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Abstract—Self-adaptability enables a system to adapt itself to 
changes in its execution conditions and user requirements in order 
to achieve particular quality goals. However, assuring that the 
adaptation goals are satisfied poses complex challenges. We 
recently developed the ActivFORMS approach that aims to tackle 
some of these challenges, but further research is required to 
evaluate the approach. This paper presents the results of a study in 
which we applied ActivFORMS to a mobile storytelling application 
that employs a social recommender. The initial version of the 
application used a static recommender that could not deal with 
changing environment conditions, or take into account preferences 
of users.  To that end, we added a self-adaptive layer on top of the 
application. The study results show that self-adaptation 
significantly increases the quality of recommendations compared 
to the initial version by: (1) enabling the social recommender to 
adapt to the quality of user input and unavailability of the GPS 
service, and (2) making the recommender adaptive to user 
preferences. Providing guarantees for these adaptation goals is 
crucial in this domain from a business perspective. The study 
results show the feasibility and effectiveness of ActivFORMS for a 
practical application; but they also underpin the need for an 
integrated verification approach for self-adaptive systems that 
combines offline with online verification. 
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I.  INTRODUCTION  
Today customers expect particular levels of qualities from 

software systems, such as reliability, performance, flexibility, 
and scalability. However, contemporary software systems must 
operate under changing conditions, such as dynamics in the 
availability of resources, changing system goals, etc. As these 
dynamics may be difficult to predict, software engineers have to 
deal with incomplete knowledge at design time.  Consequently, 
providing guarantees to assure the required qualities at runtime 
is complex. Self-adaptation is widely considered as an effective 
approach to cope with this complexity [17][10][9]. Self-
adaptation allows a system to dynamically react to changes in 
requirements and adapt itself to maintain system goals.  

In this research we focus on architecture-based self-
adaptation, which provides a suitable level of abstraction to 
handle system dynamics that involve adaptation of components 
and their relations [16][11][15]. Central in architecture-based 
self-adaptation is the separation between the domain concerns, 
which are part of the managed system, and the adaptation 
concerns, which are part of the managing system. A well-known 
approach to structure the managing system is by means of a 
feedback loop divided in four components: Monitor, Analyze, 
Plan, and Execute [6]. These components share a common 

Knowledge base (hence, MAPE-K) that may contain data about 
the managed system, environment, adaptation goals, and 
working data that can be used by the MAPE components. 

One of the key problems in engineering self-adaptive 
systems is providing guarantees that the adaptation goals are 
satisfied at runtime regarding of dynamics in the environment or 
the managed system [9]. Recent research in this direction 
suggests using formal models to tackle the problem, e.g., 
[18][22]. Existing approaches primarily focus on formal models 
of the Knowledge part of MAPE-K. Little attention has been 
devoted on formalizing the MAPE elements and providing 
guarantees about the behavior of the adaptation components 
themselves. E.g., important properties of a self-healing system 
may be: does the analysis component correctly identify errors 
based on the monitored data, or does the execute component 
perform repair actions in the correct order? Guaranteeing such 
properties is important to assure proper adaptation capabilities. 

To tackle this problem, we recently developed an innovative 
approach called ActivFORMS (Active Formal Models for Self-
adaptation) [7]. ActivFORMS uses an integrated formal model 
of the MAPE-K feedback loop. This formal model can be 
executed directly on a virtual machine, and interact with the 
managed system via probes and effectors. As a result, the 
properties that are derived from system requirements, and are 
verified before execution, are guaranteed at runtime. We have 
tested ActivFORMS for a number of simple self-adaptive 
systems, but more research is required to evaluate the approach.  

This paper presents the results of a study in which we have 
applied ActivFORMS to a practical mobile storytelling 
application that employs a social recommender. The initial 
version of the application used a static recommender that could 
not deal with issues such as unavailability of GPS or user 
preferences. To deal with these issues, we added a self-adaption 
layer to the application. The results show that self-adaptation 
significantly increases the quality of recommendations of the 
application. Providing guarantees for the adaptation goals is 
crucial in this domain from a business perspective. The study 
shows the feasibility of ActivFORMS for a practical application, 
but also points to some issues that require further research.  

The remainder of the paper is structured as follows. Section 
II briefly describes ActivFORMS and discusses related efforts. 
In Section III, we introduce the storytelling application with 
social recommender and discuss its inflexibility problem. 
Section IV explains how we tackled this problem by adding a 
self-adaptive layer to the applicaton. In Section V, we elaborate 
on the design of the MAPE-K feedback loop that realizes self-
adaptation. Section VI discusses verification of required system 
properties. In Section VII, we evaluate the self-adaptive solution 
by comparing it to the initial version. Finally, conclusions and 
directions for future work are presented in Section VIII. 



II. ACTIVFORMS APPROACH 
ActivFORMS follows the three-layered reference model 

proposed by Kramer and Magee [11], see Figure 1. The bottom 
layer comprises the managed system that implements domain-
specific functionality. ActivFORMS is responsible for 
adaptation of the managed system comprising two layers: 
Active Model and Goal Management. Active Model realizes a 
MAPE-K feedback loop that monitors the managed system and 
adapts it according to some adaptation goals. The MAPE-K 
feedback loop consists of a formal model that is directly 
executed by a virtual machine, taking input from probes and 
performing adaptation actions via effectors.  

