criteria described and
appropriate? This criterion is met as we explicitly
defined and explained inclusion and exclusion cri-
teria in the study.

2. Is the literature search likely to have covered all
relevant studies? According to Kitchenham et al,,
this criterion would have been met if either four or
more digital libraries and additional search strate-
gies had been identified, or if all journals address-
ing the topic of interest had been identified. As we
cannot claim that we included all relevant jour-
nals, but specified a restricted set of journals and
conferences, we consider this criterion as partially
met. We could, for example, have included confer-
ence venues from the agile software engineering
domain.

3. Did the reviewers assess the quality / validity of
the included studies? We consider this criterion as
met as we have explicitly defined quality criteria
and carefully selected search venues based on
their quality. We extracted quality criteria from
each primary study, instead of merely formulating
research questions which target quality issues.

4. Were the basic data / studies adequately de-
scribed? We consider that this criterion is met as
we used a detailed data collection form for each
study. This data collection form was piloted.

6 CONCLUSIONS

We performed a systematic literature review to study
variability handling in software engineering to support
variability in software systems. Our focus was on re-
search studies reported in the primary software engineer-
ing journals and conferences.

The study results show that many methods for varia-
bility handling still lack evidence for the validity of pro-
posed approaches. Thus, to increase evidence and to
make studies more attractive for practitioners, we rec-
ommend the following;:

1. Researchers should provide more data to support
findings and to convince practitioners about the
validity of new proposals.

2. To allow other researchers to understand ap-
proaches properly, details on the research design
should be provided, including elaborations on the
credibility of findings.

3. More empirical experiments and industrial stud-
ies should be performed, not only to increase va-
lidity of proposals, but also to address needs of
industrial software development.

We employed the results of the literature review to
provide a unifying, integrated perspective of variability
in software systems. The resulting classification of varia-
bility in different dimensions as outlined in Section 4.3
captures key facets of variability, allowing researchers

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

and engineers to identify and compare their approaches
for variability handling in different types of software
systems. The empirically grounded set of core dimensions
offers a basis that researchers and engineers can extend
with additional dimensions and new options towards
defining a comprehensive classification of key properties
of variability in software systems.

Based on the study findings, we point to the following
interesting opportunities for future research:

Research on handling variability with respect to
quality attributes (beyond performance and avail-
ability) is required.

2. Further research is required to develop disciplined
approaches for handling variability in open ser-
vice-based systems.

3. Research on testing and verification in the context
of variability handling are interesting areas for fu-
ture research.

4. A classification of the complete set of primary
studies of this literature review with the dimen-
sions would provide a solid basis for identifying
related work in sub-fields of variability handling.

5. To further enhance our understanding of variabil-
ity handling, this survey could be complemented
by looking at other research areas that employ
principles from variability modeling, such as the
literature on knowledge modeling in the artificial
intelligence community and feature interaction
that can also be seen as a way to manage or handle
variability.

Finally, we believe that the strength of our review lies
in a) the manual search of selected quality venues and
journals, complemented by a targeted automated search
to increase reliability of results and reproducibility, and
b) the broad perspective on variability which we could
get through the manual search. However, we do not share
the experience reported by Kitchenham et al. that manual
search takes less effort than an automated search [35].

20

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 14

Number of Conference Papers Searched, and Papers left
after each Search Stage

Venue |Papers searched|Papers after Stage 1|Papers after Stage 2
ASE 713 39 19
CAIiSE |489 59 13
EASE 116 7 2
ECOOP (337 3 1
ECSA |168 25 10
FSE 452 20 10
GPCE |221 45 5
ICSE 1206 43 21
ICSM 887 22 11
ICST 214 3 3
ISSTA |233 2 0
MODELS|542 46 8
OOPSLA (422 4 2
QoSA |91 10 5
RE 639 30 11
SLE 87 12 4
SPLC 325 97 79
WICSA |297 37 18
Sum 7439 504 222

APPENDIX
TABLE 12
Sources of Searched Venues
Venue |Source
ASE] SpringerLink
ESE SpringerLink
IEEE SW |IEEE Xplore
IST ScienceDirect
JSS ScienceDirect
RE] SpringerLink
SCP ScienceDirect
SMRP |Wiley Online Library
SoSyM |SpringerLink
SPE Wiley Online Library
STVR Wiley Online Library
TOSEM |ACM Digital Library
TSE IEEE Xplore
ASE ACM Digital Library, IEEE Xplore
CAiSE |SpringerLink, DBLP
EASE IEEE Xplore (special issue of IET Software), BCS
ECOOP |SpringerLink
ECSA |SpringerLink, IEEE Xplore
FSE ACM Digital Library
GPCE |DBLP, ACM Digital Library, SpringerLink
ICSE ACM Digital Library, IEEE Xplore
ICSM IEEE Xplore
ICST IEEE Xplore
ISSTA |ACM Digital Library
MODELS|SpringerLink, DBLP
OOPSLA |ACM Digital Library
QoSA SpringerLink
RE IEEE Xplore
SLE SpringerLink, DBLP
SPLC ACM Digital Library, DBLP, IEEE Xplore, Spring-
erLink
WICSA |IEEE Xplore

