

A Classification Framework of Uncertainty in Architecture-Based Self-

Adaptive Systems with Multiple Quality Requirements

Sara Mahdavi-Hezavehi1,2, Paris Avgeriou1, Danny Weyns2

1
Department of Mathematics and Computing Science, University of Groningen, Netherlands

2
Department of Computer Science, Linnaeus University, Växjö, Sweden

s.mahdavi.hezavehi@rug.nl

paris@cs.rug.nl
danny.weyns@lnu.se

Abstract
Context: The underlying uncertainty in self-adaptive systems aggravates the complexity of

selecting best adaptation action alternative, and handling requirements trade-offs. To efficiently

tackle uncertainty, it is necessary to have a comprehensive overview of different types of

uncertainty and their specifications.

Objective: In this paper we aim at a) reviewing the state-of-the-art of architecture-based

approaches tackling uncertainty in self-adaptive systems with multiple quality requirements, b)

proposing a classification framework for this domain, and c) classifying the current approaches

according to this framework.

Method: We conducted a systematic literature review by performing an automatic search on

twenty seven selected venues and books in the domain of self-adaptive systems.

Results: We propose a classification framework for uncertainty and its sources in the domain of

architecture-based self-adaptive systems with multiple quality requirements. We map 51

identified primary studies into the framework and present the classified results.

Conclusions: Our results help researchers to understand the current state of research regarding

uncertainty in architecture-based self-adaptive systems with multiple concerns, and identity

areas for improvement in the future.

1. Introduction

Software systems are subject to continuous changes due to new requirements and the dynamics of the

system context. Engineering such complex systems is often difficult as the available knowledge at design

time is not adequate to anticipate all the runtime conditions. Missing or inaccurate knowledge may be due to

different types of uncertainty such as vagueness regarding the availability of resources, operating conditions

that the system will encounter at runtime, and the emergence of new requirements while the system is

operating. We define, uncertainty in a software system as the circumstances in which the system’s behavior

deviates from expectations due to dynamicity and unpredictability of a variety of factors existing in

software systems.

mailto:danny.weyns@lnu.se

One way to deal with this uncertainty is to design systems that adapt themselves during runtime, when the

knowledge is accessible. Self-adaptive systems are capable of autonomously modifying their runtime

behavior to deal with dynamic system context, and changing or new system requirements in order to

provide dependable, and recoverable systems (Lemos et al., 2013). In this research, we focus on

architecture-based approaches (Oreizy et al. 1998, Garlan et al. 2004, Kramer and Magee 2007), which are

widely used to support self-adaptation. Architecture-based self-adaptive systems achieve this capability by

means of using reflective software architecture models. In order to manage a system, an architecture-based

self-adaptive system is equipped with adaptation software that uses models of the system, its environment,

and goals when monitoring the running system, to detect problems, identify solutions, and apply adaptation

action to modify the system.

However, incorporating self-adaptation into a system may lead to further uncertainty in its own right:

Defective adaptation actions or unforeseen consequences of adaptation on the system can result in

unexpected system behavior. This is further aggravated in the case of self-adaptive systems that need to

simultaneously fulfill multiple quality requirements without interrupting the system’s normal functions, and

deal with a growing number of both adaptation scenarios and requirements trade-offs (Cheng et al., 2006).

This implies that the system should be able to prioritize the adaptation actions, choose the optimal

adaptation scenarios, adapt the system, and presumably handle the positive or negative chain of effects

caused by the adaptation of certain requirements. However, when the number of system quality

requirements increases, so does the number of adaptation alternatives. Therefore, the decision making, as

well as the handling of requirements trade-offs becomes more complex. If the problem is not handled

properly, over time uncertainty provokes inconsistency in certain subsystems, and the accumulated

inconsistencies may result in unforeseen circumstances, and possibly in unexpected system behavior.

Over the past years, numerous approaches have been proposed to quantify and mitigate existing uncertainty

in self-adaptive systems. However, the concept of uncertainty and its different types and categories are

hardly ever studied in the domain of architecture-based self-adaptive systems with multiple quality

requirements. As a result, identification, investigation, and consequently selection of suitable approaches

for tackling uncertainty in this domain may be problematic. To alleviate this problem, in this paper we

present a framework to classify existing uncertainty concepts for architecture-based solutions in self-

adaptive systems with multiple quality requirements. To create the framework, we systematically review all

the papers that propose approaches to deal with uncertainty and its sources. Subsequently we study these

approaches according to the proposed classification framework in order to facilitate their potential

comparison and selection. This classification framework may further be used to propose new solutions

tackling the uncertainty problem more efficiently in the future.

This paper is organized as follows: in Section 1 we present background and related work. In Section 2 we

introduce our research questions, discuss both the search strategy, and data extraction method. In Section 3

we present the results of the study, and extensively answer the research questions. In Section 4 we discuss

the results of the study including main findings, limitations of the study, and threats to validity. Finally,

Section 5 concludes the paper.

1.1. Background

In this section, we present a brief description for self-adaptive systems, architecture-based self-adaptation,

architecture-based self-adaptive systems with multiple quality requirements, and uncertainty in architecture-

based self-adaptive systems.

Self-adaptive systems: Self-adaptive systems are capable of modifying their runtime behavior in order to

achieve systems objectives. Unpredictable circumstances such as changes in the system’s environment,

system faults, new requirements, and changes in the priority of requirements are some of the reasons for

triggering adaptation action in a self-adaptive system. To deal with these uncertainties, a self-adaptive

system continuously monitors itself, gathers data, and analyzes them to decide if adaption is required. The

challenging aspect of designing and implementing a self-adaptive system is that not only must the system

apply changes at runtime, but also fulfill the systems requirements up to a satisfying level. Engineering such

systems is often difficult as the available knowledge at design time is not adequate to anticipate all the

runtime conditions. Therefore, designers often prefer to deal with this uncertainty at runtime, when more

knowledge is available.

Architecture-based self-adaptation: Architecture-based self-adaptation (Oreizy et al., 1998) is one well

recognized approach that deals with uncertainties by supporting modifiable runtime system behavior. The

essential functions of architecture-based self-adaptation are defined in the MAPE-K (i.e., Monitor, Analyze,

Plan, Execute, and Knowledge component) reference model (IBM, 2005). By complying with the concept

of separation of concerns (i.e. separation of domain specific concerns from adaptation concerns), the

MAPE-K model supports reusability and manages the complexity of constructing self-adaptive systems.

This makes the MAPE-K model a suitable reference for designing feedback loops and developing self-

adaptive systems (Weyns et al., 2012). One well-known architecture-based self-adaptive framework is

Rainbow (Garlan et al., 2004). Rainbow uses an abstract architectural model to monitor software system

runtime specifications, evaluates the model for constraint violations, and if required, performs global or

module-level adaptations. (Calinescu et al., 2011) present a quality of service management framework for

self-adaptive services-based systems, which augments the system architecture with the MAPE-K loop

functionalities. In their framework, the high-level quality of service requirements are translated into

probabilistic temporal logic formulae which are used to identify and enforce the optimal system

configuration while taking into account the quality dependencies. Moreover, utility theory can be used

(Cheng et al., 2006) (Walsh et al, 2004) to dynamically compute trade-offs (i.e. priority of quality attributes

over one another) between conflicting interests, in order to select the best adaptation strategy that balances

multiple quality requirements in the self-adaptive system.

Architecture-based self-adaptive systems with multiple quality requirements: Similar to any other

software system, architecture-based self-adaptive systems should fulfill a variety of quality attributes in

order to support a desired runtime system behavior and user experience. To design and develop such self-

adapting systems, it is important to analyze the tradeoffs between multiple quality attributes at runtime, and

ensure a certain quality level after adaptation actions. This means that not only requirements with higher

priorities, which define the system’s goal, should be met; but also quality attributes of the system should be

fulfilled at an acceptable level. After all, a systems’ overall quality is a desired combination of several

runtime and design time requirements. However, when the number of adaptation dimensions increases,

representing the choices for adaptation, and updating and maintaining trade-offs becomes problematic

(Cheng et al., 2006). Therefore, the majority of current architecture-based self-adaptive systems approaches

do not address trade-offs analysis explicitly, and specifically the negative impacts of the applied adaptation

method on multiple quality attributes, which deteriorates systems’ overall quality in complex software

systems. A recent survey (Danny Weyns & Ahmad, 2013) summarizes the state of the art in architecture-

based adaptation in general, and handling multiple requirements in particular.

Uncertainty in architecture-based self-adaptive systems: Uncertainty in an architecture-based self-

adaptive system or self-adaptive systems in general, can be studied from a number of different perspectives.

The first and foremost genre of uncertainty is the dynamicity and unpredictability of a variety of factors

existing in software systems. In fact, this type of uncertainty justifies the need for design and development

of self-adaptive systems. An architecture-based self-adaptive system should be able to investigate a solution

space, choose the optimal adaptation action, and adapt the system while fulfilling quality requirement of the

system in a specified satisfying level. However, in a system with multiple objectives, and quality goals the

decision making process for selecting the optimal adaptation action is quite complex; which leads us to the

second genre of uncertainty in architecture-based self-adaptive systems: consequences of self-adaptation in

a software system. Incorporating a self-adaptation capability into a software system may produce even more

complexity and undesirable effects in the system. Not only the self-adaptive system should deal with a

growing solution space for adaptation, but it also needs to handle possible negative effects of adaptation on

the system. Adversely affecting quality requirements of the system, noise in sensing and imperfect

application of adaptation actions are examples of uncertainties which are aftermaths of self-adaptation in a

system. Lastly, the concept of uncertainty itself and its characteristics are vaguely described and

interchangeably used to refer to a variety of notions in domain of architecture-based self-adaptive systems

with multiple quality requirements; this poses more ambiguity to the topic of uncertainty in this domain.

