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Designing software systems that have to deal with dynamic operating conditions, such as changing availabil-
ity of resources and faults that are difficult to predict, is complex. A promising approach to handle such dy-
namics is self-adaptation that can be realized by a MAPE-K feedback loop (Monitor-Analyze-Plan-Execute
plus Knowledge). To provide evidence that the system goals are satisfied, given the changing conditions,
the state of the art advocates the use of formal methods. However, little research has been done on consol-
idating design knowledge of self-adaptive systems. To support designers, this paper contributes with a set
of formally specified MAPE-K templates that encode design expertise for a family of self-adaptive systems.
The templates comprise: (1) behavior specification templates for modeling the different components of a
MAPE-K feedback loop (based on networks of timed automata), and (2) property specification templates
that support verification of the correctness of the adaptation behaviors (based on timed computation tree
logic). To demonstrate the reusability of the formal templates, we performed four case studies in which
final-year Masters students used the templates to design different self-adaptive systems.
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1. INTRODUCTION

Designing contemporary software intensive systems, such as mobile applications, multi-robot sys-
tems, and networked smart homes, and guaranteeing the system goals is complex due to the dy-
namic conditions in which these systems operate. Examples of dynamics are changing availability
of resources and faults that are difficult to predict. This situation has led to the development of
self-adaptive systems, i.e., systems that adapt to dynamics by reconfiguring their structure and mod-
ify their behavior at run-time with little or no human intervention [Cheng et al. 2009; de Lemos
et al. 2013; Dobson et al. 2006]. The underlying principle of self-adaptation is separation of con-
cerns [Weyns et al. 2013b]. A self-adaptive system typically consists of a managed system and
a feedback loop. The managed system deals with the domain concerns for the users, while the
feedback loop deals with adaptation concerns of the managed system (e.g., optimize the managed
system for different operating conditions, heal the managed system when a fault is detected, etc.).
In this research, we focus on architecture-based self-adaptation [Oreizy et al. 1998; Garlan et al.
2004; Kramer and Magee 2007; Weyns et al. 2012b]. In architecture-based self-adaptation, the sys-
tem reasons about a model of itself and its environment and adapts when needed according to some
adaptation goals. The feedback loop typically consists of Monitor, Analyze, Plan, and Execute com-
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ponents, complemented with runtime models (Knowledge) of the managed system, its environment
and adaptation goals. This structure is referred to as MAPE-K [Kephart and Chess 2003].

One important challenge in engineering self-adaptive systems is to provide evidence that the
system goals are satisfied [Cheng et al. 2009; de Lemos et al. 2013; de Lemos et al. 2014]. To that
end, the state of the art in architecture-based self-adaptation advocates the use of formal methods.
A recent systematic literature survey [Weyns et al. 2012a] identified a total of 75 papers that use
formal methods in self-adaptive systems. The study revealed that designers usually specify models
and required properties of the self-adaptive system for the problem at hand from scratch. There is
little systematic consolidation of the design knowledge for future use. [Filieri et al. 2012] points out
that such consolidation is an important research challenge for self-adaptive systems.

During the past years, we have been studying self-adaptation in a number of application domains,
with a particular focus on robustness and openness requirements. Some of the recent applications
we studied are an intelligent monitoring system to detect traffic jams [Iftikhar and Weyns 2012], a
mobile system to support outdoor learning activities [Gil de la Iglesia and Weyns 2013], a robotic
transportation system [Iftikhar and Weyns 2014a; 2014b] and a mobile digital storytelling applica-
tion [Weyns et al. 2014]. In the course of designing and building these self-adaptive applications,
we derived a set of MAPE-K Formal Templates for designing feedback loops of self-adaptive sys-
tems. These templates encode design expertise that can help designers with specifying models and
properties for new similar self-adaptive software systems. In this paper, we document these tem-
plates and evaluate their reusability. Concretely, the contribution of this paper is twofold. First, we
document a set of MAPE-K Formal templates that comprise: (1) behavior specification templates
for modeling the different components of a MAPE-K feedback loop and their interactions, and (2)
property specification templates for specifying required properties of the adaptation behaviors en-
abling formal verification of the behaviors. Second, we empirically evaluate the reusability of the
Formal Templates in four cases studies in which final-year Master students in Software Engineering
applied the templates to design different self-adaptive applications.

In this research, we use networks of timed automata (TA) as the formal language for the specifica-
tion of behavior specification templates, and timed computational tree logic (TCTL) for the property
specification templates. The survey [Weyns et al. 2012a] identified automata as one of the mostly
used languages in the field. TA are automata extended with clock variables that comprise behavior
states and transitions between states that represent actions. Clock variables are used to synchronize
behaviors, together with channels that enable communication between behaviors. A network of TA
allows specifying the behaviors of MAPE-K components that synchronize through clock variables
and interact via channels, which models the behavior of the feedback loop of a self-adaptive system.

TCTL is a formal language based on computational tree logic extended with clock variables that
allows the specification of properties. Expressions in TCTL describe state and path formulae en-
abling the verification of properties of interest, such as reachability (a system should/can/cannot
etc. reach a particular state or states), liveness (something eventually will hold), safety (given a par-
ticular condition in the system, all possible system executions should hold certain desired conditions
or avoid specific undesired conditions), etc. TA and TCTL can be combined to specify behaviors of
self-adaptive systems and to verify that the desired properties hold.

