
Tele Assistance: A Self-Adaptive Service-Based
System Examplar
Danny Weyns⇤ and Radu Calinescu†

⇤Department of Computer Science at Linnaeus University, Växjö Campus, Sweden
Email: Danny.Weyns@lnu.se

†Department of Computer Science at the University of York, UK
Email: Radu.Calinescu@york.ac.uk

Abstract—Research on adaptive and self-managing systems is
hindered by a lack of prototypical applications that researchers
could use to evaluate and compare new methods, techniques
and tools. To address this limitation, we introduce a reference
implementation of a Tele Assistance System (TAS) for research on
self-adaptation in the domain of service-based systems. Our TAS
exemplar of service-based systems comes with pre-defined sce-
narios for comparing the effectiveness of different self-adaptation
solutions. Other researchers can easily exploit the underlying
service platform, reusable components and development method
we devised for TAS to speed up the engineering of additional
research exemplars for service-based systems.

I. INTRODUCTION

Despite significant research over the past decade, the rig-
orous engineering of adaptive and self-managing systems
remains a formidable challenge [7]. In similar circumstances
affecting another area of software engineering, Feather et

al. [9] proposed the use of requirements and specification
exemplars to drive and communicate research advances, es-
tablish research agendas, and compare and contrast alternative
approaches. Likewise, the research community suggested the
use of exemplar systems as stepping stones to develop the
necessary benchmarks, methods, techniques and tools for the
engineering of self-adaptive software systems [5], [7]. How-
ever, only a few such exemplars have been proposed so far,
with varying degrees of success. The most successful of these
is the Znn.com news site exemplar, a web-based client-server
system proposed by Carnegie Mellon researchers [6] and used,
for instance, in [1], [12]. Another noteworthy example is the
automated traffic routing problem proposed in [15], which
focuses on decentralised adaption and its related challenges
(e.g., scalability, robustness, and balancing the precision and
performance of monitoring). However, so far, this exemplar
has not been used actively.

Our paper contributes to this effort by proposing an exem-
plar for research on self-adaptation in the area of service-based
systems (SBSs). SBSs are widely used in e-commerce, online
banking, e-health and many other applications. In these sys-
tems, services offered by third-party providers are dynamically
composed into workflows to deliver complex functionality.
Most importantly for our purpose, SBSs increasingly rely on
self-adaptation to cope with the uncertainties associated with
third-party services, as the loose coupling of services makes
online reconfiguration feasible.

We present a reference implementation of a Tele Assistance
System (TAS) and a set of predefined scenarios for comparing
self-adaptation solutions. TAS was originally introduced in
[2], and has the advantage that it has already been used in
the evaluation of several self-adaptation solutions [3], [4], [8],
[10], albeit based on ad-hoc implementations, scenarios and
evaluation metrics that make the comparison of these solutions
and its use to evaluate other solutions very difficult. To address
these limitations, we implemented TAS using our new Re-
search Service Platform (ReSeP1), and we propose predefined
concrete scenarios for its immediate use in the evaluation
of self-adaptation solutions. In addition, other researchers
can take advantage of ReSeP and its reusable components
to speed up the engineering of new service-based system
exemplars. We envisage that these contributions will help
promote collaborative research and advance the engineering
of adaptive and self-managing systems.

The paper is structured as follows. In Section II, we present
the TAS exemplar and provide scenarios for comparing self-
adaptation solutions. Section III explains the develop method
we used for implementing the TAS with ReSeP. In Section IV,
we illustrate how we used the TAS exemplar to compare two
adaptation approaches for one of the scenarios. Finally, we
summarise our conclusions in Section V.

II. SBS EXEMPLAR AND ADAPTATION SCENARIOS

Our service-based system exemplar is a Tele Assistance
System (TAS) that provides health support to chronic condition
sufferers within the comfort of their homes. TAS uses a
combination of sensors embedded in a wearable device and
remote services from healthcare, pharmacy and emergency
service providers. As shown in Fig. 1, the TAS workflow
takes periodical measurements of the vital parameters of a
patient and employs a third-party medical service for their
analysis. The analysis result may trigger the invocation of a
pharmacy service to deliver new medication to the patient or
to change his/her dose of medication, or the invocation of an
alarm service leading, e.g., to an ambulance being dispatched
to the patient. The same alarm service can be invoked directly
by the patient, by using a panic button on the wearable device.