Goal Management comprises a tree-based goal model where 
nodes have associated MAPE-K models to realize adaptations. 
Goal management monitors goals via the virtual machine. When 
a goal violation is detected, the models associated with an 
alternative goal that matches the changing conditions are used to 
update the deployed models via the virtual machine. Goal 
models can be updated at runtime. We refer the interested reader 
to [7]. In this paper, we focus on the Active Model.  

 

 
Figure 1.  The ActivFORMS approach 

A. Active Model 
In our research we model a MAPE-K feedback loop as a 

network of timed automata. A timed automaton is a finite-state 
machine extended with clock variables. Automata can 
communicate through shared data or by sending signals. Signals 
being sent are marked with “!” and received signals are marked 
with “?” For the specification of required properties, we use 
Timed Computation Tree Logic (TCTL). TCTL allows checking 
individual states of the state space of the system as well as traces 
over the state space. The latter makes it possible to verify 
reachability, safety, and liveness properties.  

The ActivFORMS virtual machine is able to initiate and 
execute a formal model and supports interaction with the 
managed system via probes and effectors. In addition, the virtual 
machine supports verification of goals at runtime (currently only 
verification of goals based on actual state), as well as live 
updates of the formal model. The latter functionalities are not 
further studied here. We refer the interested reader to [7]. 

The execution of the active model conforms to the semantics 
of networked timed automata. Internally, the virtual machine 
transforms the MAPE-K formal model to a graph representation. 
The model can be triggered by input from the managed 
system/environment or by time. Time triggering is based on an 

internal clock of the virtual machine. The ratio between a clock 
tick and real time can be configured in the virtual machine.  

The virtual machine runs on a JVM. To support engineers, 
ActivFORMS provides a set of Java classes to implement 
probes and effectors. Probes track the managed system and 
possibly the environment and transfer data to Monitor automata 
of the MAPE-K feedback loop, while Effectors transfer actions 
generated by Execution automata to the managed system. 

B. Related Efforts  
A vast body of work on formal approaches for self-adaptive 

systems exists; [20] provides a recent overview of the state of 
the art. Here we discuss some key references and highlight the 
types of applications the approaches have used for validation.  

[13] presents an approach to create and verify formal models 
for adaptive systems using Petri Nets. The models can 
automatically be transformed into executable programs. The 
approach is applied to a GSM-based audio streaming protocol. 
As a result, development time and reliability of the system 
improved. [21] uses discrete time Markov chains to design 
models of the system and environment and a Bayesian learner to 
adapt uncertainties. A feedback loop detects requirement 
violations and modifies the system goals accordingly. The 
approach is demonstrated in a simple Web-service application 
setting. [22] presents ADAM, a tool that transform UML 
diagrams into probabilistic decision models that are used at 
runtime to guarantee optimal performance. The approach is used 
for a ShopReview mobile application and compared to Java 
implementations using simulation. The results show that the 
approach supports engineers with creating reliable software and 
decreases development time, but there is some overhead 
compared to “hard coded” solutions. 

In contrast to existing work, ActivFORMS directly executes 
the formal models to realize self-adaptation. We apply the 
approach to a practical application, provide formal guarantees, 
and compare the adaptive version of the application with the 
initial non-adaptive version. 

III. DIGITAL STORYTELLING WITH SOCIAL RECOMMENDER 

This section describes the initial, non-adaptive mobile 
digital storytelling application, and explains the inflexibility 
problem of the social recommender.  

A. mDS-SR application 
Mobile Digital Storytelling with Social Recommender 

(mDS-SR) is a native iOS application based on a storyboard 
technology [3]. The application provides functionality for 
creating digital stories on a mobile device and sharing them. 
Concretely, mDS-SR allows: 

• Starting a new story or selecting an existing one; 
• Adding and rearranging images from a local collection 

on a canvas so they form a sequence; 
• Viewing similar photos (recommendations) from 

Flickr, and inserting them into a sequence; 
• Sharing photos to Flickr so that they can be used in the 

stories of other people; 
• Recoding audio, adding a soundtrack or tags to a story; 
• Creating a narrative (a video) out of the story and 

sharing it to YouTube or by e-mail. 
The mDS-SR application can be used as a tool for 

collaborative learning, to share touristic experiences, etc.  



B. Social Recommender  
The social recommender supplements story creation and 

gives a possibility to inherit experience of other users that used 
the application in similar situations. In general, recommender 
systems provide suggestions with the help of collaborative 
filtering, content-based filtering, or a combination of these two 
methods [1]. The choice for filtering methods depends on the 
goals of application at hand. Collaborative filters work better 
when there is a big amount of data available about users, their 
preferences and community behavior. Content-based filters on 
the other hand, are very good in recommending new/unrated 
items and satisfy people with unique preferences [2].  

For the mDS-SR application, we use content-based filtering. 
The choice was based on information gathered during 
requirements elicitation. Most recommendation systems with 
content-based filtering rely on tags and standard item data (title, 
rating, creation date, etc.) when calculating recommendations. 
mDS-SR also relies on it, but in addition, we added a new 
parameter in the recommender: it compares the geographical 
location of the user with the location where the recommended 
photo was created or uploaded. As for the source of suggested 
content, we adopted the idea of Guy & Carmel [4] to combine 
social media with recommender systems, hence social 
recommender. In particular, mDS-SR uses Flickr as a social 
service for providing recommendations. Flickr provides an API 
to send a query for recommendations with parameters (geo-
location, text for search, etc.). Flickr then responds with 
matching photos, i.e., recommendations. In addition, Flickr can 
sort photos according to relevance, interestingness, or the date 
when photos were taken or uploaded. Flickr calculates relevance 
and interestingness based on protected algorithms.  