The remainder of the paper is structured as follows. In Section 2, we discuss related work. Sec-
tion 3 elaborates on the target domain that we focus on. This section describes two example self-
adaptive applications from which the MAPE-K Formal Templates were derived. Section 4 presents
the behavioral specification templates for modeling feedback loops of self-adaptive systems. In Sec-
tion 5, we present the property specification templates that support the verification of self-adaptation
behaviors. We illustrate the MAPE-K Formal Templates with excerpts of two self-adaptive appli-
cations introduced in Section 3 . In Section 6, we report the results of the four case studies that
demonstrate the reusability of the MAPE-K Formal Templates. Finally, we draw conclusions in
Section 7.
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2. RELATED WORK

We start the discussion of related work with a selection of representative approaches that use for-
mal approaches for the design of self-adaptive systems. Then we zoom in on studies that present
patterns for self-adaptive systems. We conclude with a selection of studies on property specification
templates presented in software engineering in general.

2.1. Formal Approaches to Self-Adaptation

Providing evidence that self-adaptation properties are satisfied is subject of active research [Magee
and Maibaum 2006; Vassev and Hinchey 2009; Tamura et al. 2012]. During the recent Dagstuhl
seminar Software Engineering for Self-Adaptive Systems: Assurances [de Lemos et al. 2014], sev-
eral approaches for assurances of self-adaptive systems were studied. Some approaches use formal
methods at design time (e.g., model checking), others at runtime or a combination of both. Our
research focusses on providing assurances for system requirements during system design.

The process presented in [Zhang and Cheng 2006] aims to create formal models for adaptive
systems, verify the models and automatically translate the models into executable programs. The
approach guarantees conformance between the models and programs using model-based testing.
In follow up work [Zhang et al. 2009], the authors model a dynamically adaptive program as a
collection of steady-state programs and a set of adaptations that realize transitions among steady
state programs in response to environmental changes. To handle state explosion, the authors propose
a modular model checking approach.

FOrmal Reference Model for Self-adaptation (FORMS), a comprehensive reference model for
self-adaptive systems [Weyns et al. 2012b], builds on established principles of self-adaptation, such
as architecture-based self-adaptation, computational reflection, and MAPE-K. The reference model
offers a vocabulary of a small number of primitives and a set of relationships among them that
delineates the rules of composition. The model is formally specified, which enables engineers to
precisely define the key characteristics of self-adaptive software systems, and reason about them.

POISED [Esfahani et al. 2011] is a quantitative approach that focusses on adaptation under un-
certainty. The approach builds on possibility theory (grounded in fuzzy mathematics) to assess both
the positive and negative consequences of uncertainty. In POISED, adaptation decisions are used to
reconfigure customizable software components to improve the system’s quality of service.

The MechatronicUML proposed in [Giese and Schifer 2013] aims to support model-driven devel-
opment and verification of safety guarantees of embedded real-time self-adaptive systems. Mecha-
tronic UML modeling is based on a rigorously specified subset of UML. This approach offers ver-
ification at design time to provide assurances regarding the system functional and non-functional
requirements, by describing the complete system behavior.

This sample of studies of the past decade underpin the relevance of rigorous modeling and veri-
fication in the design of self-adaptive systems. However, they also show that there is a lack of con-
solidating expertise in the design of self-adaptive systems’ behaviors, allowing engineers to benefit
from systematic knowledge [Shaw and Clements 2006; Weyns et al. 2012a]. This paper contributes
with a set of templates for the specifications of MAPE-K behaviors that consolidate design expertise
offering support to designers of a family of self-adaptive systems.

2.2. Design Patterns

A common approach to consolidate design knowledge is by means of documenting design patterns.
In the field of architecture-based self-adaptive systems, only a few patterns have been documented.

Gomaa and Huseein [2004] present reconfiguration patterns for dynamic evolution of software
architectures that are based on sequences of adaptation steps (e.g., stopping/starting, (un)linking,
adding/removing). In [Gomaa et al. 2010], the authors employ reconfiguration patterns in the context
of self-managed service-oriented software systems, while [Esfahani and Malek 2010] show their
utility in the design of architecture-based middleware solutions.
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Edwards et al. [2009] propose an adaptive software architecture style, consisting of: (1) a basic
bottom layer with application components that control a robot, and (2) one or more meta layers
with meta-level components that implement fault-tolerance, dynamic update, resource discovery,
redeployment, etc. Each layer may adapt the layer beneath. The authors use the approach for the
design and implementation of self-adaptive behavior in robotics software.

Ramirez and Cheng [2010] document a set of 12 patterns derived from a number of studies in
self-adaptive systems. Each pattern is documented using its intent, context, structure using UML
class diagrams, and consequences, among other items. The presented patterns focus at the software
design level. They aim to facilitate the design and construction of self-adaptive systems by providing
alternative solutions for adaptation in the systems’ implementations.

In a recent study [Weyns et al. 2013], the authors present a set of five patterns for decentralized
control in self-adaptive systems that were derived from different studies. The patterns focus on
coordination and interaction of MAPE-K feedback loops, and include a master-slave MAPE pattern,
coordination pattern, and information sharing pattern for large self-adaptive systems. The primary
focus of the patterns is on structural aspects of the architectural design of self-adaptation logic. The
patterns are illustrated with concrete instances from which they were derived.