1Pronounce re-ce-pe like in ‘recipe’.



TABLE I
GENERIC ADAPTATION SCENARIOS FOR SERVICE-BASED SYSTEMS

Scenario Type of uncertainty [13] Type of adaptation [2]–[4], [8], [10] Type of requirements

S1 Unpredictable environment: service failure Switch to equivalent service; Simultaneous invoca-
tion of several services for idempotent operation

QoS: Reliability, cost

S2 Unpredictable environment: variation of ser-
vice response time

Switch to equivalent service; Simultaneous invoca-
tion of several services for idempotent operation

QoS: Performance, cost

S3 Incomplete information: new service Use new service QoS: Reliability, performance, cost
S4 Changing requirements: new goal Change workflow architecture; Select new service Functional: new operation
S5 Inadequate design: wrong operation sequence Change workflow architecture Functional: operation sequence compliance

:Tele
Assistance
Service

:Drug
Service

:Medical
Analysis
Service

:Alarm
Service

pick=pickTask()

sendAlarm()

sendAlarm()

alt

opt
[analysisResult!=patientOK]

[analysisResult==sendAlarm]

alt
[pick==vitalParamsMsg]

loop

[pick==buttonMsg]

data=getVitalParams()

analysisResult=analyzeData(data)

changeDrug(patientId)

changeDose(patientId)

[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

Fig. 1. TAS workflow

To enable the consistent use of TAS and future SBS
exemplars for the evaluation, comparison and advance of
self-adaptation solutions, we devised the generic adaptation
scenarios from Table I. These scenarios are organised by type
of uncertainty that makes self-adaptation necessary (cf. the tax-
onomy of uncertainty in [13]), type of adaptation required (cf.
the SBS adaptations from, e.g., [2]–[4], [8], [10]), and type(s)
of requirements that these adaptations aim to meet. Within
these scenarios, we propose the evaluation and comparison of
different self-adaptation solutions based on quality attributes
and metrics described in [14] and summarised in Table II.

III. TAS IMPLEMENTATION WITH RESEP
A. The ReSeP Platform

Fig. 2 shows the main ReSeP components that reify the
principles of Service-Oriented Architecture (SOA). We dis-
tinguish between atomic services, which offer functionality
without depending on other services, and composite services,
which represent compositions of atomic and other composite
services. Service composition is specified by means of a
workflow that is executed by a workflow engine. An example
of a workflow specified with ReSeP’s simple but expressive
workflow specification language is available in Appendix A.

TABLE II
QUALITY ATTRIBUTES AND METRICS FOR THE EVALUATION AND

COMPARISON OF SBS SELF-ADAPTATION SOLUTIONS

Quality Metrics
attribute

Reliability Number of failed service invocations
Number of specific operation sequence failures
Mean time to recovery

Performance Number of specific operation sequences exceeding al-
lowed execution time

Cost Cumulative service invocation cost over given time period

Functionality Number of faulty process executions

For each available service, a service description stored in
a service registry specifies its operations, unique address (i.e.,
endpoint) and custom properties such as cost and promised
quality-of-service (QoS) attributes. A composite service can
look up atomic services in the registry and maintains a local
cache of available services. Service clients that invoke a com-
posite service can provide a specification of the quality of ser-
vice they require. The workflow uses this specification to select
relevant services from the cache. E.g., a “high reliability” QoS
requirement may lead to the selection of services with minimal
(advertised) failure rate, and a “low cost” QoS requirement to
the selection of minimal-cost services. Custom QoS require-
ments can be defined for new or combined quality attributes.