Number of Journal Papers Searched, and Papers Left

TABLE 13

after each Search Stage

Venue |Papers searched |Papers after Stage 1 |Papers after Stage 2
ASE]J 168 13 5
ESE 306 7 1
IEEE SW|1509 53 14
IST 1098 39 24
JsS 1729 78 38
RE] 217 15 6
SCP 647 34 19
SMRP |232 28 15
SoSyM |263 13 9
SPE 759 41 17
STVR |128 1 0
TOSEM (171 7 4
TSE 764 40 16
Sum 7991 368 168

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

TABLE 15
Studies Included in the Final Review
ID |Authors Year |Title Venue
1|L. Andrade et al. 2001 |Enforcing business policies through automated reconfiguration ASE
2|V. Antonellis et al. 2006 |A layered architecture for flexible web service invocation SPE
3|L. Apvrille et al. 2004 |Verifying service continuity in a dynamic reconfiguration procedure: application to a|ASE]
satellite system
4|D. Ardagna et al. 2007 |PAWS: a framework for executing adaptive web-service processes IEEE SW
5|D. Ardagna, B. Pernici 2007 |Adaptive service composition in flexible processes TSE
6[M. Ardis et al. 2000 |Software product lines: a case study SPE
7|C. Atkinson et al. 2000 |Component-based product line development: the KobrA approach SPLC
8|M. Ali Babar et al. 2010 |Managing variability in software product lines IEEE SW
9|L. Baresi et al. 2006 |Style-based modeling and refinement of service-oriented architectures SoSyM
10|1. Barone et al. 2008 |COMOVER: Concurrent model versioning ICSM
11|D. Batory et al. 2002 |Achieving extensibility through product-lines and domain-specific languages: a case| TOSEM
study
12|D. Batory et al. 2002 |Generating product-lines of product-families ASE
13|1. Bayley, H. Zhu 2010 |Formal specification of the variants and behavioural features of design patterns JES)
14|P. Bellavista et al. 2003 |Context-aware middleware for resource management in the wireless Internet TSE
15(S. Mokhtar et al. 2007 |COCOA: COnversation-based service COmposition in pervAsive computing envi-|JSS
ronments with QoS support
16|H. Benestad et al. 2009 |Understanding software maintenance and evolution by analyzing individual changes:[SMRP
a literature review
17|P. Bengtsson et al. 2004 | Architecture-level modifiability analysis (ALMA) Jss
18|1. Ben-Shaul et al. 2001 |Dynamic adaptation and deployment of distributed components in Hadas TSE
19|D. Beuche et al. 2007 |Using requirements management tools in software product line engineering: the state|SPLC
of the practice
20|D. Beuche et al. 2004 |Variability management with feature models SCP
21|P. Boinot et al. 2000 |A declarative approach for designing and developing adaptive components ASE
22|]. Bosch 2004 |On the development of software product-family components SPLC
23|A. Braganca, R. Machado 2006 |Extending UML 2.0 metamodel for complementary usages of the <<extend>> rela-|SPLC
tionship within use case variability specification
24|K. Breitman et al. 2005 |Supporting scenario evolution RE]J
25|P. Brito et al. 2009 |Verifying architectural variabilities in software fault tolerance techniques ECSA
26|A. Brogi et al. 2006 |On the semantics of software adaptation SCP
27|A. Brogi et al. 2006 |Component adaptation through flexible subservicing SCP
28|S. Buhne et al. 2005 |Modelling requirements variability across product lines RE
29|G. Canfora et al. 2008 | A framework for QoS-aware binding and re-binding of composite web services Jss
30{]. Cao etal. 2003 |Dynamic configuration management in a graph-oriented distributed programming|SCP
environment
31|J. Caoetal. 2006 |An interactive service customization model IST
32|M. Caporuscio et al. 2007 |Model-based system reconfiguration for dynamic performance management Jss
33|L. Capra et al. 2003 |CARISMA: context-aware reflective middleware system for mobile applications TSE
34|V. Cardellini et al. 2009 |Qos-driven runtime adaptation of service oriented architectures FSE
35|H. Cervantes, R. Hall 2004 |Autonomous adaptation to dynamic availability using a service-oriented component|ICSE
model
36|C. Cetina et al. 2009 |Strategies for variability transformation at run-time SPLC
37|T. Chaari et al. 2007 |A comprehensive approach to model and use context for adapting applications in|JSS
pervasive environments
38|A. Chan, C. Siu-Nam 2003 |MobiPADS: a reflective middleware for context-aware mobile computing TSE
39|S. Chang, S. Kim 2007 |A variability modeling method for adaptable services in service-oriented computing |SPLC
40|L. Chen et al. 2009 |Variability management in software product lines: a systematic review SPLC
41|M. Chu-Carroll et al. 2002 |Supporting aggregation in fine grained software configuration management FSE
42|F. Cicirelli et al. 2010 |A service-based architecture for dynamically reconfigurable workflows Jss
43|M. Coriat et al. 2000 |The SPLIT method: building product lines for software-intensive systems SPLC
44|C. Costa et al. 2007 |Dynamic reconfiguration of software architectures through aspects ECSA
45|C. Courbis, A. Finkelstein 2005 |Towards aspect weaving applications ICSE
46|S. Deelstra et al. 2009 |Variability assessment in software product families IST
47|G. Denaro et al. 2009 |Ensuring interoperable service-oriented systems through engineered self-healing FSE
48|D. Dhungana et al. 2008 |Supporting the evolution of product line architectures with variability model frag-|WICSA
ments
49|G. Modica et al. 2009 |Dynamic SLAs management in service oriented environments JSS
50|E. Nitto et al. 2008 | A journey to highly dynamic, self-adaptive service-based applications ASE]
51|F. Dordowsky, W. Hipp 2009 |Adopting software product line principles to manage software variants in a complex|SPLC
avionics system