As a result, the social recommender of the mDS-SR 
application uses a combination of geo-locations, story title, tags, 
and sorting methods to provide social recommendations. By 
combining subsets of these parameters, a variety of 
recommender algorithms can be implemented. In the mDS-SR 
application, we selected five of them based on initial testing and 
feedback from participants that used the application in the field. 
Table I lists the algorithms with their key properties. When a 
user starts working with the application, the recommender loads 
20 photos generated by the recommender algorithms, four 
photos by each algorithm. The photos are shown in an 
interleaved way, such that they have approximately equal 
chances of being chosen.  

TABLE I.  ALGORITHMS IN MDS-SR 

# The algorithm Sort by Gps 
based 

Text 
based 

Tag 
based 

1 Search for story tags in tags of 
photos  relevance   + 

2 Search for story name in picture 
title, description, tags of photos relevance  +  

3 
Search in current geo location for 
photos containing story name in 
photo title, description or tags 

relevance + +  

4 
Search in current geo location for 
photos uploaded before 2013-05-
30 (first experiment with the app). 

posting 
date, 
descending 

+   

5 Search current geo location for 
photos uploaded after 2000-01-01. 

interesting-
ness, 
descending 

+   

 
Figure 2. shows the user interface of the mDS-SR 

application. The left hand side shows the UI for naming and 

tagging a story; the right hand side shows the UI for working 
with images and the recommender. 

 
Figure 2.  Initial mDS-SR application: naming and tagging story (left), 
working with images and recommender (right).  

C. Problem description 
The recommender algorithms of the mDS-SR application 

are statically defined, but they rely on dynamic parameters. For 
example, if the Global Positioning System (GPS) is turned off or 
the system is not available, all algorithms that are based on GPS 
will provide no recommendations. Hence, only 8 photos will be 
visible instead of the intended 20 photos (as three algorithms 
depend on GPS, see Table I). A similar situation occurs when a 
user gives a very complex name to a story for which Flickr 
cannot find matching photos. In this case, algorithms that are 
text-based (see Table I) will not provide recommendations. 
Furthermore, due to the use of a fixed set of algorithms, the 
social recommender is not able to adapt dynamically to user 
preferences. This inflexibility of the social recommender has a 
negative effect on user experience and consequently may affect 
the competitiveness of the application on the market. 

IV. SELF-ADAPTIVE SOCIAL RECOMMENDER 

We start this section with listing the requirements for self-
adaption to tackle the flexibility problem. Then, we give a high-
level overview of the architecture of the self-adaptive system. 
The detailed design and verification are presented in the 
following sections.  

A. Requirements for self-adaptation 
Self-adaptation should satisfy the following requirements: 

R1: The self-adaptive system should work correctly, i.e., 
without errors, deadlocks, or time locks.  

R2: When GPS is not available or Flickr provides no response to 
a query, self-adaptation should switch off the algorithms 
that require these resources and provide recommendations 
from alternative algorithms; always 5 in total.  

R3: The social recommender should be able to adapt 
dynamically to user preferences; i.e., the more an 
algorithm is selected the higher position it should get in 
the recommender. 

To ensure sufficient recommendation algorithms and 
provide the required flexibility, we added a set of six extra 
algorithms to the mDS-SR application (# 6-11 in Table II).  



TABLE II.  ADDITIONAL ALGORITHMS FOR MDS-SR 

# The algorithm Sort by Gps 
based 

Text 
based 

Tag 
based 

6 
Search for story tags in picture 
title, description and tags of 
photos 

interesting-
ness, 
descending 

  + 

7 
Search in current geo location 
for photos containing story tags 
in tags of photos 

relevance +   

8 

Search in current geo location 
for photos containing story 
name in photo title, description 
or tags and taken before 2010-
01-01 

taken date, 
ascending + +  

9 
Search for story tags in picture 
title, description and tags of 
photos, tag mode “all” 

taken date, 
ascending   + 

10 
Search for first story tag in 
picture title, description and 
tags of photos 

taken date, 
descending   + 

11 
Search for first word from story 
title in picture title, description 
and tags of photos 

relevance   + 

 
The choice for the algorithms is based on pilot tests with 

users. The total set of algorithms offers 5 tag-based algorithms 
that do not depend on GPS or Flickr response. Furthermore, the 
additional algorithms can provide richer content than algorithms 
#1-5. Tracking the choices of recommended content and 
selecting algorithms based on that enables the system to adapt 
the recommender algorithms to the preferences of the user. 

B. High-level architecture of the self-adaptive layer 
Figure 3. shows the high-level architecture of the mDS-SR 

application with self-adaptation. We first focus at the bottom 
part that contains the main components of the initial digital 
storytelling application.  

Central to the mDS-SR application is the Local Storage   
that maintains the data of all stories created by the user as well 
as the recommender algorithms that can be used by the different 
components. Any data of a story changed by a component 
automatically updates the story data in the repository. The Start 
New Story component provides functionality to a user to create a 
new narrative, which includes adding a story name, tags, and 
author. The Select Existing Story component allows a user to 
select a previously created story and update basic story data. 
The Edit Story component offers different functions to the user 
to work with story content, such as selecting images and adding 
sound. Edit Story can interact with the GPS sensor and Flickr 
when it uses recommender algorithms that require these 
resources. The Play Story component provides functionality to 
finalize the creation of a story, i.e., producing, watching and 
sharing a video-narrative. Play Story can interact with YouTube 
that serves as a platform for sharing stories. 