Fig. 2. ReSeP realisation of SOA principles



Fig. 3. Core experimentation features of ReSeP

The ReSeP components shown in Fig. 3 support the devel-
opment of SBS exemplars. First, QoS behaviour of a service
specified in service profile is “added” to the regular behaviour
of the service operations, before and/or after their invocation.
For example, a profile may specify the addition of a delay
to the execution of a service invocation to model periods
with different workloads. Second, ReSeP uses input profiles

to define sequences of application-specific service invocations
such as “perform 200 invocations with a 30% probability of

selecting one branch of the workflow, a 20% probability of se-

lecting another branch, etc.” Third, the platform offers probes

that monitor the SBS, e.g., the WorkflowProbe from Fig. 3
monitors the start and completion of workflow executions and
individual service invocations. Finally, ReSeP offers effectors

that enable runtime manipulation of SBS architecture and
parameters. An adaptation engine can use these probes and
effectors to track SBS behaviour and adapt a SBS dynamically.
ReSeP provides a set of pre-defined service and input profiles,
probes and effectors; this set can be extended as needed.

B. TAS Realization with ReSeP

1) TAS Services: The drug, medical analysis and alarm
services from Fig. 1 are realised as implementations of Atom-
icService, as illustrated by these AlarmService code snippets:
public class AlarmService extends AtomicService {

public AlarmService(String id,String endpoint) {
super(id, endpoint);

}
@ServiceOperation
public boolean triggerAlarm(int patientID) {...}

}
...
AlarmService a1 = new AlarmService("Alarm1","queue1");
ServiceDescription sd = a1.getServiceDescription();
sd.getOp("triggerAlarm").setOpCost(...);
a1.register();
a1.startService();

Instantiating a service requires an ID and an endpoint (i.e.,
the name of a message queue for communication) and the
configuration of its automatically created service description.

The service is then registered and started. The only composite
service from Fig. 1, TAS, is realised as shown below:
public class TAS extends CompositeService {
public TAS(String id,String endpoint,String file){

super(id, endpoint, file);
}
@ServiceOperation
public boolean callTAS(String QoS,

int patientID, int pick) { ... }
...

}
...
TAS as = new TAS("TASservice","tasq","TASworkflow");
as.addQoSRequirement("ReliabilityQoS",

new ReliabilityQoS());
as.addQoSRequirement("CostQoS", new CostQoS());
client.invokeCompositeService("callTAS",

"CostQoS",patientID,pick);

The service is invoked with a required QoS requirement
(from those pre-specified using its addQoSRequirement
method), the patient ID, and the action to be performed (e.g.,
pick==buttonMsg to send an alarm).

2) Profiles, Probes and Effectors: Service profiles imple-
mented as subclasses of ServiceProfile can override its
preInvokeOperation and postInvokeOperation
methods to emulate service failures, invocation delays, etc.
Service profile instances can then be associated with services,
e.g., the profile below introduces a 0.05 failure rate for the
AlarmService a1 defined earlier.
public class AlarmProfile extends ServiceProfile {
private float failureRate = 0;
public void setRate(float r) { failureRate = r; }
@override
public boolean preInvokeOperation() {

return rand.nextFloat() > failureRate;
}

}
...
AlarmProfile asp = new AlarmProfile();
asp.setRate(0.05);
a1.setServiceProfile(asp);

TAS provides a set of input profiles that specify and to
execute particular sequences of invocations of the TAS service,
each invocation being associated with predefined values for the
workflow variables (types of actions, QoS requirements).

The TAS exemplar uses ReSeP probes to monitor service
invocations and the cost of the invocations. TAS uses ReSeP
effectors to dynamically update the parameters and architec-
ture of its workflow. The code snippet below shows a workflow
effector that offers different actions to adapt the TAS workflow.
public class WorkflowEffector extends Effector {
...
public void removeFailedService

(ServiceDescription sd) {
workflow.markUnavailable(sd);

}
public void setPreferredService

(ServiceDescription sd) {
workflow.markAsPreferred(sd);

}
public void changeQoSRequirement(QoSRequirement r){

workflow.setQoSRequirement(r);
}

}



IV. EXPERIMENTATION WITH TAS

Setting up a TAS experiment to evaluate and compare self-
adaptation solutions is a six-step process, which we illustrate
below with a concrete case study.
Step 1: Scenario and requirement selection—This step
involves selecting one of the scenarios from Table I (e.g.,
‘S1: service failure’), and concrete requirements such as:
R1. The percentage of TAS service invocations that fail to

complete successfully is less than 1%

R2. The percentage of alarm invocations that do not complete

successfully is less than 0.8%

R3. Subject to R1 and R2 being satisfied, the cumulative cost
of service invocations should be minimised.