21

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
52|N. Duzbayev, I. Poernomo |2007 |Pre-emptive adaptation through classical control theory QoSA
53|Y. Eracar, M. Kokar 2000 |An architecture for software that adapts to changes in requirements JSS
54|]. Floch et al. 2006 |Using architecture models for runtime adaptability IEEE SW
55|M. Forte et al. 2008 |Using ontologies and web services for content adaptation in ubiquitous computing |JSS
56|C. Fritsch, B. Renz 2004 |Four mechanisms for adaptable systems SPLC
57|K. Fung, G. Low 2009 |Methodology evaluation framework for dynamic evolution in composition-based|JSS

distributed applications
58|C. Ghezzi et al. 2010 |QoS driven dynamic binding in-the-many QoSA
59|1. Gorton et al. 2008 |An extensible and lightweight architecture for adaptive server applications SPE
60|A. Gruler et al. 2007 |Development and configuration of service-based product lines SPLC
61|]. van Gurp et al. 2010 |Comparing practices for reuse in integration-oriented software product lines and|SPE
large open source software projects
62(S. Hallsteinsen et al. 2006 |Using product line techniques to build adaptive systems SPLC
63|A. Harhurin, J. Hartmann |2008 |Service-oriented commonality analysis across existing systems SPLC
64|R. Hirschfeld, K. Kawamura [2006 |Dynamic service adaptation SPE
65|A. van der Hoek et al. 2001 |Taming architectural evolution FSE
66(M. Karam et al. 2008 |A product-line architecture for web service-based visual composition of web applica-|JSS
tions
67|M. Koning et al. 2009 |VxBPEL: supporting variability for web services in BPEL IST
68|]. Lee, K. Kang 2006 |A feature-oriented approach to developing dynamically reconfigurable products in|SPLC
product line engineering
69|]. Lee, G. Kotonya 2010 |Combining service-orientation with product line engineering IEEE SW
70|]. Lee et al. 2008 |An approach for developing service oriented product lines SPLC
71|E. Niemeld, A. Immonen 2007 |Capturing quality requirements of product family architecture IST
72|C. Parra et al. 2009 |Context awareness for dynamic service-oriented product lines SPLC
73|S. Previtali, T. Gross 2006 |Dynamic updating of software systems based on aspects ICSM
74(R. Schantz et al. 2006 |Controlling quality-of-service in distributed real-time and embedded systems via|SPE
adaptive middleware
75|M. Sinnema, S. Deelstra 2007 |Classifying variability modeling techniques IST
76|M. Sinnema et al. 2004 |COVAMOF: a framework for modeling variability in software product families SPLC
77|C.Sun et al. 2010 |Modeling and managing the variability of web service-based systems Jss
78|H. Sun et al. 2009 |Product-line-based requirements customization for web service compositions SPLC
79|M. Svahnberg et al. 2005 |A taxonomy of variability realization techniques SPE
80|S. Thiel, A. Hein 2002 |Systematic integration of variability into product line architecture design SPLC
81|E. Truyen et al. 2001 |Dynamic and selective combination of extensions in component-based applications [ICSE
82|]. van Gurp, J. Savolainen |2006 |Service grid variability realization SPLC
83|Y. Wang, J. Mylopoulos 2009 |Self-repair through reconfiguration: a requirements engineering approach ASE
84|1. Warren et al. 2006 |An automated formal approach to managing dynamic reconfiguration ASE
85|E. Wohlstadter et al. 2004 |GlueQoS: middleware to sweeten quality-of-service policy interactions ICSE
86(S. Yau et al. 2008 |Specification, decomposition and agent synthesis for situation-aware service-based|JSS
systems
87|H. Zhang, S. Jarzabek 2004 |XVCL: a mechanism for handling variants in software product lines SCP
88|A. Zisman et al. 2008 |A framework for dynamic service discovery ASE
89|N. Aguirre, T. Maibaum 2002 |A temporal logic approach to the specification of reconfigurable component-based|ASE
systems
90(S. Ajila, Ali Kaba 2008 |Evolution support mechanisms for software product line process Jss
91|V. Alagar et al. 2003 |A rigorous approach for constructing self-evolving real-time reactive systems IST
92|P. America et al. 2004 |Scenario-based decision making for architectural variability in product families SPLC
93|T. Asikainen et al. 2006 |A unified conceptual foundation for feature modelling SPLC
94|P. Bachara et al. 2010 |Framework for application management with dynamic aspects J-EARS case study IST
95|L. Baresi et al. 2004 |Style-based refinement of dynamic software architectures WICSA
96|M. Bernardo et al. 2002 | Architecting families of software systems with process algebras TOSEM
97|]. Bosch 2002 |Maturity and evolution in software product lines: approaches, artefacts and organiza-|SPLC
tion
98|G. Botterweck et al. 2008 |Visual tool support for configuring and understanding software product lines SPLC
99|A. Braganca, R. Machado 2007 |Automating mappings between use case diagrams and feature models for software|SPLC
product lines
100|T. Brown et al. 2002 |Adaptable components for software product line engineering SPLC
101|A. Bucchiarone et al. 2009 |Self-repairing systems modeling and verification using AGG WICSA
102|P. Buhr, W. Mok 2000 |Advanced exception handling mechanisms TSE
103|R. Capilla, M. Ali Babar 2008 |On the role of architectural design decisions in software product line engineering ECSA
104|C. Cetina et al. 2008 | Applying software product lines to build autonomic pervasive systems SPLC