We now look at the self-adaptive layer that is added on top 
of the application to tackle the inflexibility problem described in 
Section 3. Here we give a general overview of the self-
adaptation components; the detailed design is discussed in the 
following section. The self-adaptation layer consists of a 
MAPE-K feedback loop, which is local to every mobile device. 
The Knowledge repository maintains data relevant to self-
adaptation, including representations of the different algorithms 
with ratings that represent the user preferences, the status of the 
GPS, data about the latest response of Flickr, data about plans, 
etc. MAPE components have read/write access to the repository. 
The Monitor component uses a Probe to monitor changes in the 

story title, user interactions with the recommender interface 
(selecting a photo or absence of actions during a certain period), 
GPS status, and the number of photos provided by the used 
algorithms. Based on any of these events, the Analyze 
component analyses the situation. If GPS is not available or 
Flickr does not provide a response to a query, Plan is triggered 
to change the used recommender algorithms. Based on the input 
provided by the user, Analyze may adapt the order of the 
recommender algorithms, which then in turn triggers the Plan 
component to change the used recommender algorithms. 
Finally, the Execute component communicates with the Effector 
to modify the algorithms used by the social recommender of the 
application according to the developed plan. 

 
Figure 3.  Architecture of mDS-SR application with a self-adaptation layer 

V. SELF-ADAPTATION DESIGN 

We now explain the detailed design of the self-adaptation 
layer. Subsequently, we discuss the probe, the MAPE-K 
components, and the effector. We conclude with explaining how 
ActivFORMS is configured and started to apply self-adaptation.  

A. Probe 
The probe gathers the data that is required by the MAPE-K 

loop to realize self-adaptation. Probe connects the Monitor with 
the mDS-SR application using the following signals: 

• gpsUpdated: signal that says when the status of the GPS 
changes (on/off); 

• recomLoaded: signal that indicates that new 
recommendations (photos) from Flickr are loaded in the 
application interface; 

• textUpdated: signal that indicates changes in story title; 
• flickrResp: signal that provides the response of Flickr 

(number of photos) to a query with the story title; 
• photoAdded: signal that indicates that a user clicked on 

any recommended photo; the signal includes the 
algorithm ID of the clicked photo; 

• noPhotos: signal that says that a used algorithm did not 
provide a single recommendation; the signal includes 
the algorithm ID. 



An excerpt of the Probe class implementation is shown in 
Code block 1. The virtual machine requires a unique identifier 
for each signal that is used by a probe to communicate between 
the application and the formal model of the MAPE-K feedback 
loop. Identifiers are matched in the Probe constructor, e.g. the 
identifier signalGpsUpdated provided by the application is 
matched with the gpsUpdated signal used in the formal model. 
The ActivFORMS virtual machine (ActivFORMSEngine) 
provides a Send function that allows the probe to communicate 
with the formal model. The Send function takes three 
parameters: channel identifier, the probe object, and data to be 
send (in string format). The third parameter is optional.  

Code block 1. Part of mdsProbe class 
public class mdsProbe implements Synchronizer { 
int signalGpsUpdated; 
int signalTextUpdated; 
ActivFORMSEngine engine; 
  public mdsProbe (ActivFORMSEngine gotEngine)  { 
        this.engine = gotEngine; 
        signalGpsUpdated = engine.getChannel("gpsUpdated"); 
        signalTextUpdated = engine.getChannel("textUpdated"); 
        … //match other signals with their identifiers 
  } 
   public void sendTextSignal() { 
        engine.send(signalTextUpdated, this); 
   }   
   public void sendGpsSignal(int gpsIsWorking) { 
        String gps = Integer.toString(gpsIsWorking); 
        engine.send(signalGpsUpdated, this, "GPSactive="+gps); 
  } 
}  

A concrete implementation example is shown in Code block 
2. The probe can be triggered via the textsChanged or gpsState 
functions. This first one is triggered when the user changes the 
story title; the second one when the GPS turns on/off. Both 
functions send a signal to the formal model; when the GPS 
changes, the status is also sent (0 for “off”, 1 for “on”). 

Code block 2. Creating a Probe, sending signals 
probe = new mdsProbe(engine); 
public void textsChanged () { 
           probe.sendTextSignal();              
 } 
public void gpsState (int gpsIsWorking) { 
           probe.sendGpsSignal(gpsIsWorking);              
} 

B. MAPE-K Behaviors  
To model the MAPE-K behaviors, we used a set of formal 

templates for self-adaptive components [14]  and to model and 
test the automata, we used the Uppaal [8] tool.  

(1) KNOWLEDGE 
The knowledge that is shared by the MAPE behaviors (see 

Figure 3. ) is structured in three parts (see Code block 3). First, 
the knowledge of the managed system comprises a 
representation of the recommender algorithms, each with an 
identifier, a rating, and three Booleans indicating that the 
algorithm is in use, whether it is GPS based, or text based. This 
part also maintains knowledge about the number of algorithms 
in use, the ID of the algorithm picked, and the ID of the 
algorithm that did not provide recommendations from Flickr. 
Second, knowledge keeps track of information in the 

environment, i.e., the status of GPS and the response of Flickr to 
a query with story title. Third, knowledge maintains data about 
the adaptation process itself, i.e., a flag (Boolean) that indicates 
that text-based algorithms can be used, a flag that indicates that 
the recommender has been updated, the ID of the plan that is 
selected for adaptation, and the number of currently used 
recommender algorithms (which should be 5 at all times).  