The presented efforts document patterns for self-adaptive systems ranging from a high-level ar-
chitecture to concrete design. The primary focus is on structural aspects. The work presented in this
paper complements these efforts with templates to support engineers to rigorously specify behaviors
of interacting MAPE-K components.

2.3. Property Specification Patterns

To the best of our knowledge, no related work exists on property specification patterns dedicated to
self-adaptive systems. We discuss a number of general approaches that do not focus on self-adaptive
systems and then zoom in on initial ideas to define property specification patterns for self-adaptive
systems.

Dwyer et al. [1998] introduce property specifications templates for the verification of finite-state
machines. The templates allow the expression of recurring properties in a generalized form to rig-
orously verify system requirements. Other examples of property specifications have been proposed
for real-time systems [Koymans 1990] and systems with probabilistic quality requirements [Grunske
2008]. Bianculli et al. [2012] present an extensive analysis of the usage of documented specification
properties for a large body of specifications for service-based applications of a banking company.
Existing property specification patterns are not specified to be applied in self-adaptive systems, and
recent efforts in which properties for self-adaptive systems have been specified are not consolidated
to support designers of other systems.

As model checking is one of the prominent approaches to verify system properties, we analyzed
existing pieces of work that employ model checking techniques in self-adaptive systems [Weyns
et al. 2012a]. From this analysis, we derived an interesting model that maps the different types of be-
haviors of self-adaptive systems to four zones of the state space: normal behavior, undesired behav-
ior, adaptation behavior, and invalid behavior. Properties of interest with respect to self-adaptation
typically map to transitions between different zones. For example, a property may express whether
invalid states can be reached from a system’s normal behavior, or whether a system adapts correctly
from undesired behavior via adaptation behavior back to normal behavior. This zone model pro-
vides a potential basis for a systematic documentation of specification properties for self-adaptive
systems. We refer the interested reader for additional information to [Weyns et al. 2012a].

3. TARGET DOMAIN

The formal templates we present in this paper encode knowledge we gained from the formalization
of adaptive behaviors for a number of self-adaptive systems in mobile learning [Gil de la Iglesia and
Weyns 2013; Gil de la Iglesia and Weyns 2013; Gil de la Iglesia 2014], traffic control [Iftikhar and
Weyns 2012], robotics [Iftikhar and Weyns 2014a; 2014b] and mobile digital storytelling [Weyns
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et al. 2014]. These systems share a set of characteristics that define the target domain of the tem-
plates:

— Systems comprise software deployed on distributed nodes;

— The nodes have an explicit position in the environment (and may be mobile);

— The nodes have continual communication access;

— Dynamics in the system and the environment are orders of magnitude lower than the speed of
communication and the execution of the software;

— Resources in the system may come and go.

As we consider distributed self-adaptive systems, the managed system typically comprises multiple
local managed systems that are deployed on different nodes and are adapted by one or more MAPE-
K feedback loops. Our particular focus is on self-adaptation to deal with robustness and openness
requirements. To that end, the self-adaptive system can add resources to the system or remove
resources. Resources are controllable parts of the managed system, such as nodes, subsystems and
components. Regarding robustness, we study self-adaptation to deal with parts of the system that
fail. Regarding openness, we study self-adaptation to deal with parts that come and go dynamically.

Below we describe two example applications from the self-adaptive systems we have built and
from which the templates were derived'. We use these applications throughout the paper to illustrate
the different templates. We selected these applications for two reasons: first, they have a proper
level of complexity to illustrate the use of the MAPE-K templates, and second, they require self-
adaptation for complementary quality requirements.

As explained in the introduction, we use TA and TCTL for the formalization of the MAPE-K
templates. Appendix A summarises the languages primitives of TA and TCTL. For the specification
of models and verification of properties we used the Uppaal tool [Behrmann et al. 2006].

3.1. Mobile Learning Application

One of the mobile learning applications we studied supports pupils with learning geometry concepts
using GPS-enabled mobile devices [Gil de 1a Iglesia and Weyns 2013]. The resources in this domain
are GPS services. The activities require the pupils to work in groups since two devices are required
for distance calculations, three devices for triangulation, and more devices for more advanced ac-
tivities. We designed two MAPE-K feedback loops to deal with two robustness concerns. Firstly,
the environmental conditions may affect the GPS reliability and consequently affect the quality of
the GPS-based measurements. The first feedback loop ensures that only GPS services are used with
a minimum level of accuracy in their measurements. Secondly, the number of GPS services avail-
able in a group may not match the number of services that are required. The second feedback loop
ensures that a group has the required number of services to carry out the activity. The MAPE-K
feedback loops are distributed among the mobile devices. In this paper, we focus on the second
concern (ensuring that groups have the right number of services to carry out their task).

Fig. 1-top shows a timed automaton that specifies the behavior of the environment in which the
sky can either be Clear or Cloudy. Transitions between these states are modeled using specific
functions (getNextCloudy, getNextClearing, isValid) and conditions on a timer.

Fig. 1-middle specifies the part of the GPS component behavior that deals with the quality of the
measured locations. The GPS service is either activated or deactivated depending on the sky con-
ditions. These conditions are provided by the environment automaton via the qualityGPSModule*
signals. The updateGPSService() function activates or deactivates the local GPS service.