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

tion

105|F. Chauvel et al. 2010 |Using QoS-contracts to drive architecture-centric self-adaptation QoSA
106|H. Chu et al. 2004 |Roam, a seamless application framework JSS
107|L. Chung, N. Subramanian (2003 |Architecture-based semantic evolution of embedded remotely controlled systems SMRP
108|]. Cobleigh et al. 2002 |Containment units: a hierarchically composable architecture for adaptive systems FSE
109|A. Colman, J. Han 2007 |Using role-based coordination to achieve software adaptability SCP
110|C. Costa-Soria et al. 2008 |Managing dynamic evolution of architectural types ECSA
111|E. Curry, P. Grace 2008 |Flexible self-management using the model-view-controller pattern IEEE SW
112|K. Czarnecki et al. 2008 |Sample spaces and feature models: there and back again SPLC
113|S. Deelstra et al. 2005 |Product derivation in software product families: a case study Jss
114|]. Dehlinger, R. Lutz 2006 |PLFaultCAT: a product-line software fault tree analysis tool ASE]
115|]. Dehlinger, R. Lutz 2008 |Supporting requirements reuse in multi-agent system product line design and evolu-{ICSM

engineering

116|C. Rosso 2008 |Software performance tuning of software product family architectures: two case|JSS
studies in the real-time embedded systems domain
117|D. Dhungana et al. 2010 |Structuring the modeling space and supporting evolution in software product line|JSS

transparency

118|M. Eriksson et al. 2009 |Managing requirements specifications for product lines - an approach and industry|JSS
case study
119]]. Estublier, G. Vega 2005 |Reuse and variability in large software applications FSE
120|L. Etxeberria, G. Sagardui |2008 |Variability driven quality evaluation in software product lines SPLC
121|A. Fantechi, S. Gnesi 2008 |Formal modeling for product families engineering SPLC
122|S. Faulk 2001 |Product-line requirements specification (PRS): an approach and case study RE
123]|Q. Feng, R. Lutz 2005 |Bi-directional safety analysis of product lines JES)
124|E. Figueiredo et al. 2008 |Evolving software product lines with aspects ICSE
125|A. Fortier et al. 2010 |Dealing with variability in context-aware mobile software Jss
126|G. Gannod, R. Lutz 2000 |An approach to architectural analysis of product lines ICSE
127|A. Garg et al. 2003 | An environment for managing evolving product line architectures ICSM
128|K. Geihs et al. 2009 |A comprehensive solution for application-level adaptation SPE
129|M. Goedicke et al. 2004 |Designing runtime variation points in product line architectures: three cases SCP
130|H. Gomaa, M. Hussein 2004 |Software reconfiguration patterns for dynamic evolution of software architectures WICSA
131|B. Gonzales-Baixauli, etal. |2004 |Visual variability analysis for goal models RE
132|A. Gregersen, B. Jorgensen 2009 |Dynamic update of Java applications - balancing change flexibility vs programming|SMRP

133|R. Gumzej et al. 2009 | A reconfiguration pattern for distributed embedded systems Jss
134|A. Hallerbach et al. 2010 |Capturing variability in business process models: the Provop approach SMRP
135|G. Halmans, K. Pohl 2003 |Communicating the variability of a software-product family to customers Jss
136|M. Abu-Matar, H. Gomaa |2011 |Variability Modeling for Service Oriented Product Line Architectures SPLC
137|R. Ali et al. 2010 |A goal-based framework for contextual requirements modeling and analysis RE]
138| A. C. Contieri et al. Extending UML components to develop software product-line architectures: lessons