Code block 3. Knowledge 
//Managed System knowledge 
typedef struct { 
int ID;  int Rating;  bool Used;  bool GpsBased; bool TextBased; 
} RecAlgorithm; //an algorithm 
const int algTotal = 11; //number of algorithms 
const int algToUseInRec = 5; //number of simultaneously used algs 
RecAlgorithm algs[algTotal]; //array of algorithms 
int algChosen; // algorithm ID of a picked photo 
int algNumber; // ID of algorithm that provide no recommendations 

 

//Environment knowledge 
int Resp; // Flickr response to a query with story title 
bool GPSactive=YES; // GPS status 
 

//Adaptation knowledge 
bool AnswerOnText=1; // flag indicating that text based algs can be used  
bool recomUpdated; // calculations are finished, recommender updated 
int PlaN; // ID of executed plan 
int curUsedAlgsNumber=5; // number of currently used algs 

(2) MONITOR 
The Monitor component consists of four independent 

processes that handle the following monitoring tasks:  
• MonitorGPS: monitors the status of the GPS;  
• MonitorText: monitors changes of the story title; 
• MonitorNoActivity: tracks whether a user clicks or not 

on new loaded photos within a given time period; 
• MonitorAlgs: monitors when a photo is clicked, and 

whether an algorithm does not provide recommended 
photos in response to a query; the monitor updates the 
ratings of the algorithms accordingly.   

Using different monitors separates concerns and allows the 
behaviors to work in parallel. The latter is required, e.g., to track 
the GPS status (MonitorGPS) in parallel with monitoring user 
clicks (MonitorNoActivity). 

MonitorGPS 
The MonitorGPS behavior (Figure 4. ) is responsible for 
tracking the availability of GPS. The monitor receives the 
gpsUpdated signal when the GPS status changes. It then updates 
the knowledge (GPSActive=!GPSactive) and triggers the 
Analyze behavior (analyzeGPS!). 

 
Figure 4.  MonitorGPS behavior 

MonitorNoActivity 
When the application loads recommended content 

(recomLoaded?), the MonitorNoActivity behavior (Figure 5.) 



starts monitoring interactions of the user with the new content 
(WaitingForActions). If none of suggested photos is clicked 
within 30 ticks of the clock it is assumed that the user is not 
interested in the content. Hence, the rating of all used algorithms 
is decreased (decreaseRatingsof UsedAlgs(1)) and the analyzer 
is triggered (analyzeRatings!).  

 
Figure 5.  MonitorNoActivity behavior 

MonitorAlgs 
The MonitorAlgs behavior (Figure 6. ) consists of two 

branches triggered by signals from the application. First, the 
noPhotos signal is received when an algorithm in use does not 
provide a single recommended photo in response to a query. The 
ID of the algorithm, which is received together with the signal 
from application, is used to decrease the rating of the algorithm 
(decreaseRating(algNumber,2)). Then the analyzer is triggered 
(analyzeRatings!). Second, when the user clicks a recommended 
photo, the photoAdded signal is received. As a result, the rating 
of the algorithm that provided the suggestion is increased 
(increase(algChosen,2)). Next the analyzer is triggered. 

 
Figure 6.  MonitorAlgs behavior 

MonitorText 
When MonitorText (Figure 8. ) is triggered by a text update 

in the application (textUpdated?), it generates a query with story 
title as main parameter and sends it to Flickr (flickrQuery!).  

 
Figure 7.  MonitorText behavior 

In case Flickr does not respond within 10 clock ticks, the 
knowledge (AnswerOnText, see Code block 3) is updated with a 
failure signal (updateRespKn(-1)). Otherwise, the knowledge is 

updated with the number of available photos returned from the 
query (updateRespKn(Resp)). Monitoring the response of Flickr 
based on the story title as a main search parameter is important 
for selecting proper algorithms for the social recommender.  

 
Figure 8.  MonitorText behavior 

(3) ANALYZE 
The Analyze behavior (Figure 9. ) consists of three branches 

(from Waiting) triggered by signals from the monitor processes.  

 
Figure 9.  Analyze behavior 

First, when the GPS status changes (analyzeGPS signal) the 
analyzer immediately triggers the Plan behavior to start planning 
(planStart!). Second, changes in texts of a story may or may not 
imply adaptations in the used algorithms. When the Analyzer 
receives the analyzeText? signal it starts analyzing 
(analyseRespKn()) the response that the MonitorText behavior 
received from Flickr (see MonitorText above). If Flickr 
provided no photos to the query, its response is considered 
“bad,” otherwise; it is considered “good.” The current response 
of Flickr (good or bad) is compared with the previous response. 
If the response is the same, no changes of the algorithms are 
required and the Analyze behavior returns to the Waiting state. 
In the other case (FlickrResponseChanged) the Plan behavior is 
triggered. Third, when the Analyze behavior receives the 
analyzeRatings signal, it sorts the recommender algorithms by 
rating (sortAlgByRating()) and then checks whether the order of 
the algorithms has changed. If the order has not changed 
(order==SAME) the analyzer returns to the Waiting state; 
otherwise (order==DIFF), the Plan behavior is triggered to start 
changing the algorithms used by the application.  