The Probe behavior shown in Fig. 1-bottom senses the state of the GPS service and notifies the
relevant MAPE-K loop when needed (via the GPSwentDown signal).

The result of this combination of automata is that a group of phones may no longer have the right
number of services to complete the task, as services are deactivated. We focus on this number of

1The complete set of applications from which the templates were derived are available on the project website
http://homepage.Inu.se/staff/daweaa/MAPE-K-Templates.htm [Gil de 1a Iglesia et al. 2014]
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treatChange(Pid)

Fig. 1. Sky environment (top), GPS module (middle) and GPS-Probe behaviors for a mobile learning application

services requirement as a robustness concern, extending the managed part of the application with
feedback loops to deal with the concern.

3.2. Logistical Robotic System

The second application is a robotic system in which robots have to perform transportation tasks in a
warehouse following a graph-based routing layout. To drive in the warehouse, the robots maintain
a representation of the routing layout. The resources in this domain are map elements such as lanes,
location on the layout, etc. We focus here on a scenario in which robots are instructed to disable or
enable particular elements of the layout by adding or removing parts where the robots can drive or
perform tasks (e.g., remove a lane for maintenance or add a temporal drop location to deliver loads).
We specified the layout that each robot uses to drive in the warehouse by an automaton. Places
in this automaton represent locations of the graph-based routing layout and transitions represent
movements of robots from one location to another. Fig. 2-left shows the behavior that represents the
interface that allows a manager to manipulate the map elements of the layout during execution. We
defined a set of actions that a manager can perform: adding (bAdd-) and removing (bRem-) locations
(-Loc), edges? (-Edge) and destinations (-Dest). For instance, bRemLoc? in Fig. 2-left collects re-
quests from the manager to remove a location from the layout, and notifies a robot with identity RiD
to update its knowledge of the layout. Manipulating the layout may be constrained by the current
conditions, e.g., a robot should not disable a lane it is driving on. Fig. 2-right specifies a behavior
that controls the current robot location and the target destination. To deal with the manipulations of
the layout we extended the domain logic of the robots with a MAPE-K feedback loop.

4. BEHAVIOR SPECIFICATION TEMPLATES FOR MODELING MAPE-K FEEDBACK LOOPS

Fig. 3 shows a high level model of a self-adaptive system where a managed system is extended
with a feedback loop composed of MAPE-K components. A Monitoring component (number 2
in Fig. 3) acquires information from the managed system and its environment, and it updates the
Knowledge (1) accordingly. The Analyze component (3) uses the knowledge to determine the need
for adaptation of the managed system with respect to the adaptation goals. If adaptation is required,

2 Adding or removing an edge in the map translates to enabling or disabling the related lane on the layout.
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update_dest[RiD]?
bAddDest?

?
bAddEdge sAddDest[RiD]!

sAddEdge[RiD]!

© sDestUpdate[RiD]!
bRemEdge? bRemDest?
sRemEdgel[RiD]! sRemDest[RiD]!
lock != RiD
lock == RiD
bRemLoc? e bAddLoc? sPosUpdate[RiD]!
sRemLoc[RiD]! ©
sAddLoc[RiD]!

update_position?

Fig. 2. Behavior specifying interfaces that managers use to update the map layout (left) and updating the robot’s current
location and destination (right)

the Plan component (4) puts together a plan consisting of adaptation actions that are executed by
the Execute component (5) adapting the managed system as needed.

Analyze

Managing
System
Monitor Knowledge Execute
| Domain Snecific Syt | Managed
4 omain Specific Sys em* System
| Context | Environment

Fig. 3. MAPE-K. Model for self-adaptive systems [Kephart and Chess 2003]

We now present the set of formally specified templates for designing the behaviors of MAPE-K
components. For each template, we start by presenting concrete instances of the specific MAPE
component for the two application scenarios presented in Section 3. Then we specify the reusable
behavior template for the the MAPE component that defines its essential elements. These elements
were derived from the concrete MAPE component specifications of the different applications we
built as illustrated by the concrete instances.

Due to space constraints, we cannot provide a detailed specification of all aspects of the tem-
plates, including time and event triggering mechanisms, specification of data structures, detailed
specification of all functions, etc. For a complete specification and explanation of the templates,
supported by different examples, we refer to the project website.

4.1. Knowledge

To perform self-adaptation, the Monitor, Analyze, Plan and Execute components use models
(Knowledge) that provide an abstraction of relevant aspects of the managed system, its environment,
and the self-adaptation goals. In line with FORMS [Weyns et al. 2012b], we divide knowledge in
four parts (which are technically specified as four struct definitions in Uppaal) as follows:

— ManagedSystemKnowledge provides an abstraction of the managed system. This part of the
knowledge represents relevant information of the resources in the managed system, such as the
status of resources (used or not), resource dependencies, or quality properties.

— EnvironmentKnowledge provides an abstraction of the environment representing the context in
which the self-adaptive system is situated and operates.
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— ConcernKnowledge describes the knowledge w.r.t. the adaptation concern of interest; this part
specifies the requiredResources to realize the goals of the self-adaptive system.

— AdaptationKnowledge represents runtime information that is shared between the MAPE behav-
iors; we distinguish between flags that are used for indirect synchronization of behaviors and
workingData that represents data that behaviors use to perform their functions (e.g., historical
data for analysis, plans for adaptation, etc.).