2011 |learned ECSA
139|P. Asirelli et al. 2011 |Formal Description of Variability in Product Families SPLC
140|R. Baird et al. 2011 |Self-adapting workflow reconfiguration Jss
141|]. Ferreira Bastos et al. 2011 |Adopting software product lines: a systematic mapping study EASE
142|T. Berger et al. 2010 |Variability modeling in the real: a perspective from the operating systems domain ASE
143|R. Cavalcanti et al. 2011 |Extending the RiPLE-DE process with quality attribute variability realization QoSA

144

L. Chen, M. Ali Babar

A systematic review of evaluation of variability management approaches in software

2011 |product lines IST
145|K. Czarnecki, M. Antkiewicz Mapping Features to Models: A Template Approach Based on Superimposed Vari-

2005 |ants GPCE
146|D. Dhungana et al. The DOPLER meta-tool for decision-oriented variability modeling: a multiple case

2011 |study ASE]
147|M. Erwig 2010 |A language for software variation research GPCE
148|M. Erwig, E. Walkingshaw |2011 |The Choice Calculus: A Representation for Software Variation TOSEM

149

N. Esfahani, S. Malek

2010

On the role of architectural styles in improving the adaptation support of middleware
platforms

ECSA

150

J. Feigenspan et al.

Using background colors to support program comprehension in software product

2011 |lines EASE
151|M. Galster, P. Avgeriou 2011 |Handling Variability in Software Architecture: Problems and Implications WICSA
152|N. Gui et al. 2011 |Toward architecture-based context-aware deployment and adaptation JSS
153|A. Haber et al. 2011 |Hierarchical Variability Modeling for Software Architectures SPLC

154

A. Heuer et al.

Formal Definition of Syntax and Semantics for Documenting Variability in Activity

2010 |Diagrams SPLC
155|C. Kaestner et al. Variability-aware parsing in the presence of lexical macros and conditional compila-
2011 |tion OOPSLA

23

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

156/S. Kato, N. Yamaguchi Variation Management for Software Product Lines with Cumulative Coverage of

2011 |Feature Interactions SPLC
157]]. Liebig, et al. 2010 |An analysis of the variability in forty preprocessor-based software product lines ICSE
158|X. Peng et al. Analyzing evolution of variability in a software product line: From contexts and

2011 |requirements to features IST
159|M. Rosenmueller et al. 2011 |Tailoring dynamic software product lines GPCE
160|M. Rosenmueller et al. 2011 |Flexible feature binding in software product lines ASE]
161|U. Ryssel 2010 |Automatic variation-point identification in function-block-based models GPCE
162|K. Schmid Variability Modeling for Distributed Development - A Comparison with Established

2010 |Practice SPLC
163]]. Sincero et al. 2010 |Efficient extraction and analysis of preprocessor-based variability GPCE
164|C. Thorn Current state and potential of variability management practices in software-intensive

2010 |SMEs: Results from a regional industrial survey IST
165|M. Vierhauser et al. 2010 |Flexible and scalable consistency checking on product line variability models ASE
166|D. Weyns et al. 2011 | An Architectural Approach to Support Online Updates of Software Product Lines WICSA
167|M. Acher et al. 2010 |Composing Feature Models SLE
168|M. Alferez et al. 2010 |Multi-view Composition Language for Software Product Line Requirements SLE
169|V. Andrikopoulos et al. 2008 |Managing the Evolution of Service Specifications CAIiSE
170|D. Benavides et al. 2005 |Automated Reasoning on Feature Models CAIiSE
171|]. Bergh, K. Coninx 2006 |CUP 2.0: High-Level Modeling of Context-Sensitive Interactive Applications MODELS
172 An Aspect Oriented Approach for Context-Aware Service Domain Adapted to E-

K. Boukadi et al. 2008 |Business CAIiSE
173|F. Casati et al. 2000 |Adaptive and Dynamic Service Composition in eFlow CAIiSE
174|M. Cengarle et al. 2009 | Variability within Modeling Language Definitions MODELS
175|F. Dalpiaz et al. 2009 |An Architecture for Requirements-Driven Self-reconfiguration CAIiSE
176/C. Dorn, S. Dustdar 2010 |Interaction-Driven Self-adaptation of Service Ensembles CAISE

177 A Domain Specific Modeling Language Supporting Specification, Simulation and
F. Fleurey, A. Solberg 2009 |Execution of Dynamic Adaptive Systems MODELS
178|G. Halmans et al. 2008 |Documenting Application-Specific Adaptations in Software Product Line Engineering | CAiSE

179 Model Composition in Product Lines and Feature Interaction Detection Using Critical

P. Jayaraman et al. 2007 |Pair Analysis MODELS
180|P. Lahire et al. 2007 |Introducing Variability into Aspect-Oriented Modeling Approaches MODELS
181|B. Morin et al. 2009 |Weaving Variability into Domain Metamodels MODELS
182|A. Reuys et al. 2005 |Model-Based System Testing of Software Product Families CAIiSE
183|S. Shiraishi 2010 |An AADL-Based Approach to Variability Modeling of Automotive Control Systems |MODELS
184|A. Shui et al. 2005 |Exceptional Use Cases MODELS
185 Change Patterns and Change Support Features in Process-Aware Information Sys-