(4) PLAN 
The Plan behavior (Figure 10. ) creates a plan for adapting 

the recommender algorithms depending on GPS availability and 
the response of Flickr to a query with a story title. If GPS is not 
available (GPS==OFF) and there are no photos provided by 
Flickr (photosInRespToStoryTitle==0), a plan that only includes 
algorithms with tags (PlaN=Count_only_on_tags) is generated. 



If photos are returned (photosInRespToStoryTitle>0), a plan that 
depends on text (PlaN=Count_only_on_text) is generated. If 
GPS is available, but Flickr does not provide recommendations 
(photoinRespToStoryTitle==0), a plan that only depends on 
GPS (PlaN=Count_only_on_gps) is generated. If both services 
are available, a plan is generated that uses all available 
algorithms (PlaN=Count_only_on_gps_and_text). Once the 
plan is generated, the Execute behavior is triggered (exec!).  

 
Figure 10.  Plan behavior 

(5) EXECUTE 
When the Execute behavior (Figure 11. ) is triggered (exec?) 

it changes the used flags (see Code block 3) of the algorithms in 
the Knowledge based on their rating and the selected plan using 
the changeAlgs(int PlanN) function (see Code block 4).  

 
Figure 11.  Execute behavior 

Depending on the plan selected by the Analyzer the 
recommender algorithms are changed by the Executor (PlaN==4 
for planNoGPSTextExecuted, PlaN==3 for planNoGPS- 
Executed, PlaN==2 for planNoTextExecuted, PlaN==1 for 
planNormalExecuted). 1  Subsequently, the Execute behavior 
updates the recommendation status (recomUpdated=YES) and 
invokes the update of the algorithms in the application 
(updateAlgsInApp! via the Effector, see below).  

Code block 4. changeAlgs function 
void changeAlgs(int PlanN){ 
   algsUsedInRec:=0;  
   for (i:=0; i<algTotal; i++) {  
         algs[i].Used=0; 
         if (PlanN== Count_on_gps_and_text  

                                                             
1 PlaN==1 corresponds to Count_only_on_gps in the planner, PlaN==2 
corresponds to Count_on_gps_and_text, PlaN==3 corresponds to 
Count_only_on_text, PlaN==4 corresponds to Count_only_on_tags  

         || (PlanN==Count_only_on_gps && algs[i].TextBased==0) 
         || (PlanN==Count_only_on_text && algs[i].GpsBased==0)) 
         || (PlanN==Count_only_on_tags && algs[i].TextBased==0 
         && algs[i].GpsBased==0) { 
           algs[i].Used=1;  algsUsedInRec++; 
        } 
     } 
     curUsedAlgsNumber=algsUsedInRec; //needed for verification 
} 

C. Effector 
The Effector (Code block 5) invokes the actions of the 

Execute behavior to the mDS-SR application. Similar to Probe it 
associates a unique identifier to each channel through which the 
Executor behavior communicates (e.g., updateAlgs= 
engine.getChannel("updateAlgsInApp")). Each channel is 
registered in the engine to receive particular data from the model 
(e.g., engine.register(updateAlgs, this, "algs")). To trigger a 
Flickr query there is no need to read data from the model; hence, 
the channel is registered to receive a plain signal without extra 
data (engine.register(flickrQuery, this). The effector uses the 
receive function to communicate data from the formal model to 
the application. The function is triggered when the formal model 
sends a signal to the application. The receive function takes two 
parameters: a channel ID and the data received via that channel. 
The received data is formatted as a String-Object hash map and 
the application needs to be instrumented to process this format. 
When the application receives data via the channel associated 
with updateAlgs it processes the parameters of the recommender 
algorithms (rating, usage flag) and updates the recommendations 
of the application accordingly. In case a flickrQuery signal is 
received, a Flickr query is invoked (Probe tracks the response).   

Code block 5. Part of  mdsEffector class 
mdsEffector effector = new mdsEffector(engine, this); // in MDS class 
 

public class mdsEffector implements Synchronizer { 
int updateAlgs; 
int flickrQuery; 
ActivFORMSEngine engine; 
MDS mds; 
public mdsEffector(ActivFORMSEngine engine, MDS mainMDS) { 

this.engine = engine; 
this.mds = mainMDS; 
updateAlgs= engine.getChannel("updateAlgsInApp"); 
engine.register(updateAlgs, this, "algs"); 
flickrQuery = engine.getChannel("flickrQuery"); 
engine.register(flickrQuery, this); 

  } 
@Override  
public void receive (int channelId, HashMap<String, Object> recData) { 
  if (channelId == updateAlgs) { 
          mds.parseData(recData); 
  } 
  else if (channelId == flickrQuery)  { 
          mds.evaluateText(); 
  } 
} 

D. Initialization and Starting ActivFORMS 
To execute the formal model, the ActivFORMS engine needs 
to be initialized and started (Code block 6). The mDS.xml file 
contains the MAPE-K model produced by Uppaal. Clock 
variables progress with ticks that need to be associated with 
real time units. In the mDS-SR application, we associated 1000 



ms with a tick (engine.setRealTimeUnit(1000)). Finally, the 
ActivFORMS virtual machine can be started (engine.start()).   

