
Providing Assurances for Self-Adaptation in a Mobile Digital Storytelling Application
Using ActivFORMS

Danny Weyns, Stepan Shevtsov, Sabri Pllana
AdaptWise Research Group, Department of Computer Science

Linnaeus University, Växjö Campus, Sweden
danny.weyns@lnu.se, stepan.shevtsov@lnu.se, sabri.pllana@lnu.se

Abstract—Self-adaptability enables a system to adapt itself to
changes in its execution conditions and user requirements in order
to achieve particular quality goals. However, assuring that the
adaptation goals are satisfied poses complex challenges. We
recently developed the ActivFORMS approach that aims to tackle
some of these challenges, but further research is required to
evaluate the approach. This paper presents the results of a study in
which we applied ActivFORMS to a mobile storytelling application
that employs a social recommender. The initial version of the
application used a static recommender that could not deal with
changing environment conditions, or take into account preferences
of users. To that end, we added a self-adaptive layer on top of the
application. The study results show that self-adaptation
significantly increases the quality of recommendations compared
to the initial version by: (1) enabling the social recommender to
adapt to the quality of user input and unavailability of the GPS
service, and (2) making the recommender adaptive to user
preferences. Providing guarantees for these adaptation goals is
crucial in this domain from a business perspective. The study
results show the feasibility and effectiveness of ActivFORMS for a
practical application; but they also underpin the need for an
integrated verification approach for self-adaptive systems that
combines offline with online verification.

Keywords-self-adaptation, executable formal models, assurances

I. INTRODUCTION
Today customers expect particular levels of qualities from

software systems, such as reliability, performance, flexibility,
and scalability. However, contemporary software systems must
operate under changing conditions, such as dynamics in the
availability of resources, changing system goals, etc. As these
dynamics may be difficult to predict, software engineers have to
deal with incomplete knowledge at design time. Consequently,
providing guarantees to assure the required qualities at runtime
is complex. Self-adaptation is widely considered as an effective
approach to cope with this complexity [17][10][9]. Self-
adaptation allows a system to dynamically react to changes in
requirements and adapt itself to maintain system goals.

In this research we focus on architecture-based self-
adaptation, which provides a suitable level of abstraction to
handle system dynamics that involve adaptation of components
and their relations [16][11][15]. Central in architecture-based
self-adaptation is the separation between the domain concerns,
which are part of the managed system, and the adaptation
concerns, which are part of the managing system. A well-known
approach to structure the managing system is by means of a
feedback loop divided in four components: Monitor, Analyze,
Plan, and Execute [6]. These components share a common

Knowledge base (hence, MAPE-K) that may contain data about
the managed system, environment, adaptation goals, and
working data that can be used by the MAPE components.

One of the key problems in engineering self-adaptive
systems is providing guarantees that the adaptation goals are
satisfied at runtime regarding of dynamics in the environment or
the managed system [9]. Recent research in this direction
suggests using formal models to tackle the problem, e.g.,
[18][22]. Existing approaches primarily focus on formal models
of the Knowledge part of MAPE-K. Little attention has been
devoted on formalizing the MAPE elements and providing
guarantees about the behavior of the adaptation components
themselves. E.g., important properties of a self-healing system
may be: does the analysis component correctly identify errors
based on the monitored data, or does the execute component
perform repair actions in the correct order? Guaranteeing such
properties is important to assure proper adaptation capabilities.

To tackle this problem, we recently developed an innovative
approach called ActivFORMS (Active Formal Models for Self-
adaptation) [7]. ActivFORMS uses an integrated formal model
of the MAPE-K feedback loop. This formal model can be
executed directly on a virtual machine, and interact with the
managed system via probes and effectors. As a result, the
properties that are derived from system requirements, and are
verified before execution, are guaranteed at runtime. We have
tested ActivFORMS for a number of simple self-adaptive
systems, but more research is required to evaluate the approach.

This paper presents the results of a study in which we have
applied ActivFORMS to a practical mobile storytelling
application that employs a social recommender. The initial
version of the application used a static recommender that could
not deal with issues such as unavailability of GPS or user
preferences. To deal with these issues, we added a self-adaption
layer to the application. The results show that self-adaptation
significantly increases the quality of recommendations of the
application. Providing guarantees for the adaptation goals is
crucial in this domain from a business perspective. The study
shows the feasibility of ActivFORMS for a practical application,
but also points to some issues that require further research.

The remainder of the paper is structured as follows. Section
II briefly describes ActivFORMS and discusses related efforts.
In Section III, we introduce the storytelling application with
social recommender and discuss its inflexibility problem.
Section IV explains how we tackled this problem by adding a
self-adaptive layer to the applicaton. In Section V, we elaborate
on the design of the MAPE-K feedback loop that realizes self-
adaptation. Section VI discusses verification of required system
properties. In Section VII, we evaluate the self-adaptive solution
by comparing it to the initial version. Finally, conclusions and
directions for future work are presented in Section VIII.

II. ACTIVFORMS APPROACH
ActivFORMS follows the three-layered reference model

proposed by Kramer and Magee [11], see Figure 1. The bottom
layer comprises the managed system that implements domain-
specific functionality. ActivFORMS is responsible for
adaptation of the managed system comprising two layers:
Active Model and Goal Management. Active Model realizes a
MAPE-K feedback loop that monitors the managed system and
adapts it according to some adaptation goals. The MAPE-K
feedback loop consists of a formal model that is directly
executed by a virtual machine, taking input from probes and
performing adaptation actions via effectors.

Goal Management comprises a tree-based goal model where
nodes have associated MAPE-K models to realize adaptations.
Goal management monitors goals via the virtual machine. When
a goal violation is detected, the models associated with an
alternative goal that matches the changing conditions are used to
update the deployed models via the virtual machine. Goal
models can be updated at runtime. We refer the interested reader
to [7]. In this paper, we focus on the Active Model.

Figure 1. The ActivFORMS approach

A. Active Model
In our research we model a MAPE-K feedback loop as a

network of timed automata. A timed automaton is a finite-state
machine extended with clock variables. Automata can
communicate through shared data or by sending signals. Signals
being sent are marked with “!” and received signals are marked
with “?” For the specification of required properties, we use
Timed Computation Tree Logic (TCTL). TCTL allows checking
individual states of the state space of the system as well as traces
over the state space. The latter makes it possible to verify
reachability, safety, and liveness properties.

The ActivFORMS virtual machine is able to initiate and
execute a formal model and supports interaction with the
managed system via probes and effectors. In addition, the virtual
machine supports verification of goals at runtime (currently only
verification of goals based on actual state), as well as live
updates of the formal model. The latter functionalities are not
further studied here. We refer the interested reader to [7].

The execution of the active model conforms to the semantics
of networked timed automata. Internally, the virtual machine
transforms the MAPE-K formal model to a graph representation.
The model can be triggered by input from the managed
system/environment or by time. Time triggering is based on an

internal clock of the virtual machine. The ratio between a clock
tick and real time can be configured in the virtual machine.

The virtual machine runs on a JVM. To support engineers,
ActivFORMS provides a set of Java classes to implement
probes and effectors. Probes track the managed system and
possibly the environment and transfer data to Monitor automata
of the MAPE-K feedback loop, while Effectors transfer actions
generated by Execution automata to the managed system.

B. Related Efforts
A vast body of work on formal approaches for self-adaptive

systems exists; [20] provides a recent overview of the state of
the art. Here we discuss some key references and highlight the
types of applications the approaches have used for validation.

[13] presents an approach to create and verify formal models
for adaptive systems using Petri Nets. The models can
automatically be transformed into executable programs. The
approach is applied to a GSM-based audio streaming protocol.
As a result, development time and reliability of the system
improved. [21] uses discrete time Markov chains to design
models of the system and environment and a Bayesian learner to
adapt uncertainties. A feedback loop detects requirement
violations and modifies the system goals accordingly. The
approach is demonstrated in a simple Web-service application
setting. [22] presents ADAM, a tool that transform UML
diagrams into probabilistic decision models that are used at
runtime to guarantee optimal performance. The approach is used
for a ShopReview mobile application and compared to Java
implementations using simulation. The results show that the
approach supports engineers with creating reliable software and
decreases development time, but there is some overhead
compared to “hard coded” solutions.

In contrast to existing work, ActivFORMS directly executes
the formal models to realize self-adaptation. We apply the
approach to a practical application, provide formal guarantees,
and compare the adaptive version of the application with the
initial non-adaptive version.

III. DIGITAL STORYTELLING WITH SOCIAL RECOMMENDER

This section describes the initial, non-adaptive mobile
digital storytelling application, and explains the inflexibility
problem of the social recommender.

A. mDS-SR application
Mobile Digital Storytelling with Social Recommender

(mDS-SR) is a native iOS application based on a storyboard
technology [3]. The application provides functionality for
creating digital stories on a mobile device and sharing them.
Concretely, mDS-SR allows:

• Starting a new story or selecting an existing one;
• Adding and rearranging images from a local collection

on a canvas so they form a sequence;
• Viewing similar photos (recommendations) from

Flickr, and inserting them into a sequence;
• Sharing photos to Flickr so that they can be used in the

stories of other people;
• Recoding audio, adding a soundtrack or tags to a story;
• Creating a narrative (a video) out of the story and

sharing it to YouTube or by e-mail.
The mDS-SR application can be used as a tool for

collaborative learning, to share touristic experiences, etc.

B. Social Recommender
The social recommender supplements story creation and

gives a possibility to inherit experience of other users that used
the application in similar situations. In general, recommender
systems provide suggestions with the help of collaborative
filtering, content-based filtering, or a combination of these two
methods [1]. The choice for filtering methods depends on the
goals of application at hand. Collaborative filters work better
when there is a big amount of data available about users, their
preferences and community behavior. Content-based filters on
the other hand, are very good in recommending new/unrated
items and satisfy people with unique preferences [2].

For the mDS-SR application, we use content-based filtering.
The choice was based on information gathered during
requirements elicitation. Most recommendation systems with
content-based filtering rely on tags and standard item data (title,
rating, creation date, etc.) when calculating recommendations.
mDS-SR also relies on it, but in addition, we added a new
parameter in the recommender: it compares the geographical
location of the user with the location where the recommended
photo was created or uploaded. As for the source of suggested
content, we adopted the idea of Guy & Carmel [4] to combine
social media with recommender systems, hence social
recommender. In particular, mDS-SR uses Flickr as a social
service for providing recommendations. Flickr provides an API
to send a query for recommendations with parameters (geo-
location, text for search, etc.). Flickr then responds with
matching photos, i.e., recommendations. In addition, Flickr can
sort photos according to relevance, interestingness, or the date
when photos were taken or uploaded. Flickr calculates relevance
and interestingness based on protected algorithms.

As a result, the social recommender of the mDS-SR
application uses a combination of geo-locations, story title, tags,
and sorting methods to provide social recommendations. By
combining subsets of these parameters, a variety of
recommender algorithms can be implemented. In the mDS-SR
application, we selected five of them based on initial testing and
feedback from participants that used the application in the field.
Table I lists the algorithms with their key properties. When a
user starts working with the application, the recommender loads
20 photos generated by the recommender algorithms, four
photos by each algorithm. The photos are shown in an
interleaved way, such that they have approximately equal
chances of being chosen.

TABLE I. ALGORITHMS IN MDS-SR

The algorithm Sort by Gps
based

Text
based

Tag
based

1 Search for story tags in tags of
photos relevance +

2 Search for story name in picture
title, description, tags of photos relevance +

3
Search in current geo location for
photos containing story name in
photo title, description or tags

relevance + +

4
Search in current geo location for
photos uploaded before 2013-05-
30 (first experiment with the app).

posting
date,
descending

+

5 Search current geo location for
photos uploaded after 2000-01-01.

interesting-
ness,
descending

+

Figure 2. shows the user interface of the mDS-SR

application. The left hand side shows the UI for naming and

tagging a story; the right hand side shows the UI for working
with images and the recommender.

Figure 2. Initial mDS-SR application: naming and tagging story (left),
working with images and recommender (right).

C. Problem description
The recommender algorithms of the mDS-SR application

are statically defined, but they rely on dynamic parameters. For
example, if the Global Positioning System (GPS) is turned off or
the system is not available, all algorithms that are based on GPS
will provide no recommendations. Hence, only 8 photos will be
visible instead of the intended 20 photos (as three algorithms
depend on GPS, see Table I). A similar situation occurs when a
user gives a very complex name to a story for which Flickr
cannot find matching photos. In this case, algorithms that are
text-based (see Table I) will not provide recommendations.
Furthermore, due to the use of a fixed set of algorithms, the
social recommender is not able to adapt dynamically to user
preferences. This inflexibility of the social recommender has a
negative effect on user experience and consequently may affect
the competitiveness of the application on the market.

IV. SELF-ADAPTIVE SOCIAL RECOMMENDER

We start this section with listing the requirements for self-
adaption to tackle the flexibility problem. Then, we give a high-
level overview of the architecture of the self-adaptive system.
The detailed design and verification are presented in the
following sections.

A. Requirements for self-adaptation
Self-adaptation should satisfy the following requirements:

R1: The self-adaptive system should work correctly, i.e.,
without errors, deadlocks, or time locks.

R2: When GPS is not available or Flickr provides no response to
a query, self-adaptation should switch off the algorithms
that require these resources and provide recommendations
from alternative algorithms; always 5 in total.

R3: The social recommender should be able to adapt
dynamically to user preferences; i.e., the more an
algorithm is selected the higher position it should get in
the recommender.

To ensure sufficient recommendation algorithms and
provide the required flexibility, we added a set of six extra
algorithms to the mDS-SR application (# 6-11 in Table II).

TABLE II. ADDITIONAL ALGORITHMS FOR MDS-SR

The algorithm Sort by Gps
based

Text
based

Tag
based

6
Search for story tags in picture
title, description and tags of
photos

interesting-
ness,
descending

 +

7
Search in current geo location
for photos containing story tags
in tags of photos

relevance +

8

Search in current geo location
for photos containing story
name in photo title, description
or tags and taken before 2010-
01-01

taken date,
ascending + +

9
Search for story tags in picture
title, description and tags of
photos, tag mode “all”

taken date,
ascending +

10
Search for first story tag in
picture title, description and
tags of photos

taken date,
descending +

11
Search for first word from story
title in picture title, description
and tags of photos

relevance +

The choice for the algorithms is based on pilot tests with

users. The total set of algorithms offers 5 tag-based algorithms
that do not depend on GPS or Flickr response. Furthermore, the
additional algorithms can provide richer content than algorithms
#1-5. Tracking the choices of recommended content and
selecting algorithms based on that enables the system to adapt
the recommender algorithms to the preferences of the user.

B. High-level architecture of the self-adaptive layer
Figure 3. shows the high-level architecture of the mDS-SR

application with self-adaptation. We first focus at the bottom
part that contains the main components of the initial digital
storytelling application.

Central to the mDS-SR application is the Local Storage
that maintains the data of all stories created by the user as well
as the recommender algorithms that can be used by the different
components. Any data of a story changed by a component
automatically updates the story data in the repository. The Start
New Story component provides functionality to a user to create a
new narrative, which includes adding a story name, tags, and
author. The Select Existing Story component allows a user to
select a previously created story and update basic story data.
The Edit Story component offers different functions to the user
to work with story content, such as selecting images and adding
sound. Edit Story can interact with the GPS sensor and Flickr
when it uses recommender algorithms that require these
resources. The Play Story component provides functionality to
finalize the creation of a story, i.e., producing, watching and
sharing a video-narrative. Play Story can interact with YouTube
that serves as a platform for sharing stories.

We now look at the self-adaptive layer that is added on top
of the application to tackle the inflexibility problem described in
Section 3. Here we give a general overview of the self-
adaptation components; the detailed design is discussed in the
following section. The self-adaptation layer consists of a
MAPE-K feedback loop, which is local to every mobile device.
The Knowledge repository maintains data relevant to self-
adaptation, including representations of the different algorithms
with ratings that represent the user preferences, the status of the
GPS, data about the latest response of Flickr, data about plans,
etc. MAPE components have read/write access to the repository.
The Monitor component uses a Probe to monitor changes in the

story title, user interactions with the recommender interface
(selecting a photo or absence of actions during a certain period),
GPS status, and the number of photos provided by the used
algorithms. Based on any of these events, the Analyze
component analyses the situation. If GPS is not available or
Flickr does not provide a response to a query, Plan is triggered
to change the used recommender algorithms. Based on the input
provided by the user, Analyze may adapt the order of the
recommender algorithms, which then in turn triggers the Plan
component to change the used recommender algorithms.
Finally, the Execute component communicates with the Effector
to modify the algorithms used by the social recommender of the
application according to the developed plan.

Figure 3. Architecture of mDS-SR application with a self-adaptation layer

V. SELF-ADAPTATION DESIGN

We now explain the detailed design of the self-adaptation
layer. Subsequently, we discuss the probe, the MAPE-K
components, and the effector. We conclude with explaining how
ActivFORMS is configured and started to apply self-adaptation.

A. Probe
The probe gathers the data that is required by the MAPE-K

loop to realize self-adaptation. Probe connects the Monitor with
the mDS-SR application using the following signals:

• gpsUpdated: signal that says when the status of the GPS
changes (on/off);

• recomLoaded: signal that indicates that new
recommendations (photos) from Flickr are loaded in the
application interface;

• textUpdated: signal that indicates changes in story title;
• flickrResp: signal that provides the response of Flickr

(number of photos) to a query with the story title;
• photoAdded: signal that indicates that a user clicked on

any recommended photo; the signal includes the
algorithm ID of the clicked photo;

• noPhotos: signal that says that a used algorithm did not
provide a single recommendation; the signal includes
the algorithm ID.

An excerpt of the Probe class implementation is shown in
Code block 1. The virtual machine requires a unique identifier
for each signal that is used by a probe to communicate between
the application and the formal model of the MAPE-K feedback
loop. Identifiers are matched in the Probe constructor, e.g. the
identifier signalGpsUpdated provided by the application is
matched with the gpsUpdated signal used in the formal model.
The ActivFORMS virtual machine (ActivFORMSEngine)
provides a Send function that allows the probe to communicate
with the formal model. The Send function takes three
parameters: channel identifier, the probe object, and data to be
send (in string format). The third parameter is optional.

Code block 1. Part of mdsProbe class
public class mdsProbe implements Synchronizer {
int signalGpsUpdated;
int signalTextUpdated;
ActivFORMSEngine engine;
 public mdsProbe (ActivFORMSEngine gotEngine) {
 this.engine = gotEngine;
 signalGpsUpdated = engine.getChannel("gpsUpdated");
 signalTextUpdated = engine.getChannel("textUpdated");
 … //match other signals with their identifiers
 }
 public void sendTextSignal() {
 engine.send(signalTextUpdated, this);
 }
 public void sendGpsSignal(int gpsIsWorking) {
 String gps = Integer.toString(gpsIsWorking);
 engine.send(signalGpsUpdated, this, "GPSactive="+gps);
 }
}

A concrete implementation example is shown in Code block
2. The probe can be triggered via the textsChanged or gpsState
functions. This first one is triggered when the user changes the
story title; the second one when the GPS turns on/off. Both
functions send a signal to the formal model; when the GPS
changes, the status is also sent (0 for “off”, 1 for “on”).

Code block 2. Creating a Probe, sending signals
probe = new mdsProbe(engine);
public void textsChanged () {
 probe.sendTextSignal();
 }
public void gpsState (int gpsIsWorking) {
 probe.sendGpsSignal(gpsIsWorking);
}

B. MAPE-K Behaviors
To model the MAPE-K behaviors, we used a set of formal

templates for self-adaptive components [14] and to model and
test the automata, we used the Uppaal [8] tool.

(1) KNOWLEDGE
The knowledge that is shared by the MAPE behaviors (see

Figure 3.) is structured in three parts (see Code block 3). First,
the knowledge of the managed system comprises a
representation of the recommender algorithms, each with an
identifier, a rating, and three Booleans indicating that the
algorithm is in use, whether it is GPS based, or text based. This
part also maintains knowledge about the number of algorithms
in use, the ID of the algorithm picked, and the ID of the
algorithm that did not provide recommendations from Flickr.
Second, knowledge keeps track of information in the

environment, i.e., the status of GPS and the response of Flickr to
a query with story title. Third, knowledge maintains data about
the adaptation process itself, i.e., a flag (Boolean) that indicates
that text-based algorithms can be used, a flag that indicates that
the recommender has been updated, the ID of the plan that is
selected for adaptation, and the number of currently used
recommender algorithms (which should be 5 at all times).

Code block 3. Knowledge
//Managed System knowledge
typedef struct {
int ID; int Rating; bool Used; bool GpsBased; bool TextBased;
} RecAlgorithm; //an algorithm
const int algTotal = 11; //number of algorithms
const int algToUseInRec = 5; //number of simultaneously used algs
RecAlgorithm algs[algTotal]; //array of algorithms
int algChosen; // algorithm ID of a picked photo
int algNumber; // ID of algorithm that provide no recommendations

//Environment knowledge
int Resp; // Flickr response to a query with story title
bool GPSactive=YES; // GPS status

//Adaptation knowledge
bool AnswerOnText=1; // flag indicating that text based algs can be used
bool recomUpdated; // calculations are finished, recommender updated
int PlaN; // ID of executed plan
int curUsedAlgsNumber=5; // number of currently used algs

(2) MONITOR
The Monitor component consists of four independent

processes that handle the following monitoring tasks:
• MonitorGPS: monitors the status of the GPS;
• MonitorText: monitors changes of the story title;
• MonitorNoActivity: tracks whether a user clicks or not

on new loaded photos within a given time period;
• MonitorAlgs: monitors when a photo is clicked, and

whether an algorithm does not provide recommended
photos in response to a query; the monitor updates the
ratings of the algorithms accordingly.

Using different monitors separates concerns and allows the
behaviors to work in parallel. The latter is required, e.g., to track
the GPS status (MonitorGPS) in parallel with monitoring user
clicks (MonitorNoActivity).

MonitorGPS
The MonitorGPS behavior (Figure 4.) is responsible for
tracking the availability of GPS. The monitor receives the
gpsUpdated signal when the GPS status changes. It then updates
the knowledge (GPSActive=!GPSactive) and triggers the
Analyze behavior (analyzeGPS!).

Figure 4. MonitorGPS behavior

MonitorNoActivity
When the application loads recommended content

(recomLoaded?), the MonitorNoActivity behavior (Figure 5.)

starts monitoring interactions of the user with the new content
(WaitingForActions). If none of suggested photos is clicked
within 30 ticks of the clock it is assumed that the user is not
interested in the content. Hence, the rating of all used algorithms
is decreased (decreaseRatingsof UsedAlgs(1)) and the analyzer
is triggered (analyzeRatings!).

Figure 5. MonitorNoActivity behavior

MonitorAlgs
The MonitorAlgs behavior (Figure 6.) consists of two

branches triggered by signals from the application. First, the
noPhotos signal is received when an algorithm in use does not
provide a single recommended photo in response to a query. The
ID of the algorithm, which is received together with the signal
from application, is used to decrease the rating of the algorithm
(decreaseRating(algNumber,2)). Then the analyzer is triggered
(analyzeRatings!). Second, when the user clicks a recommended
photo, the photoAdded signal is received. As a result, the rating
of the algorithm that provided the suggestion is increased
(increase(algChosen,2)). Next the analyzer is triggered.

Figure 6. MonitorAlgs behavior

MonitorText
When MonitorText (Figure 8.) is triggered by a text update

in the application (textUpdated?), it generates a query with story
title as main parameter and sends it to Flickr (flickrQuery!).

Figure 7. MonitorText behavior

In case Flickr does not respond within 10 clock ticks, the
knowledge (AnswerOnText, see Code block 3) is updated with a
failure signal (updateRespKn(-1)). Otherwise, the knowledge is

updated with the number of available photos returned from the
query (updateRespKn(Resp)). Monitoring the response of Flickr
based on the story title as a main search parameter is important
for selecting proper algorithms for the social recommender.

Figure 8. MonitorText behavior

(3) ANALYZE
The Analyze behavior (Figure 9.) consists of three branches

(from Waiting) triggered by signals from the monitor processes.

Figure 9. Analyze behavior

First, when the GPS status changes (analyzeGPS signal) the
analyzer immediately triggers the Plan behavior to start planning
(planStart!). Second, changes in texts of a story may or may not
imply adaptations in the used algorithms. When the Analyzer
receives the analyzeText? signal it starts analyzing
(analyseRespKn()) the response that the MonitorText behavior
received from Flickr (see MonitorText above). If Flickr
provided no photos to the query, its response is considered
“bad,” otherwise; it is considered “good.” The current response
of Flickr (good or bad) is compared with the previous response.
If the response is the same, no changes of the algorithms are
required and the Analyze behavior returns to the Waiting state.
In the other case (FlickrResponseChanged) the Plan behavior is
triggered. Third, when the Analyze behavior receives the
analyzeRatings signal, it sorts the recommender algorithms by
rating (sortAlgByRating()) and then checks whether the order of
the algorithms has changed. If the order has not changed
(order==SAME) the analyzer returns to the Waiting state;
otherwise (order==DIFF), the Plan behavior is triggered to start
changing the algorithms used by the application.

(4) PLAN
The Plan behavior (Figure 10.) creates a plan for adapting

the recommender algorithms depending on GPS availability and
the response of Flickr to a query with a story title. If GPS is not
available (GPS==OFF) and there are no photos provided by
Flickr (photosInRespToStoryTitle==0), a plan that only includes
algorithms with tags (PlaN=Count_only_on_tags) is generated.

If photos are returned (photosInRespToStoryTitle>0), a plan that
depends on text (PlaN=Count_only_on_text) is generated. If
GPS is available, but Flickr does not provide recommendations
(photoinRespToStoryTitle==0), a plan that only depends on
GPS (PlaN=Count_only_on_gps) is generated. If both services
are available, a plan is generated that uses all available
algorithms (PlaN=Count_only_on_gps_and_text). Once the
plan is generated, the Execute behavior is triggered (exec!).

Figure 10. Plan behavior

(5) EXECUTE
When the Execute behavior (Figure 11.) is triggered (exec?)

it changes the used flags (see Code block 3) of the algorithms in
the Knowledge based on their rating and the selected plan using
the changeAlgs(int PlanN) function (see Code block 4).

Figure 11. Execute behavior

Depending on the plan selected by the Analyzer the
recommender algorithms are changed by the Executor (PlaN==4
for planNoGPSTextExecuted, PlaN==3 for planNoGPS-
Executed, PlaN==2 for planNoTextExecuted, PlaN==1 for
planNormalExecuted). 1 Subsequently, the Execute behavior
updates the recommendation status (recomUpdated=YES) and
invokes the update of the algorithms in the application
(updateAlgsInApp! via the Effector, see below).

Code block 4. changeAlgs function
void changeAlgs(int PlanN){
 algsUsedInRec:=0;
 for (i:=0; i<algTotal; i++) {
 algs[i].Used=0;
 if (PlanN== Count_on_gps_and_text

1 PlaN==1 corresponds to Count_only_on_gps in the planner, PlaN==2
corresponds to Count_on_gps_and_text, PlaN==3 corresponds to
Count_only_on_text, PlaN==4 corresponds to Count_only_on_tags

 || (PlanN==Count_only_on_gps && algs[i].TextBased==0)
 || (PlanN==Count_only_on_text && algs[i].GpsBased==0))
 || (PlanN==Count_only_on_tags && algs[i].TextBased==0
 && algs[i].GpsBased==0) {
 algs[i].Used=1; algsUsedInRec++;
 }
 }
 curUsedAlgsNumber=algsUsedInRec; //needed for verification
}

C. Effector
The Effector (Code block 5) invokes the actions of the

Execute behavior to the mDS-SR application. Similar to Probe it
associates a unique identifier to each channel through which the
Executor behavior communicates (e.g., updateAlgs=
engine.getChannel("updateAlgsInApp")). Each channel is
registered in the engine to receive particular data from the model
(e.g., engine.register(updateAlgs, this, "algs")). To trigger a
Flickr query there is no need to read data from the model; hence,
the channel is registered to receive a plain signal without extra
data (engine.register(flickrQuery, this). The effector uses the
receive function to communicate data from the formal model to
the application. The function is triggered when the formal model
sends a signal to the application. The receive function takes two
parameters: a channel ID and the data received via that channel.
The received data is formatted as a String-Object hash map and
the application needs to be instrumented to process this format.
When the application receives data via the channel associated
with updateAlgs it processes the parameters of the recommender
algorithms (rating, usage flag) and updates the recommendations
of the application accordingly. In case a flickrQuery signal is
received, a Flickr query is invoked (Probe tracks the response).

Code block 5. Part of mdsEffector class
mdsEffector effector = new mdsEffector(engine, this); // in MDS class

public class mdsEffector implements Synchronizer {
int updateAlgs;
int flickrQuery;
ActivFORMSEngine engine;
MDS mds;
public mdsEffector(ActivFORMSEngine engine, MDS mainMDS) {

this.engine = engine;
this.mds = mainMDS;
updateAlgs= engine.getChannel("updateAlgsInApp");
engine.register(updateAlgs, this, "algs");
flickrQuery = engine.getChannel("flickrQuery");
engine.register(flickrQuery, this);

 }
@Override
public void receive (int channelId, HashMap<String, Object> recData) {
 if (channelId == updateAlgs) {
 mds.parseData(recData);
 }
 else if (channelId == flickrQuery) {
 mds.evaluateText();
 }
}

D. Initialization and Starting ActivFORMS
To execute the formal model, the ActivFORMS engine needs
to be initialized and started (Code block 6). The mDS.xml file
contains the MAPE-K model produced by Uppaal. Clock
variables progress with ticks that need to be associated with
real time units. In the mDS-SR application, we associated 1000

ms with a tick (engine.setRealTimeUnit(1000)). Finally, the
ActivFORMS virtual machine can be started (engine.start()).

Code block 6. Setting ActivFORMS engine
ActivFORMSEngine engine;
engine = new ActivFORMSEngine("mDS.xml");
engine.setRealTimeUnit(1000); //1 clock tick = 1 second
engine.start();

VI. VERIFICATION

Before the formal model is deployed for execution, the self-
adaptive system must be verified to assure requirements R1 to
R3 (see Section 3). We explain the models of the managed
system and environment used for verification. Then we discuss
the verification of properties derived from the requirements.

A. Models of the Managed System and Environment
To verify the MAPE-K loop, we need proper models of the

managed system and the environment that represent the relevant
behavior related to self-adaptation. The Environment behavior
(Figure 12.) comprises two parts: (i) it randomly changes the
status of the GPS and sends a corresponding signal to the
managed system (gpsChanged!), and (ii) when a query to Flickr
is requested (by the MonitorText behavior), it either returns a
response (flickrResp!) or not (NoFlickrResp).

Figure 12. Environment behavior

ManagedSystem (Figure 13.) comprises three parts: (i) it
updates the GPS status and signals the monitor (gpsUpdated!),
(ii) it randomly generates clicks on photos (photoAdded!) or
updates of story title (textUpdated!), and (iii) it randomly
emulates that an algorithm has generated no photos (noPhotos!).

Figure 13. ManagedSystem behavior

B. Verifying the System Requirements
Requirement R1 requires that the self-adaptive system

works correctly, i.e., without errors, deadlocks, or time locks. To
guarantee that, we verified several properties:

P1. A[] not deadlock
P2. MonitorGPS.ChangeGPS --> Analyze.GpsChanged
P3. Analyze.GpsChanged --> Plan.CreatePlan
P4. Plan.CreatePlan --> Execute.PlanCompleted

Property P1 (provided by Uppaal) allows checking deadlock
freeness of a model. In addition, we have verified a series of
properties; here we present three examples that show
correctness of the interaction between MAPE components.
Property P2 guarantees that if the monitor changes the status of
the GPS, the Analyzer will eventually detect this. P3
subsequently guarantees that the change will lead to a plan to
deal with it. Finally, P4 guarantees that the plan is executed.

R2 requires that when GPS is not available or Flickr
provides no response to a query, the self-adaptation system
should switch off the algorithms that require these resources and
provide recommendations from alternative algorithms (always 5
in total). To that end, we verified the following five properties:

 P5. A[] Execute.planNoTextExecuted imply algs[2].Used==NO
 P6. A[] Execute.planNoGpsTextExecuted imply algs[2].Used==NO
 P7. A[] Execute.planNoGpsExecuted imply algs[3].Used==NO
 P8. A[] Execute.planNoGpsTextExecuted imply algs[3].Used==NO
 P9. A[] curUsedAlgsNumber==5 //counted in Execute (Code block 4)

Property P5 guarantees that if no response if provided by
Flickr, algorithm with ID 2 will not be used. Property P6
additionally guarantees that if the GPS is off the same algorithm
will not be used. P7 and P8 guarantee similar properties for the
GPS-based algorithm with ID 3. We verified the correctness of
all variants for the other algorithms. Finally, P7 guarantees that
there are always five algorithms used by the social
recommender, independent of available external services.

R3 requires that the more an algorithm is selected the higher
position it should get in the social recommender. To guarantee
this requirement, we specified two properties. As an algorithm
gets a position in a recommender depending on it’s rating
(number of times picked by a user), we verified property P10
that guarantees that the algorithms are sorted according to their
rating after execution. In addition, property P11 guarantees that
the rating of an algorithm that provides a recommendation and
is selected by the user always increases by a given reward.

P10. A[] Execute.ChangesSentToApplication imply
 forall(i:int[0,algTotal-2]) algs[i].Rating>=algs[i+1].Rating
P11. ManagedSystem.UserClickedOnRecomPhoto -->
 MonitorBasic.AlgRatingChanged &&
 algChosenPrevRating = algs[algChosen].Rating-reward

The verification times are summarized in the Table III.

TABLE III. VERIFICATION TIME OF SYSTEM PROPERTIES

Property Verification
time, sec.

 Property Verification
time, sec.

P1 125 P7 62
P2 71 P8 62
P3 66 P9 56
P4 68 P10 54
P5 63 P11 77
P6 60

As the models of the environment and the managed system
do not cover all possible conditions, which would lead to an
explosion of the state space, exhaustive verification would
require additional verification at runtime.

VII. EVALUATING THE APPLICATION

We compare the quality of recommendations of the initial
version of the application with the self-adaptive version using a
concrete scenario. As ActivFORMS is Java-based, we
developed a simulating environment around the social
recommender to test self-adaptation. We start by introducing the
simulator. Then we show how the recommender improves with
self-adaptation using a scenario with changing conditions. We
conclude with measurements of performance overhead.

A. mDS-SR Simulator
We developed a simulator for the social recommender that

provides all the functionality to test self-adaptation. The
simulator gathers all parameters that influence recommendations
in a single window (see Figure 14.) and is able to show
suggested content as a set of horizontally sliding images. The
location and GPS status can be manually updated by the user
(Off button) or imported from a file (Load from file button).
Recommendations are directly received from Flickr (via the Get
recommendations button).

Figure 14. Social recommender simulator written in Java.

The mDS-SR simulator runs in the same Java environment
as ActivFORMS. The latter includes the ActivFORMS library,
the formal models of the MAPE-K feedback loop, the code for
initialization and starting ActivFORMS (Code block 6), the
Probe (Code blocks 1 and 2), and the Effector (Code block 5).

B. Adaptation Results
To evaluate the quality of the adaptation, we introduce the

notion of selection probability (sp) that is defined as follows:
pi = Ri / , where:
 N // total number of recommendation algorithms
 Ri // rating of algorithm i
sp = 100* , where
 Nu // the number of algorithms used
The variable pi represents the probability that a photo

provided by algorithm i is selected. The probability depends on
the algorithm rating Ri and is relative to the probabilities of all
algorithms. The selection probability sp sums the probabilities
of the algorithms that provide content for the user to select,
multiplied by 100 to obtain a percentage. E.g., if all external
services are available and the five best algorithms have a rating
of 5 each, while the other algorithms have a rating of 3, the
rating of the used algorithms is 5*5=25 (the total rating of all
algorithms is 25+6*3=43) and the selection probability is:

sp = 100*(R1+R2+R3+R4+R5)/(R1+R2+…+R11);

 = 58.2 %
This situation is shown in Figure 15. The values for Current

refer to rating and selection probability with adaptation, while
values with No MAPE refer to the situation without adaptation.

Figure 15. The recommender in normal conditions (GPS is on, story title is
sufficient for getting photos from Flickr in response)

When the GPS is turned off, some of the algorithms will no
longer provide recommendations. This will affect the ratings
and selection probability as shown in Figure 16. Both the total
rating of the recommendations that are available and the
selection probability are significantly better with adaptation
(Current) as without (No MAPE).

Figure 16. The recommender with GPS turned off

When Flickr does not provide a response to a query of a
story title (e.g., the title is too specific to find matching photos),
the ratings and selection probability change as shown in Figure
17. The values show a further improvement with adaptation.

Figure 17. The recommender with no Flickr response to a query with story
title (the title is too specific so Flickr can’t find matching photos)

The self-adaptive layer also ensures that the most picked
algorithm gets the highest position in the recommender. For
example, starting from default conditions (Figure 15.), when
the user clicks on the fourth photo then the rating of the
associated algorithm is increased from 5 to 7 and the picture will
be moved to the first position (Figure 18.). The rating and
selection probability increases respectively.

Figure 18. Recommendations change order based on user clicks

The scenario shows how self-adaptation improves the
quality of the recommender for the user. Self-adaptation ensures
that recommendations with higher rating and higher selection
probability are available. In addition, it adapts the position of
recommendations based on the user preferences over time.