1.2. Related work

During the past decade several studies have been conducted to address uncertainty issue in different phases

of software systems life cycle. (Rotmans et al., 2003) attempt to harmonize the uncertainty terminology by

proposing a conceptual framework (i.e., uncertainty matrix which considers uncertainty from three different

dimensions: location, level of uncertainty, and nature of uncertainty), which helps to identify and

characterize uncertainty in model-based decision support activities. Although the uncertainty matrix

presented in that paper can be used as a guideline in the domain of self-adaptive systems as well; we found

it difficult to use their detailed taxonomies and definitions of uncertainty dimensions, as it is mainly

applicable to the field of model-based decision support. Following the same theme of uncertainty

dimensions (i.e., location, level, and nature of uncertainty), (Perez-palacin et al., 2014) present a taxonomy

for uncertainty in the modeling of self-adaptive systems. In their work, they also provide an extensive list of

examples for sources of uncertainty, which is extracted from the literature. Nonetheless, the authors do not

manage to provide descriptions for the sources of uncertainty. In (Refsgaard et al., 2007), the authors

present terminology and a topology of uncertainty and explore the role of uncertainty at different stages of a

water management modeling process. However, their terminology is substantially inspired by work of

(Rotmans et al., 2003), and their field of research is remarkably different from our domain of interest; which

makes it difficult to apply their work in the domain of self-adaptive systems. In (David Garlan, 2010), the

author argues that in today’s software systems uncertainty should be considered as a first-class concern

throughout the whole system life cycle, and discusses a number of sources of uncertainty affecting software

systems. What we think is missing in this work is the mapping of these sources of uncertainty into the

previously discussed dimensions and taxonomies of uncertainty in the literature. (Esfahani & Malek, 2013)

mostly focus on sources of uncertainty, and present an extensive list of sources with examples. Moreover,

they investigate uncertainty characteristics (reducibility versus irreducibility, variability versus lack of

knowledge, and spectrum of uncertainty), and sources of uncertainty characteristics in their work; however

the connection between these characteristics and dimensions of uncertainty is unclear. Lastly, (Ramirez,

Jensen, & Cheng, 2012) provide a definition and taxonomy for uncertainty in dynamically adaptive

systems. The presented taxonomy describes common sources of uncertainty and their effect on

requirements, design and runtime phases of dynamically adaptive systems. The main focus of this paper is

sources of uncertainty as well.

Investigating the current state of research regarding uncertainty in software systems, and identifying gaps

and inconsistencies in the literature motivated us to conduct an exhaustive review of the topic in domain of

architecture-based self-adaptive systems with multiple quality requirements. We argue that it is crucial to

systematically study and grasp current approaches, investigate different dimensions of uncertainty to

precisely comprehend the problem statement (i.e., uncertainty definition, dimensions, sources, etc.), and to

identify issues which need to be resolved in order to propose approaches that can be tailored and reused in a

variety of systems. The classification framework we present aims to provide a consistent and

comprehensive overview of uncertainty and its specifications in domain of architecture-based self-adaptive

systems with multiple quality requirements.

2. Study Design

In this study we aim at identifying, exploring, and classifying the state of the art on architecture-based

methods handling uncertainty in self-adaptive systems with multiple quality requirements. Therefore, we

perform a systematic literature review (Kitchenham & Charters, 2007) to collect and investigate existing

architecture-based methods, and to answer a set of pre-defined research questions. The first step of

conducting a systematic literature review is to create a protocol 0F

1
, in which all the steps and details of the

study are specified. In this section, we report parts of the protocol and its execution: we present our research

questions, a generic overview of the process and the search strategy which we use to search through

selected databases, inclusion and exclusion criteria for filtering the collected papers, data extraction

procedure, and the data synthesis method we used to answer the research questions and propose the

classification framework.

2.1. Research Questions

We pose the following research questions to investigate the current architecture-based approaches tackling

uncertainty in self-adaptive systems with multiple quality requirements.

1) What are the current architecture-based approaches tackling uncertainty in self-adaptive systems

with multiple requirements?

2) What are the different uncertainty dimensions which are explored by these approaches?

a. What are the options for these uncertainty dimensions?

3) What sources of uncertainties are addressed by these approaches?

4) How are the current approaches classified according to the proposed uncertainty classification

framework?

By answering research question one, we get an overview of current architecture-based approaches tackling

uncertainty. “Architecture-based” implies that the approach presented in the study should provide

architectural solutions (e.g., architectural models) to handle and reason about the dynamic behavior of the

system. To be more specific, the software system that is subject of adaption (i.e., the managed system)

should be equipped with adaptation software that uses architectural models of the system, its environment,

and goals when monitoring the running system and adapt the managed system at runtime when needed. In

particular, it should be possible to map the components of the adaptation software to MAPE-k

functionalities. With multiple requirements, we refer both to approaches that handle more than one

adaptation concern (e.g., adapt for reliability and security) and approaches that consider a single adaptation

concern (e.g., reliability) but also the effects on one or more other concerns (e.g., performance overhead).

The answer to this research question will be a list of current studies, related venues and books in which they

have been published, year of publication, and authors’ names.

Research question two aims to identify and investigate possible dimensions for uncertainty. Dimensions

refer to different aspects of uncertainty in self-adaptive systems with multiple quality requirements. For

instance, we are interested in figuring out whether or not locations (e.g., environment, the managed system,

components of the adaptation software) in which the uncertainty manifests itself are a commonly discussed

subject, or if phases of systems life cycle in which the existence of uncertainty is acknowledged, etc. are

1
 The protocol is available at: http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf

http://www.cs.rug.nl/search/uploads/Resources/book_chapter_protocol.pdf

discussed in the selected papers or not. The answer to this research question will help us to derive the most

significant and common aspects of uncertainty in this domain.

Research question 2.a aims to understand the dimensions of uncertainty resulting from answering the

previous research question, on a more concrete level. By answering this research question, we come up with

a list of common categories and options for each of the aforementioned dimensions. For instance, we intend

to come up with a list of possible locations in which the uncertainty appears in a self-adaptive system, or

identify in which particular phases of systems life cycle the existence of uncertainty is acknowledged or the

problem is tackled.

The source of uncertainty is one of the most important dimensions of uncertainty, so we investigate it in

more depth in research questions three. By answering this research question, we aim to identify and list

common sources of uncertainty, from which the uncertainty originates. Sources of uncertainty refer to a

variety of circumstances, which affect and deviate system behavior from expected behavior in the future.

For example, changes in the environment or systems requirements are considered as sources of uncertainty.

The list of sources of uncertainty will be a separate part of the final classification framework. Answers to

research questions two and three help to compose the classification framework, which is the main

contribution of this study.

Finally, we pose research question four to indicate how the proposed uncertainty classification framework

can be used to study and classify current approaches tackling uncertainty in the domain of self-adaptive

systems with multiple quality requirements. Essentially, we investigate the usefulness of the proposed

classification framework by analyzing selected primary studies and mapping them to the framework.

To sum up, by answering the aforementioned research questions, we aim to present an overview of existing

architecture-based approaches tackling uncertainty in self-adaptive systems with multiple requirements. In

addition, we strive to identify common dimensions, characteristics of those dimensions, and sources, which

are treated in the literature, and propose a comprehensible classification framework for uncertainty in self-

adaptive systems with multiple quality requirements. Finally, we use the proposed framework as the basis

for further analysis of extracted data from the selected papers to present a statistical overview of the current

research in this domain.

2.2. Search Strategy

In this section, we present the main steps we performed in order to identify, filter, and include all the

relevant papers in our study. An extended and more detailed description of our search strategy can be found

in the protocol.

2.2.1. Search scope and automatic search

The scope of the search is defined in two dimensions: publication period and venues. In terms of publication

period, we limited the search to papers published over the period first of January of 2000 and 20th of July of

2014. We chose this start date because the development of successful self-adaptive software hardly goes

back to a decade ago; after the advent of autonomic computing (Kephart & Chess, 2003). Note that even

though some major venues on self-adaptive systems started to emerge after 2005 (e.g., International

Symposium on Software Engineering for Adaptive and Self-Managing Systems), we chose to start the

search in the year 2000 to avoid missing any studies published in other venues.

Since the number of published papers in this domain is over several thousand, manual search was not a

feasible approach to search databases (Ali et al., 2010). Therefore, we used the automatic search method to

search through selected venues. By automatic search we mean search performed by executing search strings

on search engines of electronic data sources (i.e., IEEE Xplorer, ACM digital library, SpringerLink, and

ScienceDirect). An advantage of automatic search is that it supports easy replication of the study.

One of the main challenges of performing an automatic search to find relevant studies in the domain of self-

adaptive systems was a lack of standard, well-defined terminology in this domain. Due to this problem, and

to avoid missing any relevant paper in the automatic search, we decided to use a more generic search string

and include a wider number of papers in the initial results. We used the research questions and a stepwise

strategy to obtain the search terms; the strategy is as follows:

1) Derive main terms from the research questions and the topics being researched.

2) If applicable, identify and include alternative spellings and synonyms for the terms.

3) When database allows, use “advance” or “expert” search option to insert the complete search string.

a. Otherwise, use Boolean “or” to incorporate alternative spellings and synonyms, and use

Boolean “and” to link the major terms.

4) Pilot different meaningful combinations of search terms.

5) Check the pilot results with the “quasi-gold” standard which is a set of manually derived primary

studies from a given set of studies (see below for further explanation).

6) Organized discussions between researchers to adjust the search terms, if necessary.

As a result, the following terms were used to formulate the search string:

Self, Dynamic, Autonomic, Manage, Management, Configure, Configuration, Configuring, Adapt,

Adaptive, Adaptation, Monitor, Monitoring, Heal, Healing, Architecture, Architectural

The search string consists of three parts based on the combination of key terms: Self AND Adaptation AND

Architecture. The alternate terms listed above are used to create the main search string. This is done by

connecting these keywords through logical OR as follow:

(self OR dynamic OR autonomic) AND (manage OR management OR configure OR configuration

OR configuring OR adapt OR adaptive OR adaptation OR monitor OR monitoring OR analyze OR

analysis OR plan OR planning OR heal OR healing OR optimize OR optimizing OR optimization OR

protect OR protecting) AND (architecture OR architectural)

Although manual search is not feasible for databases where the number of published papers can be

enormous, we still incorporated a manual search (i.e., “quasi-gold” standard (Zhang & Ali Babar, 2010))

into the search process to make sure that the search string works properly. To establish the “quasi-gold”

standard, we manually searched three different venues. To perform the manual search, we looked into

papers’ titles, keywords, abstracts, introductions, and conclusions. The manually selected papers were

cross-checked with the results of automatic search to ensure that all the relevant papers are found during the

automatic search. This means that papers found for “quasi-gold” standard should be a subset of automatic

results. This step (i.e., creating “quasi-gold” standard) ensures validity of the created search string.