Code block 6. Setting ActivFORMS engine 
ActivFORMSEngine engine; 
engine = new ActivFORMSEngine("mDS.xml"); 
engine.setRealTimeUnit(1000); //1 clock tick = 1 second 
engine.start(); 

VI. VERIFICATION 

Before the formal model is deployed for execution, the self-
adaptive system must be verified to assure requirements R1 to 
R3 (see Section 3). We explain the models of the managed 
system and environment used for verification. Then we discuss 
the verification of properties derived from the requirements.  

A. Models of the Managed System and Environment  
To verify the MAPE-K loop, we need proper models of the 

managed system and the environment that represent the relevant 
behavior related to self-adaptation. The Environment behavior 
(Figure 12. ) comprises two parts: (i) it randomly changes the 
status of the GPS and sends a corresponding signal to the 
managed system (gpsChanged!), and (ii) when a query to Flickr 
is requested (by the MonitorText behavior), it either returns a 
response (flickrResp!) or not (NoFlickrResp).  

 
Figure 12.  Environment behavior 

ManagedSystem (Figure 13. ) comprises three parts: (i) it 
updates the GPS status and signals the monitor (gpsUpdated!), 
(ii) it randomly generates clicks on photos (photoAdded!) or 
updates of story title (textUpdated!), and (iii) it randomly 
emulates that an algorithm has generated no photos (noPhotos!).  

 
Figure 13.  ManagedSystem behavior 

B. Verifying the System Requirements 
Requirement R1 requires that the self-adaptive system 

works correctly, i.e., without errors, deadlocks, or time locks. To 
guarantee that, we verified several properties:  

 

P1.  A[] not deadlock 
P2. MonitorGPS.ChangeGPS --> Analyze.GpsChanged 
P3. Analyze.GpsChanged --> Plan.CreatePlan 
P4. Plan.CreatePlan --> Execute.PlanCompleted 

Property P1 (provided by Uppaal) allows checking deadlock 
freeness of a model. In addition, we have verified a series of 
properties; here we present three examples that show 
correctness of the interaction between MAPE components. 
Property P2 guarantees that if the monitor changes the status of 
the GPS, the Analyzer will eventually detect this. P3 
subsequently guarantees that the change will lead to a plan to 
deal with it. Finally, P4 guarantees that the plan is executed.  

R2 requires that when GPS is not available or Flickr 
provides no response to a query, the self-adaptation system 
should switch off the algorithms that require these resources and 
provide recommendations from alternative algorithms (always 5 
in total). To that end, we verified the following five properties:  

       P5. A[] Execute.planNoTextExecuted imply algs[2].Used==NO 
       P6. A[] Execute.planNoGpsTextExecuted imply algs[2].Used==NO     
       P7. A[] Execute.planNoGpsExecuted imply algs[3].Used==NO 
       P8. A[] Execute.planNoGpsTextExecuted imply algs[3].Used==NO 
       P9. A[] curUsedAlgsNumber==5 //counted in Execute (Code block 4) 

Property P5 guarantees that if no response if provided by 
Flickr, algorithm with ID 2 will not be used. Property P6 
additionally guarantees that if the GPS is off the same algorithm 
will not be used. P7 and P8 guarantee similar properties for the 
GPS-based algorithm with ID 3. We verified the correctness of 
all variants for the other algorithms. Finally, P7 guarantees that 
there are always five algorithms used by the social 
recommender, independent of available external services. 

R3 requires that the more an algorithm is selected the higher 
position it should get in the social recommender. To guarantee 
this requirement, we specified two properties. As an algorithm 
gets a position in a recommender depending on it’s rating 
(number of times picked by a user), we verified property P10 
that guarantees that the algorithms are sorted according to their 
rating after execution. In addition, property P11 guarantees that 
the rating of an algorithm that provides a recommendation and 
is selected by the user always increases by a given reward.  

P10. A[] Execute.ChangesSentToApplication imply 
        forall(i:int[0,algTotal-2]) algs[i].Rating>=algs[i+1].Rating 
P11. ManagedSystem.UserClickedOnRecomPhoto --> 
        MonitorBasic.AlgRatingChanged &&  
          algChosenPrevRating = algs[algChosen].Rating-reward 

The verification times are summarized in the Table III.   
 

TABLE III.  VERIFICATION TIME OF SYSTEM PROPERTIES 

Property Verification 
time, sec. 

 Property Verification 
time, sec. 

P1 125  P7 62 
P2 71  P8 62 
P3 66  P9 56 
P4 68  P10 54 
P5 63  P11 77 
P6 60    

As the models of the environment and the managed system 
do not cover all possible conditions, which would lead to an 
explosion of the state space, exhaustive verification would 
require additional verification at runtime. 



VII. EVALUATING THE APPLICATION 

We compare the quality of recommendations of the initial 
version of the application with the self-adaptive version using a 
concrete scenario. As ActivFORMS is Java-based, we 
developed a simulating environment around the social 
recommender to test self-adaptation. We start by introducing the 
simulator. Then we show how the recommender improves with 
self-adaptation using a scenario with changing conditions. We 
conclude with measurements of performance overhead.  

A. mDS-SR Simulator 
We developed a simulator for the social recommender that 

provides all the functionality to test self-adaptation. The 
simulator gathers all parameters that influence recommendations 
in a single window (see Figure 14. ) and is able to show 
suggested content as a set of horizontally sliding images. The 
location and GPS status can be manually updated by the user 
(Off button) or imported from a file (Load from file button). 
Recommendations are directly received from Flickr (via the Get 
recommendations button). 