Declaration 1 shows an excerpt of the Managed System Knowledge. The abstraction allows us
to define the number of nodes (Nodes) and resources (NRes) of the system, as well as a concrete
resource (Resource) that encapsulates the state representing the type (resourceType) and specific
quality properties (resourceQuality) of a resource that need to be achieved by the MAPE com-
ponents. Additionally, Declaration 2 shows how the MAPE behaviors can access the knowledge
(getResourceUsed()) and update (setResourceUsed()) it, in order to perform self-adaptation.

const int Nodes = <define>; /number of nodes in the System
const int NRes = <define>; // number of existing resources

typedef struct {
int resourceType;
int resourceQuality;
}Resource;

Resource resources[NRes];

struct {

int usedResources; /State representing the number of used resources

int availableResource[NRes]; // State representing the available nodes

int usedNode; // State representing whether the node currently belongs to a group or not
}ManagedSystemKnowledge[Nodes];

Declaration 1. Specification of the ManagedSystemKnowledge

// Getter for a Resource module
int getResourceUsed(int node, int resource){
return ManagedSystemKnowledge[node].availableResource[resource];

}

// Setter for a Resource module
void setResourceUsed(int node, int resource, int status){
ManagedSystemKnowledge[node].availableResource[resource] = status;

Declaration 2. Specification for manipulating the ManagedSystemKnowledge

Declaration 3 shows an excerpt of the instantiation of ManagedSystemKnowledge for the Mo-
bile learning case. In this example, multiple groups can be defined (MVDGroup), in which mobile
phones (MobilePhone) are resources that are controlled by the MAPE components.

const int Phones = 12;

typedef struct {
int status; // Either the Phone is used=1, or Free=0
int GPS_Quality; // — 1=Broken, 0=Undesirable, 1=OK
int prev_min_accuracy; /This variable is to control that there is a change in the GPS accuracy
// requirement

}MobilePhone;

typedef struct {
MobilePhone member[Phones];
int nMembers;

}MVDGroup;

MVDGroup ManSysPhones[MVD];

Declaration 3. Specification of ManagedSystemKnowledge (Mobile learning case)
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4.2. Monitor

Monitor collects data (through probes) from the managed system and possibly the environment to
update the Knowledge. Before updating the Knowledge, the Monitor may preprocess the collected
data. Examples of preprocessing are normalization of data, filtering and aggregating data.

4.2.1. Mobile Learning Case. We specified an automaton to describe the GPS-Monitor behavior
that is responsible for updating knowledge about the membership of phones in groups.

| isNew(caselD)
Monitoring ;\Collectingcroup Groupldentified

O GPSwentDown[Pid]? /é\ isNew(caselD)
& caselD = getCase() = myMVD = determineMyMVD(Pid)

myMVD == NOGROUP c

myMVD !'= NOGROUP
remove_Phone(myMVD)

Fig. 4. Mobile learning GPS-Monitor behavior

Concretely, the Monitor behavior: (1) identifies whether GPS services go down, (2) checks
whether a GPS going down was already reported, (3) identifies the group in which the mobile de-
vice of the GPS service was used, and (4) updates the knowledge with the identified group. The four
steps are represented by four states of the Monitor automaton (Fig. 4). In the Monitoring state, the
behavior is waiting to be notified by the Probe (GPSwentDown/[Pid]?). If it is a new notification (is-
New(caselD)), the group identification starts at CollectingGroup (through determineMyMVD(Pid)),
and finally, after Groupldentified, the behavior updates the knowledge of phone memberships via the
remove_Phone(myMVD) function. The remove_Phone function (see Declaration 4) modifies knowl-
edge related to the resources available in a group . Concretely, the function removes a failing phone
Phoneld from a group GroupID and it decreases the number of available resources in the group.

void remove_Phone(MVD_id Groupld, Phone_id Phoneld){

ManSysPhones[Groupld].member[Phoneld] = 0;
ManSysPhones[Groupld].nMembers — —;

}

Declaration 4. Specification of Knowledge manipulation (Mobile learning case)

A variant of this behavior following a time-triggered approach is documented in Appendix A.

4.2.2. Robot Transportation Case. We designed a monitor behavior that is responsible for up-
dating knowledge about: (1) desired modifications in the layout, and (2) the current position and
destination of the robot. Therefore, the behavior monitors two data sources that are required by the
adaptation logic. First (Fig. 5-top), the behavior monitors events that trigger changes of the layout;
signals can be received via the sAddEdge, sRemEdge, sAddLoc, sRemLoc, sAddDest and sRemDest
channels. Second (Fig. 5-bottom), the behavior monitors the robot’s context, which is needed to
determine whether an adaptation can take place or should be postponed until required conditions
are satisfied (e.g., the robot is driving to a destination that needs to be removed). This is specified in
the behavior through two channels that identify updates of the current robot location (sPosUpdate)
and targeted destination (sDestUpdate). The monitor behavior triggers the analyze behaviour via
the analyze[RiD]! signal.

4.2.3. Monitor Behavior Template. We now present a Monitor behavior template that consolidates
our knowledge in the design of monitoring behaviors.