B. Weber et al. 2007 |tems CAIiSE
186 VML* - A Family of Languages for Variability Management in Software Product

S. Zschaler et al. 2010 |Lines SLE
187|K. Bak et al. 2011 |Feature and Meta-Models in Clafer: Mixed, Specialized, and Coupled SLE
188|S. Liaskos et al. 2011 |Goal-Based Behavioral Customization of Information Systems CAIiSE
189|B. Pernici, S. Siadat 2011 |A Fuzzy Service Adaptation Based on QoS Satisfaction CAISE

190 Requirements Engineering for Self-Adaptive Systems: Core Ontology and Problem

N. Qureshi et al. 2011 |Statement CAIiSE
191|M. Weidlich et al. 2011 | A Foundational Approach for Managing Process Variability CAIiSE
192|M. Mezini, K. Ostermann |2004 |Variability Management with Feature-oriented Programming and Aspects FSE
193|D. Webber, H. Gomaa 2004 |Modeling Variability in Software Product Lines with the Variation Point Model SCP
194 Model Checking lots of Systems: Efficient Verification of Temporal Properties in

A. Classen et al. 2010 [Software Product Lines ICSE
195|A. Classen et al. 2011 | A Text-based Approach to Feature Modelling: Syntax and Semantics of TVL SCP
196|S. Kim et al. 2005 | A Theoretical Foundation of Variability in Component-based Development IST

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers and the TSE
editor for the thorough feedback on earlier versions of
this paper. Their comments and suggestions were of great
help. This work is partially supported by the Marie Curie
CIG number 303791 and by NWO SaS-LeG, contract no.
638.000.000.07N07.

REFERENCES

[1]]. van Gurp,]J. Bosch, and M. Svahnberg, “On the Notion of
Variability in Software Product Lines,” in Working IEEE/IFIP
Conference on Software Architecture, Amsterdam, The
Netherlands, 2001, pp. 45-54.

[2] L. Chen, and M. A. Babar, “Variability Management in Software
Product Lines: An Investigation of Contemporary Industrial
Challenges,” in 14th International Software Product Line
Conference, Jeju Island, South Korea, 2010, pp. 1-15.

[3]R. Hilliard, “On Representing Variation,” in Workshop on

GALSTER ET AL.: VARIABILITY IN SOFTWARE SYSTEMS — A SYSTEMATIC LITERATURE REVIEW

Variability in Software Product Line
Copenhagen, Denmark, 2010, pp. 312-315.

[4] M. Galster, and P. Avgeriou, “Handling Variability in Software
Architecture: Problems and Implications,” in 9th IEEE/IFIP
Working Conference on Software Architecture, Boulder, CO,
2011, pp. 171-180.

[5] B. Kitchenham, and S. Charters, Guidelines for Performing

Systematic Literature Reviews in Software Engineering, Technical

Architectures,

Report, Keele University, 2007.

[6] M. Staples, and M. Niazi, “Experiences using systematic review
guidelines,” Journal of Systems and Software, vol. 80, no. 9, pp.
1425-1437, September, 2007.

[7]]. Biolchini, P. Mian, A. Natali et al., Systematic Review in Software
Engineering, Technical Report RT - ES 679 / 05, Programa de
Engenharia de Sistemas e Computacao, Rio de Janeiro, Brazil,
2005.

[8] M. Riaz, M. Sulayman, N. Salleh et al., “Experiences Conducting
Systematic Reviews from Novices' Perspective,” in Evaluation
and Assessment in Software Engineering (EASE 10), Keele
University, UK, 2010, pp. 1-10.

[9]H. Zhang, and M. A. Babar, “On Searching Relevant Studies in
Software Engineering,” in Evaluation and Assessment in
Software Engineering (EASE 10), Keele University, UK, 2010,
pp- 1-10.

[10] P. Brereton, B. Kitchenham, D. Budgen et al., “Lessons from
applying the Systematic Literature Review process within the
Software Engineering Domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571-583, April, 2007.

[11] B. Kitchenham, P. Brereton, D. Budgen et al., “Systematic
Literature Reviews in Software Engineering - A Systematic
Literature Review,” Information and Software Technology, vol. 51,
no. 1, pp. 7-15, 2009.

[12] B. Kitchenham, R. Pretorius, D. Budgen et al., “Systematic
Literature Reviews in Software Engineering - A Tertiary
Study,” Information and Software Technology, vol. 52, no. 8, pp.
792-805, August, 2010.

[13] B. Williams, and J.
Architecture Changes: A Systematic Review,” Information and
Software Technology, vol. 52, no. 1, pp. 31-51, January, 2010.

[14] K. Schmid, and I. John, “A Customizable approach to Full
Lifecycle

Carver, “Characterizing Software

Variability Management,” Science of Computer
Programming, vol. 53, no. 3, pp. 259-284, December, 2004.

[15] M. Aiello, P. Bulanov, and H. Groefsema, “Requirements and
Tools for Variability Management,” in 4th IEEE Workshop on
Requirement Engineering for Services (REFS 2010), Seoul,
South Korea, 2010, pp. 245-250.