We measured performance overhead for three types of
adaptations: gpsUpdated! (changes GPS status), textUpdated!
(changes of the story title) and photoAdded! (select
recommended photos). The measured values (Table IV) show
the minimum, average, and maximum time between initiating
the adaptation and the point when algorithms are sorted
(excluding loading pictures from Flickr) for 20 adaptations of
each type. The initial test setting was: story title = My Louvre
story, tags = painting masterpiece, latitude = 48.86,
longitude=2.32, GPS ON, recommendations loaded once.
Hardware: AMD Turion Dual-Core Mobile 2GHz, 2GB DDR2.

TABLE IV. PERFORMANCE OVERHEAD OF ADAPTATION

Adaptation Type Overhead (ms) [min; average; max]
gpsUpdated! [19.5; 30.8; 53.6]
textUpdated! [19.2; 30.7; 42.2]
photoAdded! [11.3; 29.3; 44.5]

The overall average overhead of 30.2 ms to realize

adaptations is negligible for the mDS-SR application. However,
for time-critical applications with possibly more complex
adaptation scenarios the overhead may have substantial impact.

VIII. CONCLUSIONS AND FUTURE WORK

This paper contributes with a concrete application in which
we have used ActivFORMS to realize self-adaptation. A self-
adaptive layer was designed using a formal model of a MAPE-K
feedback loop that was added to the social recommender of the
digital storytelling application to improve its flexibility. We
translated the adaptation requirements to formal properties that
we verified before deployment. Having formal guarantees about
the requirements increases the potential of the app on the
market. We compared the quality of the social recommender
with and without adaptation, which shows that self-adaptation

improves the quality of the social recommender. As no coding
was required, the application could be developed very
effectively; it took the developer two month to design the self-
adaptive system, provide assurances, and run it.

We also experienced some issues with ActivFORMS that
are important for our future research. As exhaustive verification
at design time is difficult or even impossible, some guarantees
can only be obtained during runtime. In the mDS-SR
application, the behavior of the user and availability of resources
in the environment are difficult to predict. Consequently, the
guarantees provided by offline verification are only valid for
restricted models. We plan to extend ActivFORMS with
enhanced support for verification at runtime. Furthermore,
ActivFORMS requires expert knowledge to design and change
the formal models. We are studying how to add a user-friendly
modeling layer on top of the formal models that hides (most of
the) the underlying formalism from the designers.

REFERENCES
[1] L. Chen, P. Pearl, “User evaluation framework of recommender

systems,” 5th ACM conference on Recommender systems, 2011
[2] P. Cremonesi, et al., Hybrid algorithms for recommending new items,

Information Heterogeneity and Fusion in Recommender Systems, 2011
[3] https://developer.apple.com/library/ios/documentation/DeveloperTool

s/Conceptual/WhatsNewXcode/Articles/xcode_4_2.html.
[4] I. Guy, D. Carmel, “Social recommender systems tutorial,” IMB

Research-Haifa, Israel, 2011.
[5] R. de Lemos, D. Garlan, H. Giese, “Software engineering for self-

adaptive systems: assurances,” Dagstuhl Seminar 13511, 2013.
[6] J. Kephart and D. Chess, “The vision of autonomic computing,” IEEE

Computer Society, vol. 36, no. 1, 2003.
[7] U. Iftikhar, D. Weyns, “ActivFORMS: Active Formal Models for

Self-adaptation,” SEAMS, 2014.
[8] G. Behrmann, A. David, P. Pettersson, W. Yi, and M. Hendriks,

“UPPAAL 4.0,” in Quantitative Evaluation of Systems, 2006.
[9] R. de Lemos et al., “Software engineering for self-adaptive systems: a

second research roadmap,” in Software Engineering for Self-Adaptive
Systems II, LNCS 7475, Springer, 2012.

[10] B. Cheng et al., “Software engineering for self-adaptive systems: a
research roadmap,” in Software Engineering for Self-Adaptive
Systems, LNCS 5525, Springer, 2009.

[11] J. Kramer & J. Magee, “Self-managed systems: an architectural
challenge,” Future of Software Engineering, 2007.

[12] D. Garlan et al. “Rainbow: architecture-based self-adaptation with
reusable infrastructure,” IEEE Computer 37(10), 2004.

[13] J. Zhang & B. Cheng, “Model-based development of dynamically
adaptive software,” ICSE, 2006.

[14] MAPE-K Formal Templates http://homepage.lnu.se/staff/digmsi/MFT
[15] D. Weyns, S. Malek, J. Andersson, FORMS: Unifying Reference

Model for Formal Specification of Distributed Self-Adaptive
Systems, ACM TAAS, 7(1), 2012

[16] P. Oreizy, N. Medvidovic, R. Taylor, Architecture-Based Runtime
Software Evolution, ICSE 1998

[17] S. Dobson et al., F, A survey of autonomic communications, ACM
TAAS, 1(2) pp. 223-259, 2006

[18] R. Calinescu et al., Dynamic qos management and optimization in
service-based systems. IEEE TSE, 37(3):387–409, May 2011

[19] J. Tretmans. Formal methods and testing. chapter Model based testing
with labelled transition systems, Springer-Verlag, 2008

[20] D. Weyns et al., A Survey on Formal Methods in Self-Adaptive
Systems, Formal Methods for Self-Adaptive Systems, 2012

[21] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in ICSE, 2009.

[22] C. Ghezzi et. al., “Managing non-functional uncertainty via model-
driven adaptivity,” in ICSE, 2013.