Triggering events, such as GPSwentDown[Pid]? in the mobile learning case and sDestUp-
date[Rid]? in the robot transportation case, are generalized to a triggering mechanism that initiates
data collection. Fig. 6 shows an event triggering mechanism specified with the Monitor[Node_ID]?
signal. In the mobile learning case, this was specified through the determineMyMVD() function;
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sRemLoc[RiD]?

rem_loc[RiD] = RECVD
sAddLoc[RiD]?

add_loc[RiD] = RECVD sAddEdge[RiD]?
sRemDest[RiD]? enabled_lane(
RiD] = RECVD
H i) rem_dest(RiD] c RequestToDisableLane
sAddDest[RiD]? sRemEdge[RiD]?
Q add_dest[RiD] = RECVD C O disabled_lane() ©

J

analyze[RiD]! analyze[RiD]!
sDestUpdate[RiD]?
update_dest()

sPosUpdate[RiD]?
O update_pos() ¢

analyze[RiD]!

Fig. 5. Robot transportation interface Monitor behaviors

in the robot application, the data to monitor was self-contained in the signals. We generalize this
step in the getData() function, which is responsible for collecting the data items that the behavior is
expected to monitor. We include a preprocessing step in the monitor for such behaviors that may be
needed for data normalization, aggregation, etc. (if isPreprocessingRequired() then preprocess()).
In the mobile learning case, a preprocessing step was required to avoid handling repeated requests.

Finally, when new data items are found (NewChange), the monitor behavior updates the knowl-
edge and notifies the related Analyze components. We specify this process in the Monitor behav-
ior template with the updateKnowledge() function, followed by a signal that triggers the Analy-
sis behaviour (Analyze[Node_ID]!). In the mobile learning case the remove_phone() function is a
refinement of the updateKnowledge() function, and the analysis is time triggered. For the robot
transportation case this was modeled via the different update functions (rem_loc[Rid] = RECVD,
update_dest(), etc.) followed by the analyze[Rid]! signal.

isPreProcessRequired()
preProcess()

Waiting Preprocessing NewChange

O Monitor[Node ID]2 /a @) lisPreProcessRequired() c
& getData() &

©)=
Analyze[Node_ID]! N\ updateKnowledge()

Fig. 6. Monitor behavior template with event-triggering

In summary, the Monitor behavior consists of the following steps: monitor triggering, collecting
data, preprocessing data, updating working data, and signaling analyze behavior(s).

Alternatively, we specify a time-triggered template (all the template variations are documented on
the project website). Fig. 7 shows a time-triggered Monitor that periodically initiates its behavior to
collect sensed data via getData(). The monitor frequency is defined by a time condition (t==Period)
and a state invariant (r<=Period).

4.3. Analyze
Analyze is responsible for determining whether adaptation actions are required based on the moni-
tored state of the managed system, the environment and the adaptation concern of interest.

4.3.1. Mobile Learning Case. We designed an Analyze behavior that determines whether groups
have enough GPS services to perform the learning activities. Fig. 8 shows the automaton of the
analyze behavior that is triggered every 5 time units. The behavior uses the activity requirements
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isPreProcessRequired
preProcess()

NewChange
lisPreProcessRequired() >©

Preprocessing

Waiting

t == Period
t <= Period

Fig. 7. Monitor behavior template with time-triggering

getData()

©
setAnalyzeFlag(), &/ updateKnowledge()
t = reset()

and the number of used GPS resources in the group to perform analysis. The getRequired() and ge-
tUsed() functions provide this knowledge by accessing ConcernKnowledge and ManagedSystem-
Knowledge. This knowledge is then used to evaluate whether the available GPS services in the group
are sufficient to realize the activity goals (using the comparison functions). The analysis results are
used to coordinate with the Plan to take action when needed (e.g., SH-MVD _Incomplete[Mid]!).

. Redundant
requiredGPS < usedGPS ~ t ==
SH_MVD_Redundant[Mid]! N
. t<=5
Analyzing
. o Complete
c requiredGPS == usedGPS @ t——5 c
SH_MVD_Complete[Mid]! \'/t<:5
requiredGPS > usedGPS Incompletet ——5
SH_MVD_Incomplete[Mid]! <=5

t = reset(),
requiredGPS = getRequired(),
usedGPS = getUsed()

Fig. 8. Analyze behavior for the mobile learning case

4.3.2. Robot Transportation Case. The Analyze behavior needs to identify whether the represen-
tation of the layout used by the robot corresponds to the real layout defined by the administrator.
We specified three functions that determine: (1) whether the current layout representation is cor-
rect (noNeedForAdaptation()), (2) whether new lanes, locations or other resources need to be added
(needAdaptationAdd()), or (3) whether resources need to be removed from the layout (needAdapta-
tionRemove()). Fig. 9 shows the event-triggered analyze behavior for the robot scenario.

ElementsMissing

needAdaptationAdd() /a
planningAdd[RiD]! &/

Waiting

analyze[RiD]? ElementsExtra

C needAdaptationRemove() fé\ C
T planningRemove[RiD]! &/ T
noNeedForAdaptation()

Fig. 9. Analyze behavior for a robotic case

The behavior can take three different transitions from the Waiting state based on the results of
the functions. A transition via ElementsMissing is taken in case map elements need to be enabled
or added. A transition via ElementsExtra is taken when one (or more) elements in the map need to
be disabled or removed. In both cases, the Analyze behavior signals the Plan behavior of the same
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robot (planning*[RiD]!). In the remaining case, the Analyze behavior directly returns to the Waiting
state and waits until a new analysis is required.