Step 2: Service profile specification—A set of concrete
services is assembled so that each TAS operation is supported
by at least one service, and a service profile is specified for
each service. Table III shows an example of a service set, with
service profiles comprising a failure rate component like in the
AlarmProfile from Section III-B2 and a cost component.
Step 3: Input profile definition—In this step, we de-
fine XML-encoded input profiles for the evaluation of self-
adaptation solutions. For example, the input profile below
specifies 500 invocation of the TAS service using the CostQoS
requirement from Section III-B1. Of these invocations, 75%
randomly chosen invocations will “pick” the medical analysis
service and 25% the alarm service. All these parameters can
be dynamically changed during the experiment.
<inputProfile>

<maxSteps>500</maxSteps>
<qosRequirement>CostQoS</qosRequirement>
<variables>

<variable>
<name>pick</name>
<values>

<data>1</data> <ratio>0.75</ratio>
<data>2</data> <ratio>0.25</ratio>

</values>
</variable>
...

</inputProfile>

Step 4: Evaluation metric definition—In this step, we define
concrete metrics and add support for result visualisation. For
our case study, we used the following evaluation metrics:
M1. The percentage of alarm failures

M2. The percentage of failures of the assistance service

M3. The cumulative service invocation cost

TABLE III
CONCRETE SERVICES WITH SERVICE PROFILES FOR TAS

Service Name Failure Rate Cost
Alarm Service 1 0.11 4.0
Alarm Service 2 0.04 12.0
Alarm Service 3 0.18 2.0
Medical Analysis Service 1 0.12 4.0
Medical Analysis Service 2 0.07 14.0
Medical Analysis Service 2 0.18 2.0
Drug Service 1 0.01 5.0

TABLE IV
SUMMARY RESULTS OF THE CASE STUDY

Adaptation Rates TAS Rates Alarm Cost
Strategy Failures Failures (# Invocations)
No Adaptation 0.18 0.22 8.12K (1561)
Retry 0.005 0.01 9.95K (1981)
Select Reliable 0.0009 0.006 11.04K (1988)

TAS offers a graphical user interface with graphs and
overview tables. For the case study we used predefined ReSeP
graphs and tables, including a reliability graph that shows
successful and failed service invocations per run of the input
profile, and a cost graph of the cumulative cost for a run of
the input profile. The overview tables summarize the results.
Step 5: Instrumentation—In this step, we select probes and
effectors and connect the adaptation engine to be evaluated
with TAS. If desired, additional probes and effectors may be
implemented. For the case study, we tested two adaptation
solutions realised with ActivFORMS [11], an adaptation en-
gine that executes formally specified MAPE models. The two
solutions implemented the following simple strategies:
Retry: If a service fails, retry two times

Select Reliable: If a service fails, select the equivalent service

with the lowest failure rate (and lowest cost if a tie)

We used ReSeP probes and effectors including the
WorkflowProbe (to track failed service invocations) and
the WorkflowEffector (to adapt the workflow as needed).
Step 6: Execution—In the final step, we run the input profiles,
collect data, and analyse the results. Table IV summarises the
data collected for our case study using the earlier input profile,
and Appendix A shows a reliability graph for the case study.

Both strategies realise R1, but only Select Reliable realises
R2. Retry keeps the cost low but fails to satisfy the reliability
for the alarm. Select Reliable’s cost is 10% higher as Retry.

V. CONCLUSIONS

We presented TAS, a reference implementation of a service-
based system (SBS) exemplar, and generic SBS adaptation sce-
narios associated with different types of uncertainty. TAS aims
to serve the three key purposes of exemplars identified in [9].
First, it aims to promote research and understanding among
multiple researchers and research groups, through enabling the
comparison of different self-adaptation approaches, without
favouring any particular approach. Second, TAS aims to serve
the advance of single research efforts by reducing the time
required to evaluate self-adaptation solutions. Finally, it aims
to contribute to advancing the practice of engineering self-
adaptive systems, by being a realistic example of a widely used
type of software system. We therefore hope that the research
community will use the TAS exemplar – and the underlying
ReSeP service platform – to evaluate and compare research
advances in adaptive and self-managing systems, and drive
their further development.