[16] L. Etxeberria, and G. Sagardui, “Evaluation of Quality Attribute
Variability in Software Product Families,” in 15th Annual IEEE
International Conference on Engineering of Computer Based
Systems (ECBS), Belfast, Northern Ireland, 2008, pp. 255-264.

[17] J. van Gurp, and]. Bosch, “Preface,” in Software Variability
Management Workshop, Groningen, The Netherlands, 2003,
pp.- 1

[18] M. Svahnberg, J. van Grup, and]. Bosch, “A Taxonomy of
Variability Realization Techniques,” Software - Practice and
Experience, vol. 35, no. 8, pp. 705-754, April, 2005.

[19] L. Chen, M. A. Babar, and N. Ali, “Variability Management in
Software Product Lines: A Systematic Review,” in 13th
International Software Product Line Conference (SPLC), San
Francisco, CA, 2009, pp. 81-90.

[20] L. Chen, and M. A. Babar, “A Systematic Review of Evaluation
of Variability Management Approaches in Software Product
Lines,” Information and Software Technology, vol. 53, no. 4, pp.
344-362, 2011.

[21] A. Kontogogos, and P. Avgeriou, Towards Modelling Variability-
intensive SOA Systems, Technical Report,
Groningen, The Netherlands, 2009.

[22] F. Bachmann, M. Goedicke, J. Leite et al., “A Meta-model for
Representing Variability in Product Family Development,” in

University of

5th International Workshop on Software Product Family
Engineering Siena, Italy, 2003, pp. 66-80.

[23] K. Pohl, G. Boeckle, and F. van der Linden, Software Product Line
Engineering - Foundations, Principles, and Techniques, Berlin /
Heidelberg: Springer Verlag, 2005.

[24] R. Kazhamiakin, S. Benbernou, L. Baresi et al., "Adaptation of
Service-Based Systems," M. P. Papazoglou, K. Pohl, M. Parkin et
al., eds., pp. 117-156, Berlin / Heidelberg: Springer Verlag, 2010.

[25] V. Alves, N. Niu, C. Alves et al., “Requirements Engineering for
Software Product Lines: A Systematic Literature Review,”
Information and Software Technology, vol. 52, no. 8, pp. 806-820,
August, 2010.

[26] R. Rabiser, P. Gruenbacher, and D. Dhungana, “Requirements
for Product Derivation Support: Results from a Systematic
Literature Review and an Expert Survey,” Information and
Software Technology, vol. 52, no. 3, pp. 324-346, March, 2010.

[27] D. Benavides, S. Segura, and A. Ruiz-Cortes, “Automated
Analysis of Feature Models 20 Years Later: A Literature
Review,” Information Systems, vol. 35, no. 6, pp. 615-636, 2010.

[28] A. Hubaux, A. Classen, M. Mendoca et al.,, “A Preliminary
Review on the Application of Feature Diagrams in Practice,” in
Fourth International Workshop on Variability Modelling of
Software-intensive Systems, Linz, Austria, 2010, pp. 53-59.

[29] M. S. Ali, M. A. Babar, L. Chen et al., “A Systematic Review of
Comparative Evidence of Aspect-oriented Programming,”
Information and Software Technology, vol. 52, no. 9, pp. 871-887,
2010.

[30] B. Kitchenham, Procedures for Performing Systematic Reviews,
Technical Report, Keele University, Keele, UK, 2004.

[31] V. Basili, G. Caldiera, and D. Rombach, "The Goal Question
Metric Approach," Encyclopedia of Software Engineering, J. J.
Marciniak, ed., pp. 528-532, New York, NY: John Wiley & Sons,
1994.

[32] L. Etxeberria, and G. Sagardui, “Variability Driven Quality
Evaluation in Software Product Lines,” in 12th International
Software Product Line Conference, Limerick, Ireland, 2008, pp.
243-252.

[33] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, Boston, MA: Addison-Wesley, 2003.

[34] B. Kitchenham, P. Brereton, M. Turner et al., “The Impact of
Limited Search Procedures for Systematic Literature Reviews:
A Participant-observer Case Study,” in 3rd International
Symposium on Empirical Software Engineering
Measurement, Lake Buena Vista, FL, 2009, pp. 336-345.

[35] B. Kitchenham, P. Brereton, M. Turner et al., “Refining the
Systematic Literature Review Process - Two Participant-

and

observer Case Studies,” Empirical Software Engineering, vol. 15,
no. 6, pp. 618-653, 2010.
[36] M. Jorgensen, and M. Shepperd, “A Systematic Review of
Cost Estimation Studies,” IEEE
Transactions on Software Engineering, vol. 33, no. 1, pp. 33-53,

Software Development

26

2007.

[37] L. Chen, M. A. Babar, and C. Cawley, “A Status Report on the
Evaluation of Variability Management Approaches,” in 13th
International Conference on Evaluation and Assessment in
Software Engineering (EASE), Durham, UK, 2009, pp. 1-10.

[38] Australian Research Council. "Ranked Outlets," August 20,
2010; http:/ /www.arc.gov.au/era/era_2010/era_2010.htm.