4.3.3. Analyze Behavior Template. Now, we present the Analyze behavior template (Fig. 10) that
generalizes the analyze behaviors from different applications, as illustrated with the examples above.

The Analyze behavior compares the required resources with the resources in use, taking into
account the current context and working data (such as GPS services or lanes in a robot layout).
Functions such as comparing quantities of GPS services and checking that the robot works with an
updated layout (needAdaptationAdd()) are generalized to a matchResources() function. We provide
an example (needAdaptationAdd) in Declaration 5. To support the analysis, we introduced a set of
get*() functions that collect data from different types of knowledge. An example is the getRequired()
function in the mobile learning case.

bool needAdaptationAdd(){
return add_loc[RiD] == RECVD || enable_lane[RiD] == RECVD || add_dest[RiD] == RECVD;
¥

Declaration 5. Analyze.needAdaptationAdd function for robot traffic application

The Analysis behaviour has three primary states. The result of the analysis is Satisfied when
the managed system has the resources it requires to achieve its goals. The Complete state in the
mobile learning case is an example. In the robots case, the satisfied condition corresponds to the
transition noNeedForAdaptation that is taken when the robot uses the correct map. The analysis re-
sult is Undersatisfied when the system lacks resources to satisfy the current context and goals, and
Oversatisfied when the system has redundant resources. These states directly match with Redun-
dant/Incomplete and ElementsExtra/ElementsMissing from our illustrative scenarios. The results of
the analysis are then communicated to the Plan behavior (e.g., Plan_UnSatisfied[Node_ID]!). No-
tice that an Analyze behavior can notify Satisfied states to the Plan behavior, which may be useful
in case adaptation plans need to be cancelled. Fig. 10 shows the generic template for an analyze
behavior with event triggering (Analyze[Node_ID]?).

oversatisfied == Oversatisfied

matchResources(required,used,context,workingData)_ 4 Analyze[Node ID]?
Plan_OverSatisfied[Node_ID]! -

Analyzing
€

. Satisfied
satisfied ==
matchResources(required,used,context,workingData)
Plan_Satisfied[Node_ID]!

O Analyze[Node ID]?

unsatisfied == Unsatisfied

matchResources(requlred,used,context,workngata))‘ Analyze[Node ID]?
Plan_Unsatisfied[Node_ID]!

getRequired(required),
getUsed(used),
getContext(context),
getWorkingData(workingData)

Fig. 10. Analyze behavior template with event-triggering

In summary, the Analyze behavior consists of the following steps: analyze triggering, data col-
lection, analysis process and signalling the related plan behavior(s).

4.4. Plan

The Plan behavior is responsible for planning mitigation actions to adapt the managed system when
needed.
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4.4.1. Mobile Learning Case. Fig. 11 shows the specification for the Plan behavior. The primary
responsibility of the Plan behavior is putting together plans to correct incomplete groups of mo-
bile devices when requested (SH_MVD_Incomplete[Mid]?). The right hand side of the automaton
defines the adaptation plan to recover the system from an undesired state. In particular, the update-
Actions(Mid) function defines actions to search for an available mobile device and integration the
device in the group. The Plan behavior coordinates with the Execute behavior to apply the adap-
tation actions via the addPhone[Mid]! signal. On the left side of the automaton, the Plan behavior
interrupts adaptation actions for particular cases in which the managed system has recovered from
undesired states (i.e., when the activity requires fewer resources than before). Therefore, the Plan
includes the option to cancel previous requested adaptation actions (Execute_cancel[Mid]!).

SH MVD_Complete[Mid]?

SH MVD RedundantMidi? \ A'Fine AddGPS
SH MVD_Incomplete[Mid]?
c t=reset() O
Execute_cancel[Mid]!

addPhone[Mid]!

AddPlanComplete

updateActions(Mid)

Fig. 11. Plan behavior for the mobile learning application

4.4.2. Robot Transportation Case. The plan behavior for the robotic case comprises two au-
tomata. The first automaton (Fig. 12-left) is responsible for composing a plan with adaptation ac-
tions to deactivate and remove items from the layout. The second (Fig. 12-right) composes a plan
to activate and add items. The Plan behaviors are triggered by signals from the Analyze behavior.
Then, the behavior identifies the type of required actions (e.g., enableLane() identifies the need to
add a new lane in the layout) and plans the necessary adaptation tasks (planEnabling()). This pro-
cess can be repeated multiple times until all the necessary adaptation actions are planned. Once
planning is finished (planned() condition), Plan notifies the Execute behavior to execute the planned
actions to the managed system (execute*[RID]!).

Satisfied DisableOrRemove DisablelnProgress  Satisfied EnableOrAdd EnablelnProgress

enableLane() .
\—/

planEnabling()

planningAdd[RiD]?

O planningRemove[RiD]? fa disableLane()

planDisable()

executeRemove[RiD]!

RemovelnProgress executeAdd[RiD]! AddInProgress

removeElement addElement

planRemove() planAddition()

Fig. 12. Plan behaviors for the robot transportation application

4.4.3. Plan Behavior Template. Fig. 13 shows the Plan behavior template. The Plan behavior dis-
tinguishes between two types of mitigation actions depending on the results of an Analyze behavior
(in case of a satisfied situation, no adaptation plan is required). Either there is a need to add re-
sources (in case the system state is unsatisfied) or resources may be released (when the system state
is oversatisfied). There are applications, such as the mobile learning case, in which oversatisfied
scenarios may not require adaptations.