The exemplar is available via the SEAMS exemplar website:
http://self-adaptive.org/exemplars/tas.



Fig. 4. Reliability graph for the case study; successful service invocations are represented by small vertical lines and failed invocations by larger lines.

ACKNOWLEDGMENT

The authors would like to thank M. Usman Iftikhar and
Yifan Ruan for the implementation of TAS with ReSeP.

REFERENCES

[1] K. Angelopoulos, V. Souza, and J. Pimentel. Requirements and archi-
tectural approaches to adaptive software systems: A comparative study.
In International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, SEAMS’13, 2013.
[2] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation

of web service compositions. Software, IET, 1(6):219–232, 2007.
[3] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-

adaptive software needs quantitative verification at runtime. Commun.

ACM, 55(9):69–77, September 2012.
[4] R. Calinescu, Lars Grunske, M. Kwiatkowska, R. Mirandola, and

G. Tamburrelli. Dynamic QoS management and optimization in service-
based systems. Software Engineering, IEEE Transactions on, 37(3):387–
409, May 2011.

[5] B. Cheng et al. Software engineering for self-adaptive systems: A
research road map. Lecture Notes in Computer Science vol. 5525.
Springer, 2009.

[6] S.-W. Cheng, D. Garlan, and B. Schmerl. Evaluating the effectiveness of
the rainbow self-adaptive system. In Software Engineering for Adaptive

and Self-Managing Systems, 2009.
[7] R. de Lemos et al. Software engineering for self-adaptive systems: A

second research roadmap. Lecture Notes in Computer Science vol. 7475.
Springer, 2013.

[8] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution
by run-time parameter adaptation. In International Conference on

Software Engineering, ICSE’09, 2009.
[9] M. Feather, S. Fickas, A. Finkelstein, and A. van Lamsweerde. Require-

ments and specification exemplars. Automated Software Engineering,
4(4):419–438, 1997.

[10] A. Filieri, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Conquering
complexity via seamless integration of design-time and run-time verifi-
cation. In Conquering Complexity. Springer, 2012.

[11] M. U. Iftikhar and D. Weyns. Activforms: Active formal models for
self-adaptation. In International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, SEAMS’14, 2014.
[12] M. Luckey, B. Nagel, C. Gerth, and G. Engels. Adapt cases: Extending

use cases for adaptive systems. In International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, 2011.

[13] A.J. Ramirez, A.C. Jensen, and B.H.C. Cheng. A taxonomy of
uncertainty for dynamically adaptive systems. In Software Engineering

for Adaptive and Self-Managing Systems, SEAMS’12, 2012.
[14] N. Villegas, H. Müller, G. Tamura, L. Duchien, and R. Casallas. A

framework for evaluating quality-driven self-adaptive software systems.
In Software Engineering for Adaptive and Self-Managing Systems, 2011.

[15] J. Wuttke, Y. Brun, A. Gorla, and J. Ramaswamy. Traffic routing for
evaluating self-adaptation. In International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, 2012.

APPENDIX A
Reliability Graph

Fig. 4 shows a reliability graph for a run with the CostQoS
input profile where ActivFORMS with the Reliable Selection
strategy is used for adaptation. Notice for instance the call of
the alarm at invocation number 153: the AlarmService2 deals
with a failure of AlarmService1 that itself was not able to
manage a failure of AlarmService3.

TAS Workflow

The code below shows the TAS workflow specified with the
ReSeP workflow specification language.
START [patientId,pick]

if (pick == vitalParamsMsg) {
data = this.getVitalParameters()
analysisResult =

MedicalAnalysisService.analyzeData(data)
if (analysisResult == changeDrug)

DrugService.changeDrug(patientId)
else if (analysisResult == changeDoses)

DrugService.changeDoses(patientId)
else if (analysisResult == sendAlarm)

AlarmService.triggerAlarm(patientId)
}
else if (pick == pButtonMsg) {

AlarmService.triggerAlarm(patientId)
}
RETURN