In total, we have selected and included 51 papers derived from 27 different venues and books. To be more

specific, the venues include 13 different conferences, 4 workshops, 7 journals, and 3 books.

2.2.2. Overview of Search Process

We adopted a four phased search process to search the selected venues and books, filter results, and collect

relevant papers. The different steps of the process are shown in Figure 1.

Manual search of selected
venues to obtain �quasi-gold

standard

Filtering of results, merging
results of different data sources

and removing duplicates

Set of 7453 potentially relevant
papers

Apply inclusion and exclusion
criteria

Filtering based on full text, and
data extraction

Set of 51 papers and extracted
data

Set of papers known as �quasi-
gold standard

Manual search
 phase

Automatic search
phase

Filtering phase

Results in

Should be subset of

Data collection
 phase

Search engine allows

full text search

Search the whole
paper using search

string

Search title,
keywords, and
abstract using
search sting

No Yes

288 papers

Figure 1- Search process.

In the first phase (i.e., manual search), we manually searched three selected venues (see Table 18) to create

the “quasi-gold” standard. The final set of papers from this phase should be cross checked with the

automatic results in the filtering phase. In the next phase (i.e., automatic search), we performed the

automatic search of selected venues (see Table 19). Depending on the search engines’ capabilities, different

search strategies were picked. If the search engine allowed, we used the search string to search the full

paper; otherwise, titles, abstracts and keywords were searched. In the filtering phase, we filtered the results

based on titles, abstracts, keywords, introductions, and conclusions, and also removed the duplicate papers.

We ended up having 7453 potentially relevant papers which then were compared with the “quasi-gold”

standard. Since the “quasi-gold” standard papers were a subset of potentially relevant papers, we proceeded

to the next step and started filtering the papers based on inclusion and exclusion criteria. At this point, we

started reading the whole papers as it was not possible to filter some of the papers only based on abstract,

introduction, and conclusion. Therefore, for certain papers we also started extracting and collecting data

simultaneously. Finally, we included 51 papers as our primary studies, and finished the data extraction for

all of the papers.

2.2.3. Refining the Search Results

We used the following inclusion and exclusion criteria to filter our extracted set of papers.

2.2.3.1. Inclusion criteria

To be selected, a paper needed to cover all the following inclusion criteria:

1) The study should be in the domain of self-adaptive systems.

2) The method presented to manage systems adaptability should be architecture-based. This implies

that the study should provide architectural solutions (e.g., architectural models) to handle and

reason about the dynamic behavior of the system. In other words, it should be possible to map

components of the systems adaptation logic to MAPE-k functionalities.

3) The study should tackle multiple quality requirements, either as a goal of adaptation or as a

consequence of applying a self-adaptation method.

2.2.3.2. Exclusion criteria

A paper was excluded if it fulfilled one of the following exclusion criterions:

1) Study is editorial, position paper, abstract, keynote, opinion, tutorial summary, panel discussion, or

technical report. A paper that is not a peer-reviewed scientific paper may not be of acceptable

quality or may not provide reasonable amount of information.

2) The study in not written in English.

2.3. Data extraction

We used our selected primary studies to collect data and answer the research questions. Our data extraction

approach was semi-structured. We created initial uncertainty dimensions and source classification schemas

(see Table 1, and Table 2) based on the literature, namely the work by (Perez-palacin et al., 2014),

(Refsgaard et al., 2007), (Rotmans et al., 2003), (David Garlan, 2010), (Esfahani & Malek, 2013), and

(Ramirez et al., 2012). Our intent was to extend and complete both the dimension and source classifications

schemas based on data we extract from the primary studies.

Table 1 - Uncertainty dimensions initial classification schema.

Uncertainty Dimension Dimension Descriptions

Location

(Walker et al., 2003)

“It is an identification of where uncertainty

manifests itself within the whole model

complex.”

Nature “Specifies whether the uncertainty is due to the

(Walker et al., 2003) imperfection of our knowledge, or is due to the

inherent variability of the phenomena being

described.”

Level /Spectrum

(Walker et al., 2003),(Esfahani & Malek, 2013)

“Indicates where the uncertainty manifests itself

along the spectrum between deterministic

knowledge and total ignorance.”

Sources

(Esfahani & Malek, 2013)

“Factors challenge the confidence with which the

adaptation decisions are made.” Refers to a

variety of uncertainties originating from system

models, adaptation actions, systems goals, and

executing environment

Table 2 - Sources of uncertainty initial classification schema.

Uncertainty Source Descriptions

Model Refers to a variety of uncertainties originating from system models.

Goals Refers to a variety of uncertainties originating from system’s goal

related complications.

Environment Refers to a variety of uncertainties originating from environments

circumstances.

We also recorded comments to capture additional observations about certain papers or data fields; the

comments were used to solve any disagreements among researchers, if necessary.

2.4. Data items

Table 3 lists the data fields we used to extract useful data from the primary studies in order to answer our

research questions (RQ). Descriptions of the data fields are provided in tables 1, and 2.

Table 3 - Data form used for data extractions.

Item ID Data field Purpose

F1 Author(s) name RQ1

F2 Title RQ1

F3 Publication year RQ1

F4 Venue RQ1

F5 Location RQ2

F6 Nature RQ2

F7 Level/Spectrum RQ2

F8 Emerging Time RQ2

F9 Sources RQ3

2.5. Quality assessment of selected papers

We use a quality assessment (QA) method to assess the quality of all the selected papers that were included

in this review. We adopted the quality assessment mechanism (i.e., definitions and quality assessment

questions) used by Dyba and Dingsoyr (Dybå & Dingsøyr, 2008) as follows:

 Quality of reporting: Papers’ rationale, aim, and context should be clarified.

o QA1: Do the authors clarify the aims and objectives of the paper, and is there a clear

rationale for why the study is undertaken?

o QA2: Is there an adequate description of the context in which the research was

carried out?

 Rigour: A thorough and appropriate approach is applied to key research methods in the

paper.

o QA3: Is there an adequate justification and clear description for the research design?

 Credibility: The papers’ findings are well presented and meaningful.

o QA4: Has sufficient data been presented to support the finding, are the findings are

stated clearly?

o QA5: Do the researcher examine their own potential bias and influence during the

formulation of research questions and evaluation of results?

o QA6: Do the authors discuss the credibility and limitations of their findings?

The quality assessment mechanism of Dyba and Dingsoyr covers also relevance (i.e., explores the value of

the paper for the related community) of papers. However, in this systematic review we have only included

papers published in high quality venues that are relevant to our domain of interest, thus further investigation

of usefulness of the papers for the community is unnecessary.

To assess the quality of the papers, each paper is evaluated against the abovementioned quality assessment

questions. Answers to each of the questions can be either “yes”, “to some extend” or “no”, and then

numerical values are assigned to the answers (1 = “yes”, 0 = “no”, and 0.5 = “to some extent”). The final

quality score for each primary paper is calculated by summing up the scores for all the questions. The

results of quality assessment are used in the synthesis phase to support the validity of included papers in this

review. The scores assigned to the selected papers are presented in Section 3.1.

3. Results

In this section we present a basic analysis of our results through various tables and charts, and then answer

the research questions.

3.1. Quality of selected papers

Our list of venues (Table 19) for automatic search includes the list of venues searched by Weyns at al. in

(Weyns & Ahmad, 2013). In that systematic literature review, the authors included a list of high quality

primary studies in the domain of self-adaptive systems, software architectures, and software engineering.

Furthermore, to broaden the search scope and extend the list of venues, we used Microsoft Academic

Search2 to find more relevant venues in the domains of self-adaptive systems and software architecture, and

included them in the study. However, to verify the quality of selected papers furthermore, we assessed all

the papers based on the method described in section 2.5. In Figure 2 we indicate all the selected papers and

their associated quality assessment scores. Green bubbles contain papers with average quality scores (i.e.,

scores of 4 and 4.5), and orange bubbles contain papers with higher quality scores (i.e., scores of 5, 5.5, and

6). Blue bubbles contain papers with low quality scores. The results suggest that the selected papers for this

study are of relatively high quality: 18 papers are located score 4 or 4.5, and 22 papers score from 5 to 6.

2
 . http://academic.research.microsoft.com/

Figure 2 - Quality assessment of selected papers.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q
u

al
it

y
as

se
ss

m
e

n
t

sc
o

re
s

Number of papers

S12, S40,
S45

S41

S19

S2, S7,
S22, S35

S28, S46

S38

S5, S21,
S37, S44,
S47

S10, S13,
S15, S16,
S23, S24,
S26, S39,
S43, S49

S8, S9, S18,
S20, S25,
S29, S30,
S32, S33,
S34, S36 S1, S3, S4, S6,

S11, S14, S17,
S27, S31, S42,
S48, S50, S51

3.2. RQ1: What are the current architecture-based approaches tackling

uncertainty in self-adaptive systems with multiple requirements?

In this study, we included 51 papers in total (see Table 17 for complete list of papers). Figure 3 shows the

number of included papers per venue with publication numbers equal or higher than two. Software

Engineering for Adaptive and Self-Managing Systems conference (SEAMS) and Software Engineering for

Self-Adaptive Systems (SESAS) volumes I and II have the most number of selected papers with 14

publications and 6 papers respectively.

From Figure 4 we can see that most of the studies started to appear around 2009; suggesting that

architecture-based approaches tackling uncertainty in self-adaptive systems with multiple quality

requirements were not widely studied before the year 2008. Since architecture-based approaches have been

used in the domain of self-adaptive system even before 2009, we speculate that uncertainty in self-adaptive

systems with multiple quality requirements has been under-studied before the year 2009.

5
6

14

4

6

0

2

4

6

8

10

12

14

16

ICSE ESEC/FSE SEAMS JSS SESAS I&II

N
u

m
b

e
r

o
f

p
ap

e
rs

Venues

Figure 3 - Number of published papers per venue.

Figure 4 - Number of papers published per year.

3.3. RQ2: What are the different uncertainty dimensions which are explored

by these approaches?

We used the initial classification schema of uncertainty dimensions (see Table 1) to extract data from the

selected papers, and then gradually extended that initial classification schema to create our framework.

