
A Journey Through the Land of
Model-View-* Design Patterns

Artem Syromiatnikov
Department of Computer Science

Linnaeus University
Växjö, Sweden

artem.syromiatnikov@gmail.com

Danny Weyns
Department of Computer Science

Linnaeus University
Växjö, Sweden

danny.weyns@lnu.se

Abstract—Every software program that interacts with a user
requires a user interface. Model-View-Controller (MVC) is a
common design pattern to integrate a user interface with the ap-
plication domain logic. MVC separates the representation of the
application domain (Model) from the display of the application’s
state (View) and user interaction control (Controller). However,
studying the literature reveals that a variety of other related
patterns exists, which we denote with Model-View-* (MV*) design
patterns. This paper discusses existing MV* patterns classified in
three main families: Model-View-Controller (MVC), Model-View-
View Model (MVVM), and Model-View-Presenter (MVP). We
take a practitioners’ point of view and emphasize the essentials
of each family as well as the differences. The study shows that
the selection of patterns should take into account the use cases
and quality requirements at hand, and chosen technology. We
illustrate the selection of a pattern with an example of our
practice. The study results aim to bring more clarity in the variety
of MV* design patterns and help practitioners to make better
grounded decisions when selecting patterns.

I. INTRODUCTION

Every software program that requires at least a bit of
interactivity with users requires a user interface. This makes
the integration of the user interface with the application domain
a recurring engineering problem. In this paper, we focus
on design patterns to solve this integration problem. Design
patterns provide generic solution schemes for recurring design
problems, offering reference materials that give engineers
access to the field’s systematic knowledge [3].

Model-View-Controller (MVC) is a widely known design
pattern to integrate a user interface with the application do-
main. MVC was first introduced in Smalltalk’80 by Krasner
and Pope [14]. Central to MVC is the separation of the
representation of the application domain (the model) from
the display of the application’s state (the view) and the user
interaction processing (the controller). However, studying the
literature reveals that a variety of other related patterns exists,
which we denote with Model-View-* (MV*) design patterns.

Since the late 1980s when MVC was documented, numer-
ous new MV* design patterns emerged that aimed to eliminate
the drawbacks of their predecessors. These patterns include for
example Model-View-Presenter [17] and Model-View-View
Model (or Presentation Model) [8]. With the evolution of
programming languages and software technology, the MV*
design patterns were changing as well, and different families of
patterns emerged. As a result, the designer today is confronted

with a variety of patterns with subtle but important differences.
To effectively select a concrete pattern, the designer has to
study several patterns and versions in order to understand
their purposes, areas of usage, strengths and weaknesses, and
their applicability to the problem at hand. The selection of
design patterns is known to be important for understand-ability
and maintainability of the program code [10], [21]. Using a
wrong pattern (or no pattern at all) for integrating the user
interface with the application domain may lead to complex
code, where a minor change leads to significant overhead
to maintain consistency between the user interface and the
application domain.

We faced the complexity of integrating a user interface
with the application domain in a recent R&D project between
Sauer-Danfoss AB and the Computer Science Department of
Linnaeus University. In this project, we studied how to notify
users dynamically when software updates become available,
and how to support automatic downloading and installation
of the updates. In the initial phase of the project we used
a standard Windows Forms approach for user interaction.
However, during the course of the project, a variety of new
user interface requirements emerged that compelled us to look
for a systematic approach to guarantee consistency between
the user interface and the underlying domain state, while
keeping the solution understandable and manageable. To that
end, we studied different existing patterns for integrating the
user interface with the application domain. From this study, we
learned that the patterns differ in subtle ways, which makes
the selection of a pattern a difficult task.

A number of authors have compared patterns for integrating
a user interface with the application domain state, see e.g., [8],
[13]. While these studies offer good overviews of the general
concepts of MV* patterns as well as specific properties of
different pattern families, they lack a deeper analysis of the
differences between pattern families and between patterns
within families. This paper contributes with an overview of
existing families of MV* design patterns with a particular
emphasis on versions of patterns in the three main families:
MVC, MVVM and MVP. Our study takes a practitioners’ point
of view putting the patterns in an evolution perspective driven
by development of programming languages and technology.
We discuss the essentials of the patterns, their tradeoffs and
particular differences of usage. The goal of the paper is to bring
more clarity to the area of MV* patterns and help practitioners
to make better-grounded decision when selecting patterns.



The remainder of the paper is structured as follows. In
section II, we briefly explain the methodology we used in this
study. Section III gives an overview of the pattern families. In
section IV, the heart of the paper, we zoom in on the patterns.
We discuss a selection of patterns of the main families in detail
and clarify the differences between the patterns. Section V
illustrates the selection of a pattern in the project with Sauer-
Danfoss AB. Finally, we draw conclusions in VI.

II. METHODOLOGY

The goal of our study is to identify different families
of MV* design patterns and closely examine the differences
between families as well as differences between patterns within
the families. It is not our aim to study all MV* design
patterns that have been documented, which would require a
systematic survey of the literature. Instead, we have selected a
representative set of patterns in each MV* family for detailed
analysis and comparison.

As a baseline for our study, we have selected material
that describes influential patterns, including Smalltalk’80 MVC
papers [2], [14], VisualWorks Application Model documen-
tation [11], and MVP articles of the Taligent Programming
model [17] and Dolphin Smalltalk [1]. As our study em-
phasizes a practitioners’ point of view, we also assessed
the evolution the MV* design patterns and their use in
current practice. To that end, we studied the use of MV*
design patterns in a number modern frameworks, including
Microsoft’s Windows Forms [16], WPF and Silverlight for
desktop development [19], Spring [20], ASP.NET [15], and
Grails [18].