[39] M. Galster, D. Weyns, D. Tofan et al., Variability in Software
Systems - Extracted Data and Supplementary Material from a
Systematic Literature Review, Technical Report, University of
Groningen, Groningen, The Netherlands, 2013.

[40] B. Kitchenham, P. Brereton, D. Budgen et al., “ An Evaluation of
Quality Checklist Proposals - A Participant-observer Case
study,” in 13th International Conference on Evaluation and
Assessment in Software Engineering (EASE), Durham, UK,
2009, pp. 1-10.

[41] T. Dyba, and T. Dingsoyr, “Empirical Studies of Agile Software
Development: A Systematic Review,” Information and Software
Technology, vol. 50, no. 9-10, pp. 833-859, August, 2008.

[42] T.Dyba, T. Dingsoyr, and G. K. Hanssen, “ Applying Systematic
Reviews to Diverse Study Types: An Experience Report,” in
International Symposium on Empirial Software Engineering
and Measurement, Madrid, Spain, 2007, pp. 225-234.

[43] B. Cheng, R. Lemos, H. Giese et al., "Software Engineering for

Software

Engineering for Self-adaptive Systems, Lecture Notes in Computer

Self-adaptive Systems: A Research Roadmap,"
Science, B. Cheng, R. Lemos, H. Giese et al., eds., pp. 1-26, Berlin
/ Heidelberg: Springer Verlag, 2009.

[44] M. Papazoglou, P. Traverso, S. Dustdar et al., “Service-oriented
Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 40, no. 11, pp. 38-45, 2007.

[45] S. Hallsteinsen, M. Hinchey, S. Park et al., “Dynamic Software
Product Lines,” IEEE Computer, vol. 41, no. 4, pp. 93-95, April,
2008.

[46] IEEE Standard Glossary of Software Engineering Terminology
Standard IEEE Std 610.12-1990, 1990.

[47] Software engineering - Product quality - Part 1: Quality model
Standard ISO/IEC 9126-1, 2001.

[48] A. Gehlert, and A. Metzger, Quality Reference Model for SBA, S-
Cube, 2009.

[49] C. Zannier, G. Melnik, and F. Maurer, “On the Success of
Empirical Studies in the International Conference on Software
Engineering,” in 28th International Conference on Software
Engineering, Shanghai, China, 2006, pp. 341-350.

[50] D. Weyns, U. Iftikhar, S. Malek et al., “Claims and Supporting
Evidence for Self-Adaptive Systems: A Literature Study,
Software Engineering for Adaptive and Self-Managing
Systems,” in International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), Zurich,
Switzerland, 2012, pp. 89-98.

[51] C. Sun, R. Rossing, M. Sinnema et al., “Modeling and Managing
the Variability of Web-Service-based Systems,” Journal of
Systems and Software, vol. 83, no. 3, pp. 502-516, March, 2010.

[52] E. Engstroem, and P. Runeson, “Software Product Line Testing
- A Systematic Mapping Study,” Information and Software
Technology, vol. 53, no. 1, pp. 2-13, 2011.

[53] P. Neto, I. Machado,]J. D. McGregor et al., “A Systematic
Mapping Study of Software Product Line Testing,” Information
and Software Technology, vol. 53, no. 5, pp. 407-423, 2011.

[54] M. Ivarsson, and T. Gorschek, “A Method for Evaluating Rigor

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

and Industrial Relevance of Technology Evaluations,” Empirical
Software Engineering, vol. 16, no. 3, pp. 365-395, 2011.

[55] S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou, “Variability
in Quality Attributes of Service-based Software Systems: A
Systematic Literature Review,” Information and Software
Technology, vol. 55, no. 2, pp. 320-343, 2013.

[56] J. Andersson, R. de Lemos, S. Malek et al., "Modeling
Dimensions of Self-Adaptive Software Systems," Software
Engineering for Self-Adaptive Systems, B. Cheng, R. de Lemos, H.
Giese et al., eds., pp. 27-47: Springer Verlag, 2009.

[57] A. Gomez-Perez, “Evaluation of Ontologies,” International
Journal of Intelligent Systems, vol. 16, no. 3, pp. 391-409, 2001.

[58] M. A. Babar, L. Chen, and F. Shull, “Managing Variability in
Software Product Lines,” IEEE Software, vol. 27, no. 3, pp. 89-91,
2010.

[59] M. Turner, B. Kitchenham, D. Budgen et al., “Lessons Learnt
Undertaking a Large-scale Systematic Literature Review,” in
Evaluation and Assessment in Software Engineering (EASE 08),
Bari, Italy, 2008, pp. 1-10.

Matthias Galster is a Lecturer at the University of
Canterbury, Christchurch, New Zealand.

Danny Weyns is a professor at Linnaeus University,
Sweden.

Dan Tofan is a doctoral student at the University of
Groningen, Netherlands. Previously, he worked six
years in the software industry.

Bartosz Michalik completed his PhD at the
Katholieke Universiteit Leuven, Belgium. He currently
works in the software industry.

Paris Avgeriou is professor and head of the Software
Engineering and Architecture group at the University
of Groningen, Netherlands.