 
Figure 14.  Social recommender simulator written in Java. 

The mDS-SR simulator runs in the same Java environment 
as ActivFORMS. The latter includes the ActivFORMS library, 
the formal models of the MAPE-K feedback loop, the code for 
initialization and starting ActivFORMS (Code block 6), the 
Probe (Code blocks 1 and 2), and the Effector (Code block 5).  

B. Adaptation Results 
To evaluate the quality of the adaptation, we introduce the 

notion of selection probability (sp) that is defined as follows:  
pi = Ri /  , where: 
       N // total number of recommendation algorithms 
       Ri // rating of algorithm i 
sp = 100*  , where 
        Nu // the number of algorithms used 
The variable pi represents the probability that a photo 

provided by algorithm i is selected. The probability depends on 
the algorithm rating Ri and is relative to the probabilities of all 
algorithms. The selection probability sp sums the probabilities 
of the algorithms that provide content for the user to select, 
multiplied by 100 to obtain a percentage. E.g., if all external 
services are available and the five best algorithms have a rating 
of 5 each, while the other algorithms have a rating of 3, the 
rating of the used algorithms is 5*5=25 (the total rating of all 
algorithms is 25+6*3=43) and the selection probability is:  

sp =  100*(R1+R2+R3+R4+R5)/(R1+R2+…+R11); 

     =  58.2 % 
This situation is shown in Figure 15. The values for Current 

refer to rating and selection probability with adaptation, while 
values with No MAPE refer to the situation without adaptation.  

 
Figure 15.  The recommender in normal conditions (GPS is on, story title is 
sufficient for getting photos from Flickr in response) 

When the GPS is turned off, some of the algorithms will no 
longer provide recommendations. This will affect the ratings 
and selection probability as shown in Figure 16.  Both the total 
rating of the recommendations that are available and the 
selection probability are significantly better with adaptation 
(Current) as without (No MAPE).  

 
Figure 16.  The recommender with GPS turned off 

When Flickr does not provide a response to a query of a 
story title (e.g., the title is too specific to find matching photos), 
the ratings and selection probability change as shown in Figure 
17. The values show a further improvement with adaptation.  

 
Figure 17.  The recommender with no Flickr response to a query with story 
title (the title is too specific so Flickr can’t find matching photos) 



The self-adaptive layer also ensures that the most picked 
algorithm gets the highest position in the recommender. For 
example, starting from default conditions (Figure 15. ), when 
the user clicks on the fourth photo then the rating of the 
associated algorithm is increased from 5 to 7 and the picture will 
be moved to the first position (Figure 18. ). The rating and 
selection probability increases respectively.  

 
Figure 18.  Recommendations change order based on user clicks 

The scenario shows how self-adaptation improves the 
quality of the recommender for the user. Self-adaptation ensures 
that recommendations with higher rating and higher selection 
probability are available. In addition, it adapts the position of 
recommendations based on the user preferences over time.   

We measured performance overhead for three types of 
adaptations: gpsUpdated! (changes GPS status), textUpdated! 
(changes of the story title) and photoAdded! (select  
recommended photos). The measured values (Table IV) show 
the minimum, average, and maximum time between initiating 
the adaptation and the point when algorithms are sorted 
(excluding loading pictures from Flickr) for 20 adaptations of 
each type. The initial test setting was: story title = My Louvre 
story, tags = painting masterpiece, latitude = 48.86, 
longitude=2.32, GPS ON, recommendations loaded once. 
Hardware: AMD Turion Dual-Core Mobile 2GHz, 2GB DDR2.  

TABLE IV.  PERFORMANCE OVERHEAD OF ADAPTATION 

Adaptation Type         Overhead (ms) [min; average; max] 
gpsUpdated! [19.5; 30.8; 53.6] 
textUpdated! [19.2; 30.7; 42.2] 
photoAdded! [11.3; 29.3; 44.5] 

 
The overall average overhead of 30.2 ms to realize 

adaptations is negligible for the mDS-SR application. However, 
for time-critical applications with possibly more complex 
adaptation scenarios the overhead may have substantial impact. 

VIII. CONCLUSIONS AND FUTURE WORK 

This paper contributes with a concrete application in which 
we have used ActivFORMS to realize self-adaptation. A self-
adaptive layer was designed using a formal model of a MAPE-K 
feedback loop that was added to the social recommender of the 
digital storytelling application to improve its flexibility. We 
translated the adaptation requirements to formal properties that 
we verified before deployment. Having formal guarantees about 
the requirements increases the potential of the app on the 
market. We compared the quality of the social recommender 
with and without adaptation, which shows that self-adaptation 

improves the quality of the social recommender. As no coding 
was required, the application could be developed very 
effectively; it took the developer two month to design the self-
adaptive system, provide assurances, and run it. 

We also experienced some issues with ActivFORMS that 
are important for our future research. As exhaustive verification 
at design time is difficult or even impossible, some guarantees 
can only be obtained during runtime. In the mDS-SR 
application, the behavior of the user and availability of resources 
in the environment are difficult to predict. Consequently, the 
guarantees provided by offline verification are only valid for 
restricted models. We plan to extend ActivFORMS with 
enhanced support for verification at runtime. Furthermore, 
ActivFORMS requires expert knowledge to design and change 
the formal models. We are studying how to add a user-friendly 
modeling layer on top of the formal models that hides (most of 
the) the underlying formalism from the designers. 
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