Table 4 presents a list of significant dimensions we found in the literature, descriptions of the dimensions,

and possible options for each of the dimensions.

Table 4 - Classification framework for dimensions of uncertainty and its options.

Uncertainty

Dimension

Description Options Descriptions

Location

Refers to the locale, where

uncertainty manifests itself within

the whole system.

Environment Refers to execution context and humans interacting with,

or affecting the system.

 Model Refers to a variety of conceptual models representing the

system.

 Adaptation

functions

Refers to functionalities performed as part of MAPE-K

model.

 Goals Refers to specification, modeling and alteration of system

goals.

 Managed

system

Refers to the application specific system, which is being

monitored and adapted.

 Resources Refers to a variety of essential factors and components

which are required by the self-adaptive system in order to

operate normally.

Nature Specifies whether the uncertainty

is due to the imperfection of

available knowledge, or is due to

the inherent variability of the

phenomena being described.

Epistemic

The uncertainty is due to the imperfection of our

knowledge, which may be reduced by more research and

empirical efforts.

 Variability

The uncertainty is due to inherent variability in the system

complex including randomness of nature, human

behavior, and technological surprises.

Level

/Spectrum

Indicates the position of

uncertainty along the spectrum

Statistical

uncertainty

Statistical uncertainty refers to deterministic knowledge

in the uncertainty spectrum and is any uncertainty that can

2

0

5

0
1 1

0

8

6
5

4

14

5

0

2

4

6

8

10

12

14

16

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N
u

m
b

e
r

o
f

p
ap

e
rs

Publication year

 between deterministic knowledge

and total ignorance.

 be described adequately in statistical terms.

 Scenario

uncertainty

A scenario is a plausible description of how the system

and or its driving forces may develop in the future.

Scenarios do not forecast what will happen in the future;

rather they indicate what might happen.

Emerging

Time

Refers to time when the existence

of uncertainty is acknowledged or

uncertainty is appeared during the

life cycle of the system.

Run time Refers to the uncertainties appearing after systems

deployment, which also includes system evolution over

time.

 Design time Refers to the uncertainties manifesting themselves during

any software development phases carried out before

system deployment.

Sources

Refers to a variety of

circumstances affecting the

adaptation decision, which

eventually deviate system’s

performance from expected

behavior

 See Table 5

As indicated in Table 4, we found five different noteworthy dimensions of uncertainty(i.e., Location,

Nature, Level, Emerging Time, and Sources). This implies that current architecture-based approaches in the

domain of self-adaptive systems with multiple quality requirements examine uncertainty from five distinct

perspectives. The fact that these dimensions were extracted from the literature suggests that any effective

solution tackling uncertainty should at least address these dimensions in order to thoroughly explore

underlying uncertainty in self-adaptive systems, and afterwards, propose solutions to tackle uncertainty.

Notice that the primary dimensions descriptions listed in Table 1 were refined into those presented in Table

4. Although undertaking the systematic review did not change the core of the definitions presented in the

primary classification schema, it did help to refine the definitons in order to be further applicable in the

domain of architecture-based self-adaptive systems and to fit into the final classification framework.

3.3.1. RQ2.a: What are the options for these uncertainty dimensions?

In Table 4, we also provide detailed descriptions for each of the options listed for uncertainty dimensions.

Furthermore, we expanded the options list by adding new options (i.e. managed system, and sources) to the

primary schema. By providing a full list of options and their descriptions, this table can be used as a

guideline for researchers to avoid any ambiguity while addressing dimensions options in their work.

We note that the dimension ‘level of uncertainty’ may also include recognized ignorance (i.e.,

acknowldeging uncertainty, but not proposing any remedy), and total ignorance (i.e., completely ignoring

the existance of uncertainty) as options. However, these two options do not apply for any of the primary

studies: all the studies acknowledge existance of uncertainty and propose solutions to handle it.

3.4. RQ3: What sources of uncertainties are addressed by these approaches?

Finally, to answer this research question, we used the initial classification schema for sources of uncertainty

(see Table 2) for data extraction and created an extended list of sources of unecrtainty. In Table 5 we

present the extended list, along with the descriptions for the options and examples from literature. The

sources of uncertainty refer to a variety of circumstances from which the uncertainty originates. We also

added one more column, “classes of uncretainty” which is only used for grouping purposes: sources of

uncertainties with similar origins are grouped in the same class of uncertaitny. This helps making a long list

of sources of uncertainty easier to analyze in the next section.

Table 5 - Sources of uncertainty.

Class of

source of

uncertainty

Options (for Sources of

uncertainty)

Description Example

Model

uncertainty

Abstraction Uncertainty caused by omitting certain details and

information from models for the sake of simplicity.

Simplifying assumptions (Esfahani

& Malek, 2013)

Incompleteness Uncertainty caused by parts (of models, mechanisms,

etc.) that are knowingly missing because of a lack of

(current) knowledge.

Model structural uncertainty

(Perez-palacin et al., 2014)

Model drift Uncertainty caused by a discrepancy between the state of

models and the represented phenomena.

Violation of requirements in

models (Carlo Ghezzi & Sharifloo,

2013)

Different sources of

information

Uncertainty caused by differences between the

representations of information provided by different

sources of information. Uncertainty may be due to

different representations of the same information, or

result of having different sources of information, or both.

Granularity of models

(Cheung et al., 2007)

Complex models Uncertainty caused by complexity of runtime models

representing managed sub systems.

Complex architectural models

(Vogel & Giese, 2010a)

Adaptation

functions

uncertainty

Variability space of

adaptation

Uncertainty caused by the size of the variability space

that the adaption functions need to handle. This type of

uncertainty arises from striving to capture the whole

complex relationship of the system with its changing

environment in a few architectural configurations which

is inherently difficult and generates the risk of

overlooking important environmental states [5].

Being unable to foresee all

possible environment states as

well as all the system

configurations in the future

(Chauvel et al., 2013)

Sensing Uncertainty caused by sensors which are inherently

imperfect.

Noise in sensing

(Esfahani & Malek, 2013)

Effecting Uncertainty caused by effectors of which the effects may

not be completely deterministic.

Futures parameter value

(Esfahani & Malek, 2013)

Automatic learning Uncertainty caused by machine learning techniques of

which the effects may not be completely predictable.

Modeling techniques

(Cheung et al., 2007)

Decentralization Uncertainty due to decision making by different entities

of which the effects may not be completely predictable.

Decentralized control in a traffic

jams monitoring system

(Weyns et al., 2010)

Changes in adaptation

mechanisms

Uncertainty due to required dynamicity of adaptation

infrastructure to maintain its relevance with respect to the

changing adaptation goals (Villegas, Tamura, Müller,

Duchien, & Casallas, 2013).

Additional monitoring

infrastructure

(Villegas et al., 2013)

Fault localization and

identification

Uncertainty caused by inaccurate localization and

identification of faults in the managed system.

Identifying and ranking faulty

component (Casanova et al., 2013)

Goals

uncertainty

Goal dependencies Dependencies between goals, in particular quality goals,

may not be captured in a deterministic manner, which

causes uncertainty.

Conflict resolution between

competing quality attributes (Zoghi

et al., 2014)

Future goal changes Uncertainty due to potential changes of goals that could

not be completely anticipated.

Rapid evolution

(David Garlan, 2010)

Future new goals Uncertainty due to the potential introduction of new goals

that could not be completely anticipated.

Rapid evolution

(David Garlan, 2010)

Goal specification Uncertainty due to lack of deterministic specifications of

quality goals.

Quality goals priorities changes

(Esfahani, et al., 2011)

Outdated goals Uncertainty caused by overlooking outdated goals. Addressing goals which are

irrelevant to the system

(Tamura et al., 2013)

Environment

uncertainty

Execution context Uncertainty caused by the inherent unpredictability of

execution contexts.

Mobility

(David Garlan, 2010)

Human in the loop Uncertainty caused by the inherent unpredictability of

human behavior.

Objectives

(Esfahani & Malek, 2013)

Multiple ownership Uncertainty caused by lack of proper information

sharing, conflicting goals, and decision making policies

by multiple entities that own parts of the system.

Uncertain execution time

and failure rate of a component

operated by a third-party

organization

(C Ghezzi et al., 2013)

 New resources Uncertainty caused by availability of new resources in

the system.

Availability of new services in the

system (Edwards et al., 2009)

Resources

uncertainty

Changing resources Uncertainty caused by dynamicity of resources in the

system.

Resources mobility

(Hallsteinsen et al., 2004)

Managed

system

uncertainty

System complexity and

changes

Uncertainty caused by complexity and dynamicity of

nature of the managed system.

Complex systems and complex

architectural models (Vogel &

Giese, 2010)

In this table, specific examples from the literature are provided to help with the comprehensibility of

sources.

3.5. RQ4: How are the current approaches classified according to the

proposed uncertainty classification framework?

From 51 selected papers, 12 papers discuss one class of uncertainty. Environment is the most addressed

class of uncertainty, and adaptation functions is the least (see Table 6).

Table 6 - List of papers discussing single class of uncertainty.

 Class of uncertainty Number of papers Study numbers

Environment 4 S20, S34, S37, S38

Goal 3 S4, S29, S41

Model 3 S11, S16, S23

Adaptation functions 2 S5, S14

The rest of the papers (39 out of 51) discuss multiple classes of uncertainty. A variety of combinations of

classes of uncertainty are discussed in the literature; “Environment, Goal, and Adaptation functions” is the

most addressed set of classes of uncertainty, for details see Table 7.

Table 7 - List of papers discussing combinations of classes of uncertainty.