In the first case, (right part of the behavior template in Fig. 13), the Plan is triggered to compose
a set of plan actions in order to add resources to the managed system (via the addResource() func-
tion). In particular cases, different planning behaviors may be specified to add resources, e.g., to
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Plan Satisfied[Node ID]?

ReleaseResource AddResource

C Plan_OverSatisfied[Node ID]? Plan_Unsatisfied[Node ID]?

Execute_Release[Node_ID]! Execute_Add[Node_ID]!

ReleasePlanReady AddPlanReady

releaseResource() addResource()

Fig. 13. Plan behavior template with time-triggering

model specific planning algorithms for different scenarios (such as enabling lanes or adding items
to the robot layout). Afterwards, the Plan behavior notifies the Execute behavior to execute the
adaptation actions on the managed system (Execute_Add[Node_ID]!). In the second case, resources
can be released (left side of Fig. 13). The procedure to release a resource, which is specified in the
releaseResource() function, is similar as for adding a resource.

In summary, we define the following steps of a Plan behavior: plan triggering, identification of
the required type of plan, plan creation, and signaling execute behavior(s).

4.5. Execute
The Execute behavior is responsible for executing the adaptation actions of the generated plans.

4.5.1. Mobile Learning Case. The only required plan that needs to be executed in this case is
handling Incomplete groups (see Fig. 14). Executing the plan requires looking for a mobile device
and integrating it in the group (Mid). When triggered (addPhone[Mid]?), the behavior searches
for an available device based on the criteria defined in the plan (found_Phone=getFreePhone()). If
the search was unsuccessful (found_Phone==NOPHONE), the step is repeated every 2-time-units.
Otherwise, the device that is found is integrated in the group (Use[found_Phone]!). The behavior is
able to cancel the search process if required (Execute_cancel[Mid]?).

PlanCompleted

c N

ExecuteAddGPS

. found_Phone = getFreePhone()
Waiting addPhone[Mid]? t==2

NoFreeGPS LookForFreeGPS
Execute cancel[Mid]? found Phone == NOPHONE .

t=reset()
t<=2

found Phone != NOPHONE

AddGPSJ ./
Use[found_Phone]!

Fig. 14. Mobile learning Execute process

4.5.2. Robot Transportation Case. The Execute behavior for the robot transportation application
is modeled with two automata. Fig. 15-top shows an automaton for enabling lanes and adding ele-
ments to the layout representation. For these scenarios, the behavior directly executes the adaptation
plans. Possible options are enabling a lane, adding a location and adding a destination, which are
represented in the Knowledge by enable_lane, add_loc and add_dest respectively. The state of these
variables determines the planned action (PLANNED) that is selected for execution (e.g., addLoca-
tion[Rid]!), which triggers an Effector (shown in Fig. 16) that in turn specifies the function that
needs to be applied to perform the action to the managed system. Finally, the Execute behavior
marks in the Knowledge that the action is completed (e.g., add_loc()).
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enable_lane[RiD] == PLANNED
addEdge[RiD]!
enable_edge()

add_loc[RiD] == PLANNED
addLocation[RiD]!
add_loc[RiD] = EXECUTED

executeAdd[RiD]?

executed add_dest[RiD] == PLANNED

addDestination[RiD]!
add_dest[RiD] = EXECUTED

Resting Executing
executeRemove[RiD]?. /a

DisableLane Waitl

disable lane[RiD] == PLANNED /a waitRequired()
/a,‘ waitRequired() ] ;t::Z t<=2

okl \&/"disable_edge()
remEdge[RiD]!

executed

Removelocation Wait2
rem_loc[RiD] == PLANNED fé\ waitRequired()
t==2 _
I waitRequired() t<=2
rem_loc[RiD] = EXECUTED
remLocation[RiD]!
RemoveDestination Wait3

rem dest[RiD] == PLANNED /a waitRequired()
L

/a,‘ waitRequired()
ok! =¥ rem_dest[RiD] = EXECUTED
remDestination[RiD]!

<=2

Fig. 15. Robot transportation Execute process

addEdge[RiD]?
add_edge(sEdge)

addDestination[RiD]? addLocation[RiD]?

add_destination(sDest) add_location(sLoc)

?

remDestination[RiD]? ‘ :nm,]\'ﬁ)cca;tlﬁ)nn[(ilgo
rem_destination(sDest) -

remEdge[RiD]?
rem_edge(sEdge)

Fig. 16. Robot transportation Effector process

Fig. 15-bottom shows the execute behavior to remove and disable elements of the layout represen-
tation. The automaton identifies the type of actions to be executed, it coordinates with the managed
system to prepare the adaptation actions, and it applies the adaptation actions on the managed sys-
tem. The second step assures that no map elements are removed while the robot still requires them
(e.g., waitRequired(), e.g. the robot should not disable a lane on which it drives).

4.5.3. Execute Behavior Template. Now we present the Execute behavior template that consoli-
dates our expertise of designing Execute behaviors for different self-adaptive systems. The Execute
behavior has two branches: one that deals with adding resources to the managed system; the other
that deals with releasing resources. Fