
Assuring System Goals under Uncertainty with
Active Formal Models of Self-Adaptation

M. Usman Iftikhar and Danny Weyns
Linnaeus University, Växjö, Sweden

{usman.iftikhar, danny.weyns}@lnu.se

ABSTRACT
Designing software systems with uncertainties, such as incomplete
knowledge about changing system goals, is challenging. One ap-
proach to handle uncertainties is self-adaptation, where a system
consists of a managed system and a managing system that realizes a
feedback loop. The promise of self-adaptation is to enable a system
to adapt itself realizing the system goals, regarding uncertainties.
To realize this promise it is critical to provide assurances for the
self-adaptive behaviors. Several approaches have been proposed
that exploit formal methods to provide these assurances. However,
an integrated approach that combines: (1) seamless integration of
offline and online verification (to deal with inherent limitations of
verification), with (2) support for runtime evolution of the system
(to deal with new or changing goals) is lacking. In this paper, we
outline a new approach named Active FORmal Models of Self-
adaptation (ActivFORMS) that aims to deal with these challenges.
In ActivFORMS, the formal models of the managing system are di-
rectly deployed and executed to realize self-adaptation, guarantee-
ing the verified properties. Having the formal models readily avail-
able at runtime paves the way for: (1) incremental verification dur-
ing system execution, and (2) runtime evolution of the self-adaptive
system. Experiences with a robotic system show promising results.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods

General Terms
Theory, design

Keywords
Self-adaptive systems, formal models at runtime, verification

1. INTRODUCTION
Software engineers have to deal increasingly with uncertain-

ties at design time. Uncertainties can result from lack of detailed
knowledge about availability of resources, system goals that may
change but need to be dealt with at runtime, etc. Dealing with such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

uncertainties and guaranteeing the required system goals requires
rethinking of the way software systems have to be engineered.

One promising approach to handle uncertainties is self-
adaptation [3]. Self-adaptive systems are software systems that can
adapt autonomously at runtime to deal with uncertainties. Our par-
ticular focus is on architecture-based self-adaptation [8] where the
self-adaptive system consists of two parts, i.e., a managed system
that realizes the domain logic and a managing system that realizes
a feedback loop that monitors and adapts the managed system to
realize particular system goals (e.g., self-heal when a fault occurs,
self-optimize when operating conditions change, self-reconfigure
when a goal changes). A common approach to realize the feed-
back loop is by means of a MAPE-K loop [7]. Monitor monitors
the managed system and environment through probes, and saves
data in the Knowledge. Analyze performs data analysis to check
whether an adaptation is required. If so, it will trigger Plan that
will compose a work flow of actions that are then executed through
effectors by Execute. The promise of self-adaptation is to enable
a software system to adapt itself at runtime realizing the system
goals, regarding uncertainties. To realize this promise it is critical
to provide assurances for the self-adaptive behaviors. One promi-
nent approach to provide such assurances is using formal methods
that enable rigorous specification and verification of the behaviors
of self-adaptive software systems.

2. STATE OF THE ART
We highlight a number of representative approaches that use for-

mal methods to provide assurances in adaptive systems. [4] uses
a probabilistic model to represent the possible execution flows of
a system. This model is updated at runtime to acquire knowledge
about the system behavior that was not available at design time.
The probabilistic model can be used by a feedback loop to adapt
the system dynamically. In [1], requirements are automatically an-
alyzed to enforce optimal configurations of a service based sys-
tem by adapting service selection and resource allocation. The ap-
proach employs a MAPE-K loop where the Knowledge models are
processed by a series of tools that realize the MAPE functions. [5]
uses a Markov model that specifies the probability distribution of
utilities of the different execution paths of the system. The model is
executed by an interpreter that drives system execution to guarantee
the highest utility for a set of quality properties.

These approaches demonstrate the potential of formal methods
for assuring goals for adaptive systems. However, an integrated
approach that combines: (1) seamless integration of offline and on-
line verification (to deal with inherent limitations of verification,
i.e., the state-space problem), with (2) support for runtime evolu-
tion of the system (to deal with new or changing goals) is lacking.
The first observation was also made in [2], where the authors state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591137

604

that continual re-verification at runtime is a key requirement for
self-adaptive systems. With runtime evolution, we refer to support
for changes that go beyond uncertainties that require only updates
of parameters, e.g., the likelihood of a failure or changing avail-
ability of a service (for which probabilistic models are well suited).
Support for runtime evolution enables dealing with structural un-
certainties and unanticipated changes. This typically requires dy-
namic updates of the managing system, and possibly updates of the
managed system. Support for such changes adds another dimen-
sion of complexity to the engineering problem of self-adaptation.

3. ACTIVFORMS
ActivFORMS combines seamless integration of offline and on-

line verification with support for runtime evolution. The basic
idea of ActivFORMS is simple: design formal models of the self-
adaptive system,1 verify the required quality properties, implement
and add probes and effectors to the managed system and possibly
the environment, deploy the formal models, start the execution of
the implemented managed system and start the execution of the
model of the managing system. This approach assures that adapta-
tions are being performed according to the formally verified mod-
els. Furthermore, having the formal models readily available at
runtime enables incremental verification during system execution,
and supports runtime evolution of the self-adaptive system. In our
research, we use timed automata as modeling language and express
required properties in timed computation tree logic. However, Ac-
tivFORMS is not restricted to these formal languages.

Fig. 1 shows an overview of ActivFORMS.2 The managed sys-
tem realizes the domain logic for users. ActivFORMS comprises
two primary modules: the active model and goal management.

Figure 1: Primary modules of ActivFORMS at runtime

The active model consists of the formally verified model of the
managing system that realizes a MAPE-K feedback loop and a
virtual machine that can execute the formal model, hence active
model.

Concretely, the virtual machine can perform the following func-
tions: loading and executing a formal model, sending/receiving sig-
nals with data to/from probes and effectors connected to the man-
aged system and possibly the environment, detecting goal viola-

1The formal model of the managed system needs to conform to
the implementation, which can be tested e.g., using model-based
testing (www.geocities.com/model_based_testing/).
2http://homepage.lnu.se/staff/daweaa/ActivFORMS.htm

tions, and updating the running model when requested, which is
crucial to handle unanticipated changes.

Goal management deals with adaption issues that cannot be han-
dled by the active model. To that end, goal management consists of
four key parts (see Fig. 1): goal model, goal monitor, goal adapter,
and goal manager. The goal model represents the adaptation goals
with associated adaptation models. The goal monitor monitors the
status of the goals with the virtual machine. In the first release of
ActivFORMS support for detection of goal violations is limited to
boolean expressions of the current state of the active model. When
the goal adapter is signaled by the goal monitor about a change of
goals, it consults the goal model and search for a matching adapta-
tion model that satisfies the changing situation. If a model is found
the goal adapter starts updating the model with the virtual machine.
The goal manager offers support for three primary functions: in-
specting the active model and its ongoing execution, monitoring
goals, and updating the goal model. These functions allow an en-
gineer to change existing goals or add new goals and associated
adaptation models to deal with new requirements.

We have applied ActivFORMS to various adaptation scenarios
in a simple multi-robotic system. This experience shows promising
results. The interested reader find more information about this case
study via the ActivFORMS website.

4. CHALLENGES AND FUTURE WORK
The first key challenge for our future work is to enhance Activ-

FORMS with support for incremental verification at runtime. De-
veloping support for efficient incremental verification at runtime is
a challenging task. We will study how offline verification needs
to be combined with online verification, and how runtime verifi-
cation can be realized efficiently. One starting point for our study
is [6]. A second long-term challenge is to study support for co-
evolution of the managed and managing system. Supporting such
co-evolution requires synchronization between updates of the ac-
tive model of the managed system, the running managing system,
and the models of the managing system and its execution environ-
ment. This study will require the integration of knowledge from the
field of dynamic evolution of software systems (live updates) with
the field of self-adaptation. Finally, a third challenge is to study
how ActivFORMS can be extended with support for engineers to
design self-adaptive systems without direct exposure to the formal
specification. An inspiring approach is proposed in [5].

5. REFERENCES
[1] R. Calinescu et al. Dynamic qos management and

optimization in service-based systems. TSE, 37(3), 2011.
[2] R. Calinescu et al. Self-adaptive software needs quantitative

verification at runtime. Commun. ACM, 55(9), 2012.
[3] B. Cheng et al. Software engineering for self-adaptive

systems: A research roadmap. In Software Engineering for
Self-Adaptive Systems, LNCS vol. 5525. Springer, 2009.

[4] I. Epifani et al. Model evolution by run-time parameter
adaptation. In ICSE, 2009.

[5] C. Ghezzi et al. Managing non-functional uncertainty via
model-driven adaptivity. In ICSE, 2013.

[6] K. Johnson et al. An incremental verification framework for
component-based software systems. CBSE, 2013.

[7] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1), 2003.

[8] D. Weyns et al. FORMS: Unifying Reference Model for
Formal Specification of Distributed Self-Adaptive Systems.
ACM TAAS, 7(1), 2012.

605