Classes of uncertainty Number of papers Study numbers

Environment, Goal, Adaptation functions 9 S8, S9, S25, S31, S32, S43, S44, S45, S49

Environment, Goal 8 S7, S15, S18, S33, S46, S47, S51

Environment, Adaptation functions 3 S17, S42, S50

Environment, Model, Adaptation functions 3 S13, S12, S19

Environment, Model 2 S3, S24

Environment, Goal, Adaptation function, Model 2 S26, S10

Environment, Goal, Managed system 2 S27, S36

Environment, Goal, Model 2 S30, S40

Adaptation function, Model, Goal 1 S48

Goal, Adaptation function 1 S39

Environment, Resources 1 S2

Environment, Resources, Adaptation functions 1 S21

Environment, Goal, Resources 1 S1

Environment, Adaptation functions, Goal,

Managed system
1 S35

Environment, Adaptation functions, Goal,

Resources
1 S22

Environment, Model, Managed system 1 S6

Goal, adaptation function, resources 1 S28

From Table 6 and Table 7, we can conclude that the majority of existing studies (i.e., 39 papers) explore

different classes of uncertainty, and do not focus on proposing solutions to tackle certain class of

uncertainty and its sources. We can also observe that “Environment” and “Goal” seems to be the most

important classes of uncertainty, and the majority of researchers are interested in tackling uncertainties

emanating from environmental circumstances and self-adaptive system’s goal related complications.

Regarding the nature of uncertainty (see Table 8), 35 papers (i.e., 68.6%) discuss uncertainty due to

variability, and only two papers tackle uncertainty due to lack of knowledge (i.e., Epistemic). Although 14

papers address both variability and lack of knowledge as the nature of uncertainty in self-adaptive systems;

variability seems to be the main source from which uncertainty originates as 35 primary studies ‘main focus

is only variability.

Table 8 - List of papers and nature of uncertainty.

Nature Number of papers Study numbers

Variability 35

S1, S2, S4, S5, S6, S7, S8, S9, S10, S14, S15, S16, S17, S18, S19, S20, S21,

S22, S25, S28, S29, S31, S34, S36, S37, S38, S39, S40, S41, S43, S45, S47,

S48, S49, S51

Variability, Epistemic 14 S3, S11, S12, S13, S24, S26, S27, S30 , S32, S33, S35, S42, S46, S50

Epistemic 2 S23, S44

Regarding the level of uncertainty (see Table 9), most of the primary studies (i.e., 28 papers) explore

uncertainty at the scenario level, 7 papers use only statistical methods to investigate uncertainty, and 12

papers use a combination of both scenarios and statistical methods. Investigating uncertainty at the scenario

level is easier to understand, it helps to anticipate potential system behavior in presence of uncertainty, and

estimates how the quality requirements may be affected; on the downside it lacks rigorous analysis of

system state. Statistical methods, however, can use runtime knowledge to accurately calculate system status

in presence of uncertainty, and also enable finding the best adaptation option with the least side effects on

quality requirements. Therefore, we envision that using a combination of both scenario and statistical levels

will be the most advantageous option for handling multiple quality requirements.

Table 9 – List of papers and level of uncertainty.

Level Number of papers Study numbers

Scenario 28 S1, S3, S4, S6, S8, S10, S11, S15, S16, S17, S18, S19, S20, S22, S23, S24, S25,

S29, S31, S32, S35, S36, S37, S40, S44, S48, S50, S51

Scenario, Statistical 12 S5, S7, S21, S27, S30, S33, S34, S38, S39, S46, S47, S49

Statistical 7 S9, S12, S13, S14, S26, S42, S43

Not specified 4 S2, S28, S41, S45

Regarding emerging time, Table 10 indicates that most of the existing approaches (i.e., 36 papers) postpone

the treatment of uncertainty to the runtime phase. This is not surprising as researchers are mostly interested

to study requirements trade-offs at runtime. In 13 papers, uncertainty is treated in both design and runtime.

One common way of dealing with uncertainty in these approaches is to acknowledge the existing

uncertainty and anticipate probable solutions at design time, but tackle the uncertainty in the runtime phase

when more knowledge is available. Finally, we found two papers in which uncertainty is explored and

tackled only at design time.

Table 10 - List of papers and the uncertainty treatment time.

Emerging time Number of papers Study numbers

Runtime 36

S1, S2, S4, S5, S8, S10, S14, S16, S17, S19, S20, S21, S23, S25, S26, S27,

S28, S29, S30, S31, S32, S33, S34, S35, S37, S38, S39, S41, S42, S43, S45,

S46, S47, S48, S49, S51

Runtime, Design time 13 S6, S7, S9, S11, S12, S13, S15, S18, S22, S24, S36, S44, S50

Design time 2 S3, S40

Regarding the sources of uncertainty, we note that in some cases there might be an overlap between two or

more of the listed sources (e.g., human in the loop, and multiple ownership) definitions; in these cases, we

have assigned the primary studies to the most relevant sources. In some cases it is not clear from the paper

which source is the most relevant one; in these cases we list the source as hybrid and indicate which

multiple sources are applicable. Furthermore listing papers under certain types of sources does not

necessarily indicate that the paper provides a solution to tackle uncertainty originating from those particular

sources. It means that the paper discusses uncertainty due to those sources; however, it may or may not

propose solutions to resolve uncertainty emerging from one or multiple of those sources.

The most common (i.e., addressed in 38 papers) types of sources of uncertainty in the literature are

environmental sources. From Table 11, we see that execution context and human in the loop are

respectively the most and the least common sources of uncertainty from the environment uncertainty class.

This is not a surprise since the most commonly addressed nature of uncertainty is variability, and variability

normally occurs in the execution context of the self-adaptive systems.

Table 11 - List of papers addressing environment uncertainty sources.

Types of environment uncertainty source Number of papers Study numbers

Execution context 30 S1, S3, S7, S8, S9, S11, S13, S17, S19, S20, S24, S25, S26,

S27, S30, S31, S32, S33, S34, S35, S36, S37, S38, S40,

S42, S43, S45, S46, S47, S51

Execution context, Human in the loop 4 S2, S10, S22, S50

Human in the loop 1 S21

Although S6, S18, and S44 address uncertainty originating from environmental sources as well, we could

not decide to which source they should be assigned. Therefore, we recoded sources discussed in S6 and

S18 as hybrid sources, as they both can be considered uncertainty originating from system and/or

environment. Regarding S44, the environmental fact causing the uncertainty is considered as “complexity”,

despite the rest of the papers which explore the uncertainty due to the dynamicity of the environment.

Table 12 lists sources from goal uncertainty class. Addressed by twelve papers, future goal changes seem to

be the most studied goal-related uncertainty in the literature. This suggests that researchers are mainly

concerned with the ability of the self-adaptive system to handle its current goals and the potential changes

in the future; adding new goals to the system (i.e., future new goals) does not seem to be as important. In

Table 12 we also list different sets of sources that we found in the literature; however, the numbers of

papers addressing these sets of sources are rather low.

Table 12 - List of papers addressing goal uncertainty sources.

Types of goals uncertainty source Number of papers Study numbers

Future goal changes 12 S7, S10, S18, S22, S26, S27, S28, S30, S31, S32, S33, S36

Goal dependency 8 S15, S41, S43, S44, S46, S47, S49, S51

Future new goals 3 S1, S4, S8

Future goal changes, Future new goals 2 S38, S45

Goal dependency, Future new goals 1 S9

Goal dependency, Future goal changes 1 S25

Goal specification, goal dependency 1 S13

Future goal changes, outdated goals 1 S29

S39 and S40 both address the sources achieving stakeholder’s objectives and meeting quality of service

which can be considered a form of goal uncertainty class. However, we did not assign them to any of our

listed sources as it was unclear which sources would be the most relevant. What we noticed from the

analysis of goal uncertainty sources is that, although all the included primary studies somehow deal with

multiple quality requirements, the trade-off analysis gained little attention in the literature. From 51 selected

primary studies, only 8 paper address goal dependencies. In addition, the potential negative impact of self-

adaptation on systems quality requirements is not explicitly explored as sources of uncertainty.

Table 13 indicates sources of uncertainty from adaptation functions class. The most commonly discussed

(i.e., addressed by 10 papers) source is variability of solution space. This shows that the current focus of

research is mainly on providing assurances for applying the best adaptation actions in a system. Self-

adaptive systems should be capable of exploring the solution space, and selecting the best solution to adapt

the systems with minimum negative side effect on other systems functionalities and quality aspects.

Interestingly, the next most common source is fault localization and identification in a system. This

suggests that although the most significant source of uncertainty is the selection of most suitable approach

for adaptations, in many cases the problem itself, which triggers the need for adaptation, is not identified

properly and therefore causes more uncertainty in the system. Sensing and adaptation actions affects are the

least common sources from this class of uncertainty. Note that although investigation of adaptation action

effects is a major part of resolving the uncertainty due to variability of solution space, and also is a key

factor in exploring adaptation effects on quality requirements and handling trade-offs, it has only been

explicitly addressed in one paper. These results again confirm the lack of sufficient research on quality

requirements trade-off analysis.

Table 13 - List of papers addressing adaptation function uncertainty sources.

Types of adaptation functions uncertainty source Number of papers Study numbers

Variability of solution space 10 S9, S13, S15, S25, S26, S39,

S42, S43, S44, S48

 Fault localization and identification 5 S10, S17, S21, S22, S28

Decentralization 4 S1, S19, S32, S45

Variability of solution space, Fault localization and identification 3 S5, S8, S14

Changes in adaptation mechanisms 2 S31, S35

Variability of solution space, Decentralization 1 S11

Sensing 1 S12

Decentralization, multiple ownership 1 S49

Adaptation action’s effects 1 S50

Table 14 presents sources from the model uncertainty class. Our results indicate that uncertainty due to

differences in sources of information is the most commonly addressed source in this class. However, we

could not find any source which is explored in a significantly higher number of papers; all of the sources

from model uncertainty class are discussed in almost equal (low) number of papers.

Table 14 - List of papers addressing model uncertainty sources.

 Types of model uncertainty source Number of papers Study numbers

Different sources of information 3 S3, S16, S19

Model drift 2 S7, S20

Incompleteness 3 S11, S12, S48

Abstraction 2 S23, S26

Incompleteness, Abstraction 2 S24, S30

Erroneous models 1 S40

Complex models 1 S6

Table 15 presents sources of uncertainty from the resources class. Four papers address changing resources

as the origin of uncertainty in self-adaptive system, and one paper deals with newly arrived resources as an

uncertainty sources.

Table 15 - List of papers addressing resource uncertainty sources.

Types of resource uncertainty source Number of papers Study numbers

Changing resources 4 S2, S21, S22, S28,

New resources 1 S1

Finally, four papers (i.e., S6, S27, S35, and S36) state that sources of uncertainty may be due to systems’

circumstances. Complexity in the system is considered as the source of uncertainty in S6, and S27, while

systems changes are considered as the sources of uncertainty in S35, and S36.