During the study, the material was analyzed in detail and
data from the articles was extracted to describe the different
patterns. We have written sample applications with patterns of
every MV* family to get a better insight of their use in practice
(this includes Windows Forms Widget-based UI, ASP.NET
MVC and Grails frameworks, Silverlight MVVM and few
versions of MVP pattern on Windows Forms technology). To
compare the patterns, we derived component diagrams for each
pattern, identified the role of each component, and specified
the types of interactions between the components. Based on the
material, we then identified the similarities among the patterns
and the differences. The insights derived from this study were
then used to re-engineer the integration of the user interface
with the application domain in the project with Sauer-Danfoss
AB. Finally, we classified the different MV* design patterns
and documented the results of the study in this paper.

III. THE LAND OF MV* DESIGN PATTERNS

We now give an overview of the different families of
MV* design patterns. We also discuss flow versus observer
synchronization, a key principle of each MV* design pattern.

A. Families of MV* Design Patterns

The problem of how to integrate a user interface with the
application domain became particularly relevant when graph-
ical user interfaces emerged in the 1980s. Around the time
MVC was documented (1988), Coutaz introduced PAC [4],
which structures an interactive application in three parts:
Presentation (defines the syntax of the application), Abstraction

(defines the semantics), and Control (maintains the consistency
between the domain entities and the presentation to the user).
Later, in the 1990s, new patterns for integrating the user
interface with the application domain emerged driven by
the needs of new technology (e.g., touchscreens and voice
input, web and mobile applications, etc.) and the evolution
of programming languages that offered new coding concepts
(e.g., events, generics, lambda-expressions, etc.). This evolu-
tion forced software developers to reconsider existing practices
for integrating the user interface with the application domain.
Eventually, entire families of patterns emerged.

All MV* patterns are based on the idea of separation of
concerns [5]. Separation of concerns in user interface design
refers to a separation of the application domain model and
the user interface in two layers, where the domain model is
unaware of the user interface. Following this principle leads
to clear design that is easy to maintain; it also allows to effec-
tively distribute work on different layers between developers,
simplifies testing, etc.

Fig. 1 gives an overview of the land of the design patterns.
Patterns in the area at the top left, Widget-based User Inter-
faces, do not separate the domain logic from the presentation
logic. Patterns in all other areas realize separation of concerns
in one or another way. Our main focus in this paper is on the
latter types of patterns, denoted as MV* design patterns.

At a coarse grained level, the MV* design patterns can
be divided in a three families: MVC [14], MVP [17] and
MVVM [8]. However, as argued by Karagkasidis [12], it is
incorrect to state that there are only three general patterns for
handling the synchronization between the application domain
and the user interface. Although the patterns in each family
share a general principle, there are different ways to concretely
realize the patterns. In our study, we identified representative
variants of each family, as shown in Fig. 1.

Fig. 1. The Land of MV* Design Patterns

In particular, the MV* design patterns differ in the way
they are structured and handle the synchronization between
the user interface and the application domain state. In general,
MV* design patterns typically comprise three components: M,
V, and a third variable component denoted with *. M refers to
Model, which represents the application domain; V refers to



View, which represents the presentation to the user. The third
component binds M with V, that is, this component defines
how the M and V components communicate with each other
and with the user. In the following section, we explain how
patterns differ in the way they allocate responsibilities to the
different components and how the components interact with
one another and the user.

B. Flow Versus Observer Synchronization

Before we discuss the patterns in detail, we first explain
the essential difference between flow and observer synchro-
nization [7]. Synchronization in this context refers to the
mechanism to realize consistency between the application state
and the user interface that represents it. Flow and observer
synchronization take a different perspective on this mechanism,
and each MV* design pattern is essentially based on one of
them.

Flow synchronization is based on sequential command
execution: e.g., read user input from text box A, processing
it with method B, and write the result to text label C. Flow
synchronization uses direct calls between user interface com-
ponents and domain components. For small applications with
relatively simple user interfaces, flow synchronization results
in clear and easily understandable code. For more complicated
programs and more sophisticated user interfaces, the approach
can result in code that is difficult to maintain due to the lack
of separation of domain and user interface concerns.

Observer synchronization structures the domain logic and
interface logic in separate layers. The domain layer must
implement a notification mechanism to which components
of the user interface layer can subscribe. This allows the
user interface components to update the state of the user
interface when relevant changes in the domain occur. Observer
synchronization is particularly useful when the user interface
involves multiple views on the same domain data. Furthermore,
the clear separation of concerns supports the distribution of
domain development tasks and user interface tasks to different
developers or development teams. The main disadvantage of
observer synchronization is implicitness. It might be difficult to
oversee the potential impact of changes in domain components
as potentially any observer may be affected by the changes.
Performance could also be an issue if the number of observers
increases. To that end, more fine-grained notification logic may
be used, however, this comes with increased complexity. Fi-
nally, life-cycle management requires attention. In case views
are no longer interested in particular notifications, they must
unsubscribe from the domain events, otherwise they could
become ghost objects and may cause memory leaks.

IV. PATTERNS

To document the MV* design patterns, we use a simplified
version of The Gang of Four’s template [10]. In particular,
we use the sections intent, motivation, structure, collaboration,
and consequences. Other information relevant to this study,
such as usage of the patterns, applicability, and known uses
are integrated in the pattern descriptions. We now discuss
representative patterns of the different families in detail.

A. Widget-based User Interfaces (or Forms and Controls)

Widget-based User Interfaces (also called Forms and Con-
trols) are a common way of building applications with graph-
ical elements as provided by many integrated development
environments. The idea is straightforward: the developer ar-
ranges a set of predefined user interface widgets on a form
(window), and writes code that handles all the logic in the
Form class. Data displaying, user input handling, calculations,
domain model handling, etc. are performed in the same class.
The developer has unlimited access to both user interface
widgets and domain data. Domain and user interface logic are
mixed, there is no separation between the domain and user
interface concerns, which may hamper maintainability. Still,
this approach has several benefits, which makes it a popular
way of building user interfaces in many modern tools:

• Simplicity: widget-based user interfaces are very sim-
ple to understand: the widgets on the form become
fields of a Form class, so the developer can access the
widgets just as any other field.

• Consistency: the approach employs flow synchro-
nization. Synchronization is handled explicitly: target
views/widgets are modified by direct calls, so the code
is easy to understand.

• Efficiency: creating a sophisticated multi-tier architec-
ture for applications that do not require rich user in-
terfaces would be overkill. Keeping the design simple
in such cases reduces development time and increases
maintainability.

Widget-based UI is a perfect choice for small applications or
applications with simple user interfaces.

B. MVC: Model-View-Controller

Model-View-Controller (MVC) is the most influential fam-
ily of design patterns for synchronizing a user interface with
the state of the application domain. The approach was intro-
duced in the 1980s, even before widget-based user interfaces
were used [10], [14]. Initially, MVC was used for designing
and building desktop applications with rich graphical user
interfaces. Over time, the original MVC pattern evolved and
variants emerged driven by technological evolutions and new
needs. Nowadays, MVC is used for integrating interface logic
with domain logic in development of various domains, such
as Web applications and mobile systems.

We discuss two representative patterns of the MVC family.
These patterns provide a good basis for expressing the core
idea of the pattern family: separating responsibilities related
to domain state, displaying domain state, and handling user
interaction. The selected patterns illustrate how this core idea
can be realized in different ways. To get a deeper understand-
ing of a pattern family, it is important to study a set of concrete
realizations.

1) Smalltalk’80 MVC:

a) Intent: Separate the concerns of the application
domain and its representation in three modules, each handling
a specific task: store and manage data, display data, and handle
user input.



b) Motivation: Support the design and development
of highly maintainable applications with rich user interfaces
by maintaining a strict separation between domain logic and
presentation. The application logic manages the domain data,
and the presentation reflects the data. Separating the domain
from the user interface concerns makes it easier for the
designer to understand and modify each particular unit, without
having to know everything about the other units [14].

c) Structure: The three key components of the
Smalltalk’80 MVC pattern are Model, View and Controller.
The Model component is responsible for the domain data
and logic. This component has no reference to the other
components of the triad. As such, the application logic does
not depend on the presentation of domain data. The View
component is responsible for displaying model data. The last
one, Controller is responsible for handling user input.

Fig. 2. Smalltalk’80 MVC pattern

View and Controller work as a pair allowing the user to
interact with the user interface. For example, the user interface
may provide a text box allowing the user to enter a user name.
The View is responsible for rendering the text box. The user
can change the text and press keys (e.g., the Enter key) – such
events are handled by the Controller. The Model maintains the
domain data. Often, the application has one Model and a set
of View-Controller pairs working with it. Although View and
Controller work in pairs, they are considered as two separate
entities with minimal coupling. That is, displaying data and
handling user input are treated as distinct activities enhancing
separation of concerns.

d) Collaborations: The cooperation between Model,
View and Controller relies on observer synchronization. As
mentioned above, Model is not aware of the other components.
However, the View and Controller maintain direct links to the
Model in order to observe, read and modify it.

The Model provides a notification mechanism to which
the other components can subscribe. Every change of data
generates an event to notify the subscribers. The View has
a passive role in the triad. It listens to Model events and
reflects the data changes. The Controller handles user input
and modifies Model data when appropriate.

As an example, suppose that a user changes a value in a text
box, which is referred by the Model’s property ‘name.’ The
Controller will call the setName() method of the Model and
pass the new value. When the value is updated, the Model will
send a notification to all subscribers informing them that the

property ‘name’ was updated. On retrieving the notification, all
interested Views will read the Model’s new name and update
their representation accordingly.

e) Consequences: The division of responsibilities of the
Smalltalk’80 MVC pattern has proven to be very effective. As
a result of the strict separation of concerns, developers are able
to change a domain model without affecting the presentation
logic and vice versa; the pattern allows to create several types
of user interfaces (e.g., a command line and a graphical user
interface) without affecting the application logic.

However, with the evolution and new demands of user
interfaces, some weak spots of the Smalltalk’80 MVC pattern
were revealed. We illustrate this with an example. Suppose that
a text field of a financial report should be colored red if the
value is negative, and black otherwise. The text color is purely
a user interface property and therefore should not be part of the
model. On the other hand, the standard text label view draws
text black by default, and is not aware of red negative numbers.
Smalltalk developers found ways to handle such cases, e.g., by
developing custom Views that implement the required logic.
However, these solutions did not solve the underlying problem:
Smalltalk’80 MVC provides a good solution for displaying
the model data itself; however, it provides no explicit means
to deal with the presentation of state that is not part of the
model but that makes a user interface more convenient for
usage. This issue triggered further research and led to new
MV* design patterns, such as Application Model and Model-
View-Presenter.

2) Web MVC:

Patterns to integrate a user interface with the application
domain are widely used in web development. Originally,
server-side MVC patterns dominated (as in ASP.NET MVC,
Spring, Grails and other frameworks). Recently a number of
JavaScript frameworks emerged based on MV* patterns (e.g.
Backbone MVC1 and Knockout MVVM2). However, in this
section, we discuss the original server-side Web MVC pattern.

a) Intent: Separate the domain logic from the presen-
tation logic for Web applications in three components with
distinct responsibilities: Model for storing data, Controller for
handling user actions, and View to generate HTML layout.

b) Motivation: Due to specifics of the way the Web
works, it matches well with the principles of the MVC design
pattern. In particular, the Web inherently supports the sepa-
ration between View and Controller responsibilities: data is
displayed on the client-side as HTML pages, while the logic
that handles user input is invoked on the server-side. HTML
pages provide the inputs allowing users to interact with the
system, that is, through hyperlinks, input forms, buttons. The
provided data is processed on the server-side.

c) Structure: The general principles of the MVC family
apply to the Web MVC pattern: Model contains data to be
displayed, View defines the presentation layout, and Controller
handles user input. However, what changed compared to the
Smalltalk’80 MVC pattern are the responsibilities of Model
and Controller, and the way they work together. In Web MVC,

1http://documentcloud.github.io/backbone/#FAQ-mvc
2http://knockoutjs.com/documentation/observables.html



the application logic is triggered by the Controller, while the
Model only stores data that needs to be displayed on a certain
View. Model can be a domain entity, but it can also be an
entity not connected to the domain. For example, Model may
store the data for rendering the Pagination control. Model
is responsible for providing correct data for rendering the
final layout. The Controller in Web MVC is responsible for
handling user input and create the Model for further rendering.
Controller has access to the application domain logic, it is able
to read and modify domain data, run custom calculations, etc.

Fig. 3. Web MVC pattern

d) Collaborations: Smalltalk’80 MVC uses observer
synchronization to directly synchronize the user interface with
the domain data. However, the Web is stateless and operates
as a set of requests and responses, so there is no need of
strong synchronization. Consequently, Web MVC can use flow
synchronization.

As an example, consider a user that wants to visit a website
to find data about books and enters a web address in a browser.
The server receives the request and invokes an appropriate
controller associated with given address. The controller invokes
business domain operations to obtain the list of books. The
controller then instantiates a model and initializes it with
the list of books. Subsequently, the model is passed to the
view component for rendering. The view generates the layout
of the page, which includes book titles, authors, covers and
hyperlinks to page with book details, which is shown to the
user.

e) Consequences: The Web MVC design pattern sup-
ports clear separation of responsibilities of web application
logic, which leads to better-organized code that is easy to un-
derstand and maintain. Therefore, the Web MVC has become a
popular pattern in the domain of Web development. A growing
number of frameworks employ the Web MVC design pattern
(ASP.NET MVC, Spring, Ruby on Rails, Grails, etc.). This
success is based on the inherent decoupling of the logic to
display data from the logic of handling user input on the Web;
the View works on the client-side, while the Controller works
on the server-side.

3) MVC Summary: The fundamental feature of MVC
patterns is strict separation between View and Controller
responsibilities. The View is responsible for displaying data,
the Controller for handling user input. This feature makes
the pattern particularly convenient for Web applications, but
less evident for desktop application built with many mod-
ern desktop development frameworks, where user interface

widgets usually combine rendering and basic input handling
capabilities. The Model in MVC contains data for View
rendering, and Controller can operate on it. However, Model is
not necessarily a domain model. Depending of the context of
use, it could be a domain entity and/or just a set of properties
for correct View rendering.

C. MVVM: Model-View-View Model

As we explained in the consequences of Smalltalk’80
MVC, one of the problems with the pattern is managing view
state that is not part of the domain model. This issue resulted
in a new family of MV* patterns called Model-View-View
Model, also referred to as Model-View Presentation Model.

Presentation Model (or View Model) is a wrapper for the
Domain Model (Model in the diagram). The Domain Model
maintains domain state and the Presentation Model maintains
View state [21]. The Presentation Model also handles the logic
that is not part of the Domain Model.

The View in MVVM observes and operates with the Pre-
sentation Model, without direct reference to Domain Model.
Furthermore, the View-Controller pair (as in MVC) is not
considered as two distinct components, but merged in a single
View component. This evolution was motivated by common
practice of developers to embed both presentation logic and
basic user input handling in user interface widgets.

We discuss two patterns of the MVVM family. The first
is Application Model that emerged from the VisualWorks
implementation of Smalltalk. The second is Microsoft MVVM
that is used in technologies such as WPF and Silverlight.

1) Application Model:

a) Intent: Separate the domain logic from the presenta-
tion logic in four modules with distinct responsibilities: store
and manage data, display data, handle user input and handle
view state. Domain data and view state handling should be
treated separately.

b) Motivation: The key driver behind the Application
Model design pattern is to handle MVC’s inability to deal with
view state and provide the ability to process user input before
submitting it to the model.

c) Structure: Application Model builds upon the
Smalltalk’80 MVC pattern and inherits its basic structure.
Model contains the domain data, View is responsible for
displaying data, and Controller handles user input. However,
View and Controller3 do not directly interact with Model.
Instead, the pattern includes an intermediate component, the
Application Model (i.e., the Presentation Model in this pat-
tern), that handles View state and provide the means to process
user input before submitting it to the Model.

d) Collaborations: As Application Model extends
MVC, the principle collaborations remains the same. View and
Controller work with Application Model (that wraps Model
with domain data), in a similar way as it worked with a regular

3There is still separation between View and Controller components, al-
though the framework provides widgets; i.e., reusable UI elements that
combine View and Controller functionality. In later patterns responsibilities
of these two components are merged together, referred to as View.



Fig. 4. Application Model pattern

Model. The main difference is the collaboration between Ap-
plication Model and Model. In particular, Application Model
observes the Model in order to notify Views when some data
is changed. Application Model is also able to modify Model
data and call its methods when necessary.

As an example, let us take the aforementioned case with
a colored text field in a financial report. With the Application
Model pattern, the developer defines two Application Model
properties: resultValue that returns a number, and resultColor
that returns a color. Both refer to the same property of a Model,
the resultValue. The Application model observes the Model
and updates the properties when the resultValue changes. View
in turn observes the ApplicationModel properties and updates
the representation of the value when it changes.

e) Consequences: Application Model deals with some
of the shortcomings of the original Smalltalk80 MVC pattern.
Application Model simplifies handling view state and provides
extra logic that deals with user input before passing it to
Model. Nevertheless, in order to implement complex logic
(such as the example with text color), the developer needs
to write custom widgets and adaptors. As this may be time
consuming activities, developers will search for workarounds,
such as direct modifications of widgets from the Application
Model code. However, such solutions violate the separation
of concerns principle, and consequently may complicate later
maintenance.

2) Microsoft MVVM:

a) Intent: Separate the domain logic from the presenta-
tion logic in three modules with distinct responsibilities: handle
the domain data (Model), handle view state and user interaction
(View Model), and handle rendering of the visual user interface
(View). Furthermore, bind View and View Model declaratively
by leveraging on observer synchronization.

b) Motivation: Microsoft MVVM allows every View to
have its own View Model, while each View Model can have
several Views. This allows displaying the same data in different
ways, possibly simultaneously. Microsoft’s realization of the
Model-View-View Model works very efficiently with WPF and
Silverlight, which were designed with MVVM in mind [19].

c) Structure: The pattern has a linear structure. The
View is responsible for rendering the user interface; it can
observe the View Model, trigger its methods an modify its
properties when needed. View maintains a one-way reference
to the View Model. When a View Model property is changed,
View is notified by observer synchronization. On the other
hand, when a user interacts with the View, View Model

properties are directly modified. View Model is responsible
for handling view state and user interaction; it has access to
the domain Model, so it could work with domain data and
invoke business logic. View Model is unaware of View. Model
is responsible for handling domain data and is unaware of View
Model. This approach allows creation of several different views
for the same data, and observer synchronization makes these
views work simultaneously.

Fig. 5. Microsoft MVVM pattern

d) Collaboration: View Model has a direct reference
to Model in order to work with the domain data. View Model
can use Model to invoke various kinds of actions, such as
triggering service calls, accessing a database, etc.

The cooperation between View and View Model is partic-
ularly interesting. In order to achieve simple data synchro-
nization, Microsoft introduced Data Binding. Data Binding
allows a developer to bind user interface widget properties
to View Model data in a declarative manner, without the
need for writing explicit code in the View component. Every
time the user interface widget changes, the corresponding
field value of the View Model is updated, and vice versa.
The synchronization of View and View Model is completely
handled by the WPF and Silverlight frameworks.

As an example, let us extend the earlier case of the financial
report. The new goal is to provide a user two views of the
report: a table and a pie chart. When data is changed in the
Model, the View Model is notified. The View Model then calls
the Model to get the required data (e.g. the list of objects
that describe the subject and an amount) and puts the data
in a property ‘Data.’ Two Views (one for the table and one
for the pie chart) observe the View Model and update their
representations when the Data is changed. Each View has own
logic how to present the data. The first view renders a table
with columns subject and amount; the second uses the amount
to draw a pie chart, and the subject to provide a legend.

e) Consequences: Microsoft’s MVVM pattern offers
developers rich functionality for handling non-trivial synchro-
nization of user interfaces with domain data. Declarative Data
Binding between View and View Model keeps their logic
separate. As such, the developer does not need to know how the
View internally works; the only tasks are to handle the Model
that deals with the domain data and logic, and the View Model
that deals with view state and logic.

The power of Microsoft’s MVVM pattern relies on the
powerful mechanism of declarative Data Binding and au-
tomatic handling of the binding at runtime. Data Binding
(and, therefore, the Microsoft MVVM pattern) is realized
in all Microsoft User Interface frameworks. However, some
realizations do not provide the required level of support for



Data Binding; e.g., Windows Forms has a number of widgets
(like Tree View), that do not have the required level of Data
Binding support. This somehow limits the applicability of the
pattern in practice.

3) MVVM Summary: The key feature of the MVVM pat-
terns is a Presentation Model (Application Model and View
Model respectively in the example patterns) that extends the
Domain Model functionality. The Presentation Model offers
support for handling view state by providing extra properties
and logic. The patterns rely on observer synchronization.
The View observes the Presentation Model, reflects upon its
properties, changes them as the user updates the user interface,
and calls appropriate methods when needed. As far as observer
synchronization is essential part of MVVM, it relies on the
support of the underlying technology.

D. MVP: Model-View-Presenter

The MVP pattern family builds upon the other MV*
patterns aiming to improve them. In particular, the family uses
MVC as a starting point, but its component roles and cooper-
ation rules were adapted in order to achieve higher flexibility
and deal with some shortcomings of the predecessors. MVP
represents the biggest family of MV* design patterns. The
first MVP pattern was introduced by IBM and its subsidiary
Taligent and is described in Potel’s paper in the mid 1990s
[17]. The idea was later popularized by the Dolphin Smalltalk
pattern realization.

Most concrete patterns of the family use observer synchro-
nization and have a Presenter component that oversees the
View, handles user events and, if necessary, modifies the View
via direct calls. We discuss two examples of this group of
patterns: Dolphin Smalltalk MVP and Supervising Presenter.
Other members of the MVP family use flow synchronization.
We discuss one pattern from this group, called Passive View.
Passive View aims to combine the best of both worlds, i.e.,
the explicitness of flow synchronization and the clarity of
separation of concerns.

1) Dolphin Smalltalk MVP:

a) Intent: Separate the domain logic from the presen-
tation logic in three modules with distinct tasks: handle the
domain data (Model), handle basic user input functionality
and user interface rendering (View), and supervise the syn-
chronization between View and Model by direct access to the
components (Presenter).

b) Motivation: The Dolphin Smalltalk developers spent
a great effort on studying existing MV* patterns when facing
the limitations of the MVC and MVVM families [1]. To
deal with the problems, they adapted the responsibilities of
the pattern components. In MVP, the core of the application
behavior is located in Presenter, and not in Model as in earlier
patterns. Alongside that, the View component (which combines
the View and Controller responsibilities) is kept as simple as
possible. To that end, the Presenter has direct access to the
View to supervise it and modify widgets when necessary.

c) Structure: The Model component represents pure
domain data. As in earlier patterns, Model is unaware of the
presentation logic, but it still provides notification when the
data is changed.

The role of View in MVP remained almost unchanged.
View is responsible for displaying the data on the user inter-
face. It also supports basic handling of user input: it delegates
user actions to the Presenter by direct calls.

The Presenter is responsible for keeping the application
synchronized. Presenter handles user input, invokes domain
methods, keeps the Model in consistent state and provides extra
logic to update the View when necessary.

Fig. 6. Dolphin Smalltalk MVP pattern

d) Collaboration: The View observes the Model and
represents its state in the user interface. Two-way data binding
is supported. For simple cases, the Presenter has direct access
to the View (e.g., updating a text box value will immediately
update the model field). For cases that are more complex, the
View routs events (by a direct call) to the Presenter. The Model
data is displayed on the View automatically based on observer
synchronization. If the representation of the View requires
extra features (e.g., text coloring), the Presenter will handle
this by invoking direct calls on the View.

Let us consider as an example a scenario of a user who edits
the age of a contact person in an address book. Suppose the age
should be number between 0 to 120, other values are consid-
ered as invalid. The contact data is a domain entity maintained
in the Model. The View observes the contact properties and
renders fields for their editing. When the user updates the ‘age’
field, the corresponding Model property should be updated.
However, as the number needs to be checked, validation logic
needs to be executed, so the View triggers the Presenter to
perform this check. The Presenter analyses the age value and
commands the View to update the age if the value is valid,
or alternatively show an error message and disable the Save
button in case an invalid age was provided.

e) Consequences: Consequences: The great flexibility
of the Dolphin Smalltalk MVP pattern comes from the decision
that the Presenter can directly access the View. This design
decision is the key difference compared to previously discussed
patterns. Furthermore, the developer has the possibility of
introducing an interface for the View, and hence make the
Presenter work with different View realizations – as long as
they implement the required interface.

2) Supervising Presenter:

a) Intent: Separate the domain logic from the presenta-
tion logic by creating three modules with distinct tasks: handle
the domain data and possibly the presentation state (Model),



handle simple mapping between the user interface and the data
of the model (View), and handle input response and complex
view logic (Presenter).

b) Motivation: The Supervising Presenter pattern pro-
vides a step away from MVC towards the Widget-based User
Interfaces approach aiming to make the pattern behavior more
clear and flexible. Direct interaction between the Presenter and
the View allows effective access to View widgets.

c) Structure: According to M. Fowler [9], the Model
does not have to be limited to contain domain data. The Model
can also contain data required to render correctly the View
state (similar to a Presentation model). The Model supports a
notification mechanism to be observed by the View.

The View is responsible for data presentation and basic
user-input handling. In contrast with the previously discussed
patterns, the View has no direct access to the Presenter, which
reduces coupling and improves separation of concerns.

The role of Presenter, as before, is to make the View
and Model components work together. Presenter handles user
input, updates the Model and View and invokes domain logic
when needed.

Fig. 7. Supervising Controller pattern

d) Collaboration: The View reflects the Model data.
However, the View does not modify the Model data; this
responsibility is delegated to the Presenter. The View has no
direct reference to the Presenter, but provides a notification
mechanism, so it can be observed.

The Presenter has both direct access to the View and it can
observe the View. The Presenter is able to modify the View
directly, but this only applies to complex cases, when data
requires processing before it can be used for updating the user
interface.

Let us now see how the example of editing the age of
a contact person in an address book would work with the
Supervising Presenter pattern. With this pattern, the Model
is not restricted to domain data and may contain fields with
contact information (e.g. ‘age’), as well as flags that indicate if
values are valid (e.g. ‘ageValid’). The View observes the values
and renders fields for their editing. The Presenter observes
the View, and invokes validation logic when the ‘age’ field
is updated on the View. The validation result is put to the
‘ageValid’ field of the Model. The View reacts to the change
by showing or hiding a corresponding error message and
enabling/disabling the Save button.

e) Consequences: The Supervising Presenter pattern
maintains good separation of concerns and removes logic
from the View component, improving understandability. By
not being restricted to domain data, the Model can provide
capabilities for managing View state. On the other hand, Pre-
senter has significant knowledge about the View component.
This may lead to difficulties when several Views for the same
data are required. It may also negatively affect testability.

3) Passive View:

a) Intent: Separate the domain logic from the presen-
tation logic by creating three modules with distinct tasks:
handle the domain data (Model), provide a representation of
the data (View), and handle user synchronization and View
state management (Presenter).

b) Motivation: The foremost driver of the Passive View
pattern is testability. Automated testing proved to be powerful
tool, but graphical user interfaces are often considered as the
most difficult area for unit testing. Therefore, the idea of
Passive View [6] is simple: if it is hard to test the view, make
it so simple that no real testing is needed!

c) Structure: The structure of the Passive View pattern
closely resembles with the Microsoft’s MVVM pattern, but
conceptually there is a huge difference. While MVVM fully
relies on observer synchronization, Passive View utilizes flow
synchronization.

Fig. 8. Passive View pattern

The Model refers to the domain, providing business logic
and data. Model has no access to the other components of the
pattern and does not implement a notification mechanism.

The View component is kept as simple as possible. It might
have only getters and setters, and event delegation logic. This
way, the View is just a lightweight shell with no real logic,
which makes testing trivial.

The Presenter component does all the work. It handles user
input, invokes business logic and updates the View state with
new data. All the synchronization logic resides in the Presenter,
and it uses explicit invocations.

d) Consequences: Passive View may lead to the same
problems as Widget-based User Interfaces: when the user
interface becomes rich the synchronization logic complexity
grows, which may eventually result in code that is very dif-
ficult to maintain. Nevertheless, Passive View provides better
separation of concerns than widget-based user interfaces, and
provides as such much better support for testability.

Let us now see how the example with the address book
works with the Passive View pattern. With this pattern the



Model is restricted to the domain. When the user opens a
contact, the Presenter retrieves the contact entry from the
Model and updates the text fields on the View with contact
data. When the user updates the ‘age’ field value, the Presenter
is triggered. The Presenter then analyses the data and updates
the View via direct calls: it commands View to show or hide
the error message, and sets the correct state of the Save button.
The domain entity would be updated only when user clicks the
Save button to finish the editing.

4) MVP Summary: The central component of the MVP
patterns is the Presenter that directly accesses the View and
Model and coordinates their interaction. The Presenter handles
synchronization, invokes domain method calls and handles user
input delegated from the View.

The View and Model components can use observer syn-
chronization for handling simple cases. This approach allows
to reduce the complexity of the Presenter, as the synchro-
nization is handled automatically, and Presenter only needs to
handle complex cases. Alternatively, the View and Model may
have no explicit access to the other components, making the
Presenter fully responsible for synchronization. In between, the
View may be aware of the Presenter and invoke its methods
by direct calls. These different variants make MVP a very
flexible pattern that can be effectively adopted to many use
case scenarios.

V. CASE STUDY

As explained in the introduction of the paper, we faced
the manageability problems of synchronizing a user interface
with the domain data in a recent R&D project between Sauer-
Danfoss AB and the Department of Computer Science at Lin-
naeus University. In this project, we studied a Windows Forms
desktop application (developed on top of .NET) to automati-
cally notify users when software updates become available, as
well as semi-automatically support dynamic downloading and
installation of the updates.

We started with using a standard Windows Forms approach
for user interaction. However, due to new requirements and
increasing size and complexity of the software, we were forced
to find a systematic solution. Some of the user interface
requirements we had to deal with are:

• The user interface must be responsive at any point of
time.

• The user interface must prevent the user from per-
forming actions that are not possible for any given
situation.

• The Windows task bar notifications should notify the
user when new updates are available.

• A Tree View allows the user to select content of
interest.

• The user interface must dynamically display the up-
dating progress, including listing of updating items,
their status (waiting, downloading, installing), and
download progress in bytes.

After studying the different patterns and evaluating their
pros and cons, we decided to select Dolphin Smalltalk MVP.

The MVC patterns turned out impractical for the Windows
Forms application, as user interface widgets already combine
View and Controller functionality. MVVM appeared as a better
solution, as Windows Forms has some built-in support for this
pattern. Unfortunately, some of the user interface widgets we
used (e.g. Tree View) did not provide decent data binding
support. We also required direct access to the View in order
to implement features like Windows task bar notifications.

Fig. 9. Our realization of the MVP pattern

Our realization of the Dolphin Smalltalk MVP pattern
differs from the original pattern as the Model component is not
a pure domain entity, but includes some view state handling.
View and the Model are connected via two-way data binding
that handles the major part of synchronization; cases that
are more complex (e.g., Windows task bar notifications) are
handled through the Presenter.

The introduction of the pattern significantly improved the
application structure and maintainability. By allocating distinct
responsibilities to Model, View, and Presenter we realize
better separation of concerns which improved significantly
understandability and extensibility. The use of Data Binding
reduced the size of the user interface synchronization code.
The synchronization happens mostly automatically, except for
the complex cases (with Tree View), which are managed by
the Presenter. Fig. 10 shows a screenshot of the user interface
of the application.

Fig. 10. Screen shot of the user interface of the Sauer-Danfoss application



VI. CONCLUSIONS

MV* design patterns provide reusable solutions to the re-
curring problem of synchronizing user interfaces with domain
data. In this paper, we have provided a overview of the major
MV* pattern families and discussed concrete patterns of each
family. The study shows that there is no single dominating
leader, as each pattern family has its particular pros and cons,
as summarized in Fig. 11.

Patterns Pros Cons 

MVC - Original pattern with 
separation of concerns. 
- Good choice for web 
applications as View and 
Controller roles are naturally 
separated in this context. 

- Poor handling of view state 
logic. 
- Assumes decoupled View 
and Controller (in practice UI 
widgets usually combine 
these responsobilities). 

MVVM - Supports multiple views for 
the same data. 
- Declarative specification and 
automatic synchronization of 
View and View Model. 
- Strong separation of concerns. 