4. Discussion

In this section, we first present a discussion about sources of uncertainty, and then list the main findings

derived from our results and provide implications for researchers.

4.1. Analysis of derived sources of uncertainty based on uncertainty

dimensions

One of the major goals of this study was to deliver a comprehensive and well-organized list of commonly

addressed sources of uncertainty in self-adaptive systems with multiple quality requirements. Therefore, we

believe it is also essential to analyze the derived sources of uncertainty and investigate how each one of

these source is handled. In the following, we explore the sources of uncertainty (see Table 5) based on

emerging time, level, and nature dimensions. Note that although we performed the same analysis for all

classes of sources listed in Table 5, we have omitted results of minor significance.

4.1.1. Environment uncertainty

From 35 papers (see Table 11) that addressed source of uncertainty originating from environment, 10 papers

(i.e., S1, S8, S10, S17, S19, S20, S25, S31, S37, and S51) deal with uncertainty at scenario level, due to

variability in the context, at runtime. This indicates that variability in the execution context and human

behavior are the most common sources of uncertainty, and are mainly handled at runtime. It also shows that

researchers mostly use scenarios to understand systems behavior at runtime and resolve the uncertainty.

This is an interesting finding as it suggests that statistical methods may be used at runtime to benefit from

available knowledge, and study the solutions space to improve the decision making process in self-adaptive

systems.

4.1.2. Goals uncertainty

From 29 papers (see Table 12), in which sources of uncertainty originate from goals, eight papers (i.e., S1,

S4, S8, S10, S25, S29, S31, and S51) deal with uncertainty due to variability of goals. In these papers,

researchers use scenarios to explore how variability may affect the system goals, and deal with the goal

uncertainty at runtime. Furthermore, we found that four papers (i.e., S18, S15, S22, and S36) deal with this

type of uncertainty both at design and runtime. This indicates that only in a small number of papers (i.e.,

four papers) researchers manage to touch the issue of goals uncertainty at design time, and in most cases it

is postponed to runtime. Despite the fact that more knowledge about system’s status is accessible at

runtime, statistical solutions are not commonly used to propose rather accurate solutions for handling goals

uncertainty at self-adaptive systems with multiple quality requirements. However, a remarkable number of

papers (i.e., S7, S27, S30, S33, S38, S46, S47, and S49) use combination of statistical methods and

scenarios to deal with goals uncertainty.

4.1.3. Adaptation functions uncertainty

Following the same pattern we found in previous sections, from 28 papers (see Table 12) in which

adaptation functions uncertainty sources are addressed, 11 papers (i.e., S1, S8, S10, S17, S19, S25, S31,

S32, S35, S48, S49) deal with this class of uncertainty due to variability issues, at scenario level, and at

runtime. Interestingly, we found four papers (i.e., S14, S26, S42, and S43) in which statistical methods are

used at runtime to deal with adaptation functions uncertainty sources with both variability and epistemic

natures. This indicates that although statistical methods are rarely used at runtime, they are favored methods

when dealing with adaptation functions uncertainty; specifically, uncertainty due to variability of solution

space and fault localization at runtime. Uncertainty due to variability of the solution space is in fact one of

the main challenges which needs to be handled when dealing with multiple requirements in self-adaptive

systems. The system should be able to manage (i.e., identify, investigate) an increasing number of possible

scenarios for adaptation, and predict their effects on quality attributes and select the best adaptation actions.

Therefore, it is very crucial to design a self-adaptive system in a way that it collects the most relevant data

at a given time and use the right tools to predict the system’s behavior in order to handle the quality

attributes trade-offs.

4.1.4. Model uncertainty

From 14 papers, in which model uncertainty is addressed, six papers (i.e., S3, S11, S12, S24, S26, and S30)

deal with model uncertainty sources due to both variability and lack of knowledge (i.e., epistemic). This is

interesting because we have only found 14 papers investigating uncertainty due to combination of both

variability and lack of knowledge, and in nearly half of them source of uncertainty is related to models. This

shows that lack of knowledge greatly affects credibility of models, and generates uncertainty in self-

adaptive systems with multiple quality requirements. From these six papers, three of them (i.e., S11, S12,

and S24) deal with uncertainty at both design and runtime, two papers at runtime (i.e., S26, S30), and one

paper (i.e., S3) at design time.

It might be interesting for researchers to find methods to use runtime knowledge to constantly adjust and

update models. Updated and accurate models are better representatives of the actual self-adaptive systems

and ultimately improve the decision making process and trade-off analysis.

4.2. Main Findings and implications for researchers

The following paragraphs elaborate on the main findings, while the end of each paragraph provides

implications for researchers in terms of future directions.

Model uncertainty is investigated in both design and runtime. We found that among those approaches

which deal with both design time and runtime phases of the system’s life cycle, model uncertainty is the

most commonly addressed class of uncertainty (see Table 10, and Table 14). From 51 studies, 13 papers

(i.e., S6, S7, S9, S11, S12, S13, S15, S18, S22, S24, S36, S44, S50) consider uncertainty in both design and

runtime phases, and 5 of these 13 studies (i.e., S6, S7, S11, S13, S24) investigate different types of model

uncertainty. This indicates that, although many researchers are focusing on models at runtime to tackle the

uncertainty issue, dealing with this particular type of uncertainty (i.e., model uncertainty) is not completely

postponed to runtime. In other words, researchers strive to use the available knowledge at design time and

probably anticipate system behavior in the future in order to be able to start dealing with model uncertainty

as soon as possible (i.e., design time). Although our results cannot prove the efficiency of this way of

combining both design and runtime solutions in dealing with model uncertainty, it confirms its popularity.

Uncertainty is often explored at scenario level regardless of emerging time. Our results show that most

of the current studies (i.e., 17 papers) deal with uncertainty at scenario level (see Table 16) at runtime.

Researchers frequently try to understand the current state, foresee future behavior of the system, and

demonstrate system state during and after application of uncertainty remedy only through scenarios.

Surprisingly, approaches expanding through both design time and runtime phases also lack statistical

methods. This means that despite the availability of knowledge at runtime, most of these approaches do not

consider using statistical methods to reassess their assumptions regarding systems’ runtime state in face of

uncertainty. Most of the current approaches simply study uncertainty at scenario level (i.e., showcase the

behavior of system in the future) through examples, and do not provide rigorous techniques (e.g.,

probabilistic methods) to support these scenarios. It may be interesting for researchers to further explore

incorporating runtime information into statistical methods to mathematically strengthen their anticipations

of system behavior.

Table 16 - Emerging time versus level of uncertainty.

Level Scenario Statistical Both

Emerging Time

Runtime 17 papers 4 papers 11 papers

Both 9 papers 3 papers 1 paper

Design time 2 papers None None

Uncertainty starting to get acknowledged in both design and runtime. Our results indicate that over a

decade ago, researchers were focused on solving uncertainty related issues mainly at runtime. This means

that both identification of uncertainty and tackling the uncertainty were postponed to the runtime phase.

However, around the year 2009 (see Figure 4) researchers started to acknowledge the uncertainty in design

time as well. In order to deal with uncertainty in a more structured manner, we propose that researchers

investigate whether certain sources of uncertainty can be handled specifically in design or runtime.

Figure 4 - Number of papers acknowledging uncertainty in design time per year.

Current approaches mainly focus on tackling uncertainty due to variability through approaches in

both design and runtime. Variability may emerge in systems requirements, execution environment, or may

1

3 3

1

5

2

0

1

2

3

4

5

6

2009 2010 2011 2012 2013 2014

N
u

m
b

e
r

o
f

p
ap

e
rs

Publication years

be a result of dynamicity of self-systems solutions space. Our results indicate that the main focus of current

research is on the variability issues rather than problems originating from lack of knowledge in self-

adaptive systems (see Table 8, and Table 10). Therefore, more investigation is required to distinguish the

differences in characteristics of variability in different circumstances, and possibly propose tailored

solutions capable of dealing better with uncertainty due to variability.

Most commonly addressed source of uncertainty is dynamicity of environment. Not surprisingly,

changes in the environment are considered as the main reason behind uncertainty in self-adaptive systems

(see Table 11). This is because at the design time, engineers can not anticipate the potential changes in the

environment in the future as it is out of their control, and most of the decision making process should be

postponed to runtime when more information is available.

Future goal changes is the second most important uncertainty source. From the selected primary

studies, we can see that researchers consider changes of system goals as one of the main sources of

uncertainty in self-adaptive systems. However, studies rarely explore details of these changes and how

changes in one or two goals affects other goals of the system (i.e., requirements trade-offs) explicitly.

Therefore, the first step toward handling the requirements trade-offs may be the thorough monitoring of the

requirements; this means that adequate data on how the systems’ requirements, intentionally or

unintentionally, are affected by the adaptation actions (or human’s intervene) should constantly be

collected, and then the data should properly be analyzed in order to make the best decision and fulfill the

requirements at a desired level.

4.3. Limitations of the review and threats to validity

In this section we discuss the limitations and risks that may have potentially affected the validity of the

systematic literature review and represent solutions we used to mitigate these threads.

4.3.1. Bias

The pilot search indicates that, it is not always easy to extract relevant information from the primary studies.

Therefore, there may be some bias and inaccuracy in the extracted data and creation of the classification

framework. This is especially prominent for establishing the sources of uncertainty classification due to

existing overlap of certain sources definitions. To mitigate this, we included a list of examples from the

literature to clarify the sources and help the reader to better comprehend them. Moreover, we had

discussions among researchers and asked experts to judge the accuracy of data when the researchers could

not reach a consensus on certain extracted data occasionally.

4.3.2. Domain of Study

One of the main risks of performing a systematic literature review in the domain of self-adaptive systems is

lack of a common terminology. This problem emanates from the fact that research in this field is to a large

extend still in an exploratory phase. The lack of consensus on the key terms in the field implies that in the

searching phase, we may not cover all the relevant studies on architecture-based self-adaptation (Danny

Weyns & Ahmad, 2013). To mitigate the risk, we used a generic search string containing all the mostly

used terms, and we avoided a much narrowed search string to prevent missing papers in the automatic

search. In addition, we established “quasi-gold” standard to investigate the trustworthiness of the created

search string. Furthermore, we also had a look at the references of the selected primary studies to figure out

if we have missed any well-known paper due to the fact that they are out of the search scope. If applicable

(i.e., if they match the search scope), we included them in our final set of selected primary studies.

5. Conclusion and future work

We conducted a systematic literature review to survey the current state of research regarding uncertainty in

architecture-based self-adaptive systems with multiple quality requirements. Our results present a

classification framework for concept of uncertainty and its different types and categories, and sources of

uncertainty in this domain. Furthermore, we investigate the usefulness of the proposed classification

framework by analyzing the selected primary studies, and mapping them to the framework. Our work may

be interesting for researchers in field of self-adaptive systems as it offers an overview of the existing

research and open areas for future work.

Analysis of the selected primary studies suggests that although researchers consider changes of system

goals as one of the main sources of uncertainty in architecture-based self-adaptive systems with multiple

quality requirements, studies rarely explore details of these changes explicitly and often overlook how

changes in one or two of the goals may affect other goals of the system (i.e., requirements trade-offs).

Our results also indicate that uncertainty in architecture-based self-adaptive systems with multiple quality

requirements is often explored at scenario level regardless of emerging time of the uncertainty. This means

that despite the availability of sufficient knowledge at runtime, most existing approaches do not consider

using statistical methods to reassess their assumptions regarding systems’ runtime state in face of

uncertainty, or incorporate runtime information into statistical methods to mathematically strengthen their

anticipations of system behavior in the future. This implies that statistical methods can further be used to

more efficiently handle quality requirements and their trade-offs in architecture-based self-adaptive systems

tackling uncertainty.

For our future work we plan to particularly focus on uncertainty and its potential influences on quality

attributes. To be more specific, we plan to identify types of requirements for which uncertainty in

architecture-based self-adaptive systems is more relevant, and investigate the relationship between

uncertainty and quality requirements tradeoffs.

Another direction for future work is to focus on proposing methods that are designed to handle a specific

class of uncertainty (i.e., uncertainty originating from certain sources) and its sources rather than covering a

variety of classes and their sources to a limited degree. Different sources of uncertainty assigned to one

class are more likely to overlap, and therefore, focusing on a specific class of uncertainty may result in

proposing more structured and efficient methods dealing with multiple sources of uncertainty and their

potential interplay.

Appendix

Table 17 - Primary studies included in the review.

Study # Title Authors Year Venues

1 Architecture-driven self-adaptation and self-

management in robotics systems

Edwards G Garcia J Tajalli H Popescu

D Medvidovic N Sukhatme G Petrus B

2009 ICSE

2 Self-adaptation for everyday systems Svein Hallsteinsen, Erlend Stav, and

Jacqueline Floch

2004 SIGSOFT

3 Adapt Cases: Extending Use Cases for

Adaptive Systems

Luckey M Nagel B Gerth C Engels G 2011 SEAMS

4 A Case Study in Software Adaptation Valetto G Kaiser G 2002 WOSS

5 Diagnosing architectural run-time failures Casanova P Garlan D Schmerl B Abreu

R

2013 SEAMS

6 Adaptation and Abstract Runtime Models Thomas Vogel and Holger Giese 2010 SEAMS

7 Dealing with Non-Functional Requirements

for Adaptive Systems via Dynamic Software

Product-Lines

Ghezzi C Sharifloo A 2013 LNCS

8 A Case Study in Goal-Driven Architectural

Adaptation

Heaven W Sykes D Magee J Kramer J 2009 LNCS

9 Designing Search Based Adaptive Systems: A

Quantitative Approach

Zoghi P Shtern M Litoiu M 2014 SEAMS

10 Rainbow: architecture-based self-adaptation

with reusable infrastructure

David Garlan, Shang-Wen Cheng, An-

Cheng Huang, Bradley Schmerl, and

Peter Steenkiste

2004 JC

11 Models at Runtime to Support the Iterative

and Continuous Design of Autonomic

Reasoners

Chauvel, Franck

Ferry, Nicolas

Morin, Brice

2013 JC

12 Context-aware Reconfiguration of Autonomic

Managers in Real-time Control Applications

Anthony R Pelc M Byrski W 2010 ICAC

13 Taming uncertainty in self-adaptive software Naeem Esfahani, Ehsan Kouroshfar,

and Sam Malek

2011 SIGSOFT

14 Architecture-Based Run-Time Fault Diagnosis Casanova P Schmerl B Garlan D Abreu

R

2011 LNCS

15 Requirements and architectural approaches to

adaptive software systems: a comparative

study

Angelopoulos, Konstantinos

Souza, Vítor E. Silva

Pimentel, João

2013 SEAMS

16 An architecture for coordinating multiple self-

management systems

Garlan D Schmerl B Steenkiste P 2004 WICSA

17 Robust, Secure, Self-Adaptive and Resilient

Messaging Middleware for Business Critical

Systems

Habtamu Abie, Reijo M. Savola, and

Ilesh Dattani

2009 CW

18 A development framework and methodology

for self-adapting applications in ubiquitous

computing environments

S. Hallsteinsena, , , K. Geihsb, , N.

Paspallisc, , F. Eliassend, , G. Horna, J.

Lorenzoe, , A. Mamellif, , G.A.

Papadopoulosc,

2012 JSS

19 Architecting Self-Aware Software Systems Faniyi F Lewis P Bahsoon R Yao X 2014 WICSA

20 High-quality specification of self-adaptive

software systems

Luckey M Engels G 2013 SEAMS

21 Implementing Adaptive Performance

Management in Server Applications

Liu Y Gorton 2007 SEAMS

22 A Framework for Distributed Management of

Dynamic Self-adaptation in Heterogeneous

Environments

Zouari M Segarra M André F 2010 ICCIT

23 A language for feedback loops in self-adaptive

systems: Executable runtime megamodels

Vogel T Giese H 2012 SEAMS

24 Learning revised models for planning in

adaptive systems

Sykes D Corapi D Magee J Kramer J

Russo A Inoue K

2013 ICSE

25 gocc : A Configuration Compiler for Self- Nakagawa H 2011 SEAMS

adaptive Systems Using Goal-oriented

Requirements Description

26 A Learning-based Approach for Engineering

Feature-oriented Self-adaptive Software

Systems

Elkhodary A 2010 SIGSOFT

27 Towards Run-time Adaptation of Test Cases

for Self-adaptive Systems in the Face of

Uncertainty

Fredericks E DeVries B Cheng B 2014 SEAMS

28 Model-based Adaptation for Self-Healing

Systems

Garlan D Schmerl B 2002 WOSS

29 Improving context-awareness in self-

adaptation using the DYNAMICO reference

model

Tamura G Villegas N Müller H Duchien

L Seinturier L

2013 SEAMS

30 FUSION: a framework for engineering self-

tuning self-adaptive software systems

Elkhodary A Esfahani N Malek S 2010 SIGSOFT

31 DYNAMICO: A Reference Model for

Governing Control Objectives and Context

Relevance in Self-Adaptive Software Systems

Villegas N Tamura G Müller H Duchien

L Casallas R

2013 LNCS

32 On decentralized self-adaptation: Lessons

from the trenches and challenges for the future

Weyns D Malek S Andersson J 2010 ICSE

33 Improving Architecture-Based Self-

Adaptation through Resource Prediction

Cheng S Poladian V Garlan D Schmerl

B

2009 LNCS

34 Evolving an adaptive industrial software

system to use architecture-based self-

adaptation

Camara J Correia P de Lemos R Garlan

D Gomes P Schmerl B Ventura R

Cámara J

2013 SEAMS

35 Towards Practical Runtime Verification and

Validation of Self-Adaptive Software Systems

Tamura G Villegas N Müller H Sousa J

Becker B Karsai G Mankovskii S Pezzè

M Schäfer W Tahvildari L Wong K

2013 LNCS

36 Model-Driven Engineering of Self-Adaptive

Software with EUREMA

Vogel T Giese H 2014 TAAS

37 Achieving dynamic adaptation via

management and interpretation of runtime

models

Amoui M Derakhshanmanesh M Ebert J

Tahvildari L

2012 JSS

38 Towards Self-adaptation for Dependable

Service-Oriented Systems

Valeria Cardellini, Emiliano

Casalicchio, Vincenzo Grassi,

Francesco Lo Presti, Raffaela Mirandola

2009 LNCS

39 Architecture-based self-adaptation in the

presence of multiple objectives

Cheng S Garlan D Schmerl B 2006 SEAMS

40 QUAASY: QUality Assurance of Adaptive

SYstems

Luckey M Gerth C Soltenborn C Engels

G

2011 ICAC

41 Using CVL to Support Self-Adaptation of

Fault-Tolerant Service Compositions

Nascimento A Rubira C Castor F 2013 SASO

42 Online Model-based Adaptation for

Optimizing Performance and Dependability

Joshi K Hiltunen M Schlichting R

Sanders W Agbaria A

2004 SIGSOFT

43 On the relationships between QoS and

software adaptability at the architectural level

Perez-Palacin D Mirandola R

Merseguer J

2014 JSS

44 Quality attribute tradeoff through adaptive

architectures at runtime

Yang J Huang G Zhu W Cui X Mei H 2009 JSS

45 Towards Automated Deployment of

Distributed Adaptation Systems

Zouari M Rodriguez I 2013 LNCS

46 A Self-optimizing Run-Time Architecture for

Configurable Dependability of Services

Tichy, Matthias

Giese, Holger

2004 LNCS

47 Model-Driven Assessment of QoS-Aware

Self-Adaptation

Grassi V Mirandola R Randazzo E 2009 LNCS

48 Evaluation of resilience in self-adaptive

systems using probabilistic model-checking

Camara J De Lemos R 2012 SEAMS

49 Managing non-functional uncertainty via

model-driven adaptivity

Ghezzi C Pinto L Spoletini P

Tamburrelli G

2013 ICSE

50 Coupling software architecture and human

architecture for collaboration-aware system

adaptation

Dorn C Taylor R 2013 ICSE

51 Qos-driven runtime adaptation of service

oriented architectures

Valeria Cardellini, Emiliano

Casalicchio, Vincenzo Grassi,

Francesco Lo Presti, and Raffaela

Mirandola

2009 SIGSOFT

Table 18 - List of manually searched venues to create the "quasi-gold" standard.

Venues

International Conference on Software Engineering

Software Engineering for Adaptive and Self-Managing Systems

Transactions on Autonomous and Adaptive Systems

Table 19 - List of automatically searched venues and books.

Conference proceedings International Conference on Software Engineering (ICSE)

and Symposiums IEEE Conference on Computer and Information Technology (IEEECIT)

 IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO)

 European Conference on Software Architecture (ECSA)

 International Conference on Autonomic Computing (ICAC)

 International Conference on Software Maintenance (CSM)

 International Conference on Adaptive and Self-adaptive Systems and Applications

(ADAPTIVE)

 Working IEEE/IFIP Conference on Software Architecture (WICSA)

 International Conference of Automated Software Engineering (ASE)

 International Symposium on Architecting Critical Systems (ISARCS)

 International Symposium on Software Testing and Analysis (ISSTA)

 International Symposium on Foundations of Software Engineering (FSE)

 International Symposium on Software Engineering for Adaptive & Self-Managing Systems

(SEAMS)

Workshops Workshop on Self-Healing Systems (WOSS)

 Workshop on Architecting Dependable Systems (WADS)

 Workshop on Design and Evolution of Autonomic Application Software (DEAS)

 Models at runtime (MRT)

Journals/Transactions ACM Transactions on Autonomous and Adaptive Systems (TAAS)

 IEEE Transactions on Computers (TC)

 Journal of Systems and Software (JSS)

 Transactions on Software Engineering and Methodology (TOSEM)

 Transactions on Software Engineering (TSE)

 Information & Software Technology (INFSOF)

 Software and Systems Modeling (SoSyM)

Book chapters/Lecture

notes/Special issues

Software Engineering for Self-Adaptive Systems (SefSAS)

Software Engineering for Self-Adaptive Systems II (SefSAS)

 ACM Special Interest Group on Software Engineering (SIGSOFT)

 Assurance for Self-Adaptive Systems (ASAS)

References

Ali, M. S., Ali Babar, M., Chen, L., & Stol, K.-J. (2010). A systematic review of comparative evidence of aspect-oriented

programming. Information and Software Technology, 52(9), 871–887. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0950584910000819

Calinescu, R., Member, S., Grunske, L., Kwiatkowska, M., Mirandola, R., & Tamburrelli, G. (2011). Dynamic QoS Management

and Optimization in Service-Based Systems, 37(3), 387–409.

Casanova, P., Garlan, D., Schmerl, B., & Abreu, R. (2013). Diagnosing architectural run-time failures, 103–112. Retrieved from
http://dl.acm.org/citation.cfm?id=2487336.2487354

Chauvel, F., Ferry, N., & Morin, B. (2013). Models@Runtime to Support the Iterative and Continuous Design of Autonomic

Reasoners. In N. Bencomo, R. B. France, S. Götz, & B. Rumpe (Eds.), (Vol. 1079, pp. 26–38). CEUR-WS.org. Retrieved
from http://ceur-ws.org/Vol-1079/mrt13_submission_20.pdf

Cheng, S.-W., Garlan, D., & Schmerl, B. (2006). Architecture-based Self-adaptation in the Presence of Multiple Objectives. In

Proceedings of the 2006 International Workshop on Self-adaptation and Self-managing Systems (pp. 2–8). ACM.

doi:10.1145/1137677.1137679

Cheung, L., Golubchik, L., Medvidovic, N., & Sukhatme, G. (n.d.). Identifying and Addressing Uncertainty in Architecture-Level
Software Reliability Modeling, (MC).

Computing, A., Paper, W., & Edition, T. (2005). An architectural blueprint for autonomic computing ., (June).

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. Information and
Software Technology, 50(9-10), 833–859. doi:10.1016/j.infsof.2008.01.006

Edwards, G., Garcia, J., Tajalli, H., Popescu, D., Medvidovic, N., Sukhatme, G., & Petrus, B. (2009). Architecture-driven self-

adaptation and self-management in robotics systems. Software Engineering for Adaptive and Self-Managing Systems, 2009.
SEAMS ’09. ICSE Workshop on. doi:10.1109/SEAMS.2009.5069083

Esfahani, N., Kouroshfar, E., & Malek, S. (2011). Taming Uncertainty in Self-adaptive Software. In Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (pp. 234–244). ACM.

doi:10.1145/2025113.2025147

Esfahani, N., & Malek, S. (2013). Uncertainty in Self-Adaptive Software Systems. In R. de Lemos, H. Giese, H. A. Müller, & M.

Shaw (Eds.), Software Engineering for Self-Adaptive Systems II (pp. 214–238). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9

Garlan, D, Schmerl, B., & Steenkiste, P. (2004). Rainbow: architecture-based self-adaptation with reusable infrastructure. In

International Conference on Autonomic Computing, 2004. Proceedings. (pp. 276–277). IEEE.
doi:10.1109/ICAC.2004.1301377

Garlan, David. (2010). Software engineering in an uncertain world. Proceedings of the FSE/SDP workshop on Future of software

engineering research - FoSER ’10, 125. doi:10.1145/1882362.1882389

Ghezzi, C, Pinto, L. S., Spoletini, P., & Tamburrelli, G. (2013). Managing non-functional uncertainty via model-driven adaptivity.

Software Engineering (ICSE), 2013 35th International Conference on. doi:10.1109/ICSE.2013.6606549

Ghezzi, Carlo, & Sharifloo, A. M. (2013). Dealing with Non-Functional Requirements for Adaptive Systems via Dynamic

Software Product-Lines. In R. de Lemos, H. Giese, H. A. Müller, & M. Shaw (Eds.), Software Engineering for Self-

Adaptive Systems II (pp. 191–213). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8

Hallsteinsen, S., Stav, E., & Floch, J. (2004). Self-adaptation for Everyday Systems. In Proceedings of the 1st ACM SIGSOFT
Workshop on Self-managed Systems (pp. 69–74). ACM. doi:10.1145/1075405.1075419

Jeffrey, O., & David, M. (2003). The Vision of, (January), 41–50.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Retrieved
from http://www.citeulike.org/group/14013/article/7874938

Lemos, R. de, Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., … Wuttke, J. (2013). Software Engineering for Self-

Adaptive Systems: A Second Research Roadmap. In R. de Lemos, H. Giese, H. A. Müller, & M. Shaw (Eds.), Software

Engineering for Self-Adaptive Systems II (pp. 1–32). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1

Oreizy, P., Medvidovic, N., & Taylor, R. N. (1998). Architecture-based runtime software evolution. Proceedings of the 20th

International Conference on Software Engineering, 1998, 177–186. doi:10.1109/ICSE.1998.671114

Perez-palacin, D., Milano, P., & Elettronica, D. (2014a). Uncertainties in the Modeling of Self-adaptive Systems : a Taxonomy
and an Example of Availability Evaluation, 3–14.

Perez-palacin, D., Milano, P., & Elettronica, D. (2014b). Uncertainties in the Modeling of Self-adaptive Systems : a Taxonomy
and an Example of Availability Evaluation, 3–14.

Ramirez, A. J., Jensen, A. C., & Cheng, B. H. C. (2012). A taxonomy of uncertainty for dynamically adaptive systems. Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on.
doi:10.1109/SEAMS.2012.6224396

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. a. (2007). Uncertainty in the environmental modelling

process – A framework and guidance. Environmental Modelling & Software, 22(11), 1543–1556.
doi:10.1016/j.envsoft.2007.02.004

Rotmans, J., Sluijs, J. P. V. A. N. D. E. R., Asselt, M. B. A. V. A. N., Janssen, P., & Krauss, M. P. K. V. O. N. (2003). A
Conceptual Basis for Uncertainty Management, 4(1), 5–17.

Tamura, G., Villegas, N. M., Muller, H. A., Duchien, L., & Seinturier, L. (2013). Improving context-awareness in self-adaptation

using the DYNAMICO reference model. Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2013
ICSE Workshop on. doi:10.1109/SEAMS.2013.6595502

Villegas, N. M., Tamura, G., Müller, H. A., Duchien, L., & Casallas, R. (2013). DYNAMICO: A Reference Model for Governing

Control Objectives and Context Relevance in Self-Adaptive Software Systems. In R. de Lemos, H. Giese, H. A. Müller, &

M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II (pp. 265–293). Springer Berlin Heidelberg. Retrieved
from http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11

Vogel, T., & Giese, H. (2010a). Adaptation and abstract runtime models. In Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems - SEAMS ’10 (pp. 39–48). New York, New York, USA: ACM Press.
doi:10.1145/1808984.1808989

Vogel, T., & Giese, H. (2010b). Adaptation and Abstract Runtime Models. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (pp. 39–48). ACM. doi:10.1145/1808984.1808989

Walsh, W. E., Tesauro, G., Kephart, J. O., & Das, R. (2004). Utility functions in autonomic systems. In International Conference

on Autonomic Computing, 2004. Proceedings. (pp. 70–77). IEEE. doi:10.1109/ICAC.2004.1301349

Weyns, D, Malek, S., & Andersson, J. (2010). On decentralized self-adaptation: Lessons from the trenches and challenges for the

future. In Proceedings - International Conference on Software Engineering (pp. 84–93). Dept. of Computer Science,

Katholieke Universiteit Leuven, Belgium. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-

77954577834&partnerID=40&md5=1f389e0a603761b96aa46db6bf06e287

Weyns, Danny, & Ahmad, T. (2013). Claims and evidence for architecture-based self-adaptation: a systematic literature review.
Software Architecture. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22

Weyns, Danny, Malek, S., & Andersson, J. (2012). FORMS: Unifying Reference Model for Formal Specification of Distributed
Self-adaptive Systems. ACM Trans. Auton. Adapt. Syst., 7(1), 8:1–8:61. doi:10.1145/2168260.2168268

Zhang, H., & Ali Babar, M. (2010). On searching relevant studies in software engineering. British Informatics Society Ltd.
Retrieved from http://ulir.ul.ie/handle/10344/730

Zoghi, P., Shtern, M., & Litoiu, M. (2014). Designing Search Based Adaptive Systems: A Quantitative Approach. In Proceedings

of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (pp. 7–16). ACM.

doi:10.1145/2593929.2593935