- Extensive use of observer 
synchronization may affect 
performance. 
- Relies on underlying 
technology. 

MVP - Flexibility to allocate 
responsibilities in different 
ways. 
- Can be adjusted to a wide 
range of application scenarios. 

- Not very strict regarding 
separation of concerns. May 
increase the complexity of 
the code and hamper 
maintainability. 

 
Fig. 11. Summary of pros and cons of MV* pattern families

MVC patterns are the pioneering patterns for synchronizing
user interfaces with domain data and an excellent choice for
Web-based applications as the Web structure naturally supports
the division of responsibilities of the components for MVC
patterns. However, these patterns suffer from poor handling of
view state logic, and assume decoupled View and Controller
which does not match with many state of the frameworks in
practice.

MVVM patterns support simultaneous representing of mul-
tiple views on the same data. State of the art frameworks
that support MVVM provide support for declarative spec-
ification of parts of the synchronization and its automatic
execution. MVVM emphasizes separation of concerns, which
support understandability and maintainability. On the other
hand, extensive use of observer synchronization combined
with multiple views can have a negative effect on system
performance.

MVP patterns provide flexibility for the designer who can
allocate responsibilities in different ways, so the patterns can
be adjusted to a wide range of application scenarios. On
the counter side, MVP patterns are not very strict regarding
separation of concerns, which may increase the complexity of
the code and hamper maintainability.

This evaluation summary brings us to the conclusion that
the developer must be careful when selecting a pattern for
a problem at hand. The decision must be grounded on the
use cases at hand, the primary quality requirements, and the
underlying technology that is chosen. On the other hand, as
illustrated in the case study, patterns provide flexibility and can
be tailored to the problem at hand, or alternatively concepts of
different patterns can be combined to provide a proper solution.

Interesting dimensions for future research on MV* patterns
are models pollution (data in Model may range from pure
domain data, representational data, to domain-related opera-
tions), developer effort (to develop the different components
of patterns), components distribution (study how patterns differ
in how components are distributed over different machines). To
provide deeper insight in the world of MV* design patterns a
systematic literature review is required. Meanwhile, we hope
that the study result presented in this paper, will bring more
clarity in the variety of MV* patterns and help practitioners
to make better grounded solutions when selecting patterns.

REFERENCES

[1] A. Bower and B. McGlashan, “Twisting the triad,” Tutorial Paper for
European Smalltalk User Group (ESUP), 2000.

[2] S. Burbeck, “Applications programming in smalltalk-80 (tm): How to
use model-view-controller (mvc),” Smalltalk-80 v2. 5. ParcPlace, 1992.

[3] P. Clements and M. Shaw, “The Golden Age of Software Architecture:
Revisited,” IEEE Software, vol. 26, no. 4, pp. 70–72, 2009.

[4] J. Coutaz, “PAC, an Object-Oriented Model for Dialog Design,”
Human-Computer Interaction, vol. Interact, pp. 431–436, 1987.

[5] E. Dijkstra, Selected writings on computing : a personal perspective.
New York: Springer-Verlag, 1982.

[6] M. Feathers, “The humble dialog box,” Object Mentor, 2002.
[7] M. Fowler, Patterns of Enterprise Application Architecture. Addison

Wesley, 2003.
[8] ——, “GUI architectures,” http://martinfowler.com/eaaDev/uiArchs.

html, 2006, [Online; accessed 06-October-2013].
[9] ——, “Supervising controller,” http://www.martinfowler.com/eaaDev/

SupervisingPresenter.html, Tech. Rep., 2006., Tech. Rep., 2006, [On-
line; accessed 06-October-2013].

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[11] T. Hopkins and B. Horan, Smalltalk: an introduction to application
development using VisualWorks. London New York: Prentice Hall
International (UK) Ltd., 1995.

[12] A. Karagkasidis, “Developing gui applications: Architectural patterns
revisited.” in European Conference on Pattern Languages of Programs
(EuroPLOP), 2008.

[13] S. Koirala, “Comparison of Architecture patterns MVP(SC), MVP(PV),
PM, MVVM and MVC,” http://www.codeproject.com/Articles/66585/
Comparison-of-Architecture-presentation-patterns-M, 2010, [Online;
accessed 06-October-2013].

[14] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, pp. 26–49, Aug. 1988. [Online]. Available:
http://dl.acm.org/citation.cfm?id=50757.50759

[15] Microsoft, “ASP.NET MVC Overview,” http://msdn.microsoft.com/
en-us/library/dd381412(v=vs.108).aspx, [Online; accessed 06-October-
2013].

[16] ——, “Windows Forms Overview,” http://msdn.microsoft.com/en-us/
library/8bxxy49h.aspx, [Online; accessed 06-October-2013].

[17] M. Potel, “MVP: Model-View-Presenter The Taligent Programming
Model for C++ and Java,” Taligent Inc, 1996.

[18] G. Rocher, P. Ledbrook, M. Palmer, J. Brown, L. Daley, and B. Beck-
with, “The Grails Framework - Reference Documentation,” http://grails.
org/doc/latest/, [Online; accessed 06-October-2013].

[19] J. Smith, “Wpf apps with the model-view-view model design pattern,”
Microsoft Developer Network magazine, no. 2009, 2009.

[20] Spring, “Web MVC framework,” http://msdn.microsoft.com/en-us/
library/dd381412(v=vs.108).aspx, [Online; accessed 06-October-2013].

[21] P. Sukaviriya, J. D. Foley, and T. Griffith, “A second generation
user interface design environment: the model and the runtime
architecture,” ser. INTERACT and CHI, 1993. [Online]. Available:
http://doi.acm.org/10.1145/169059.169299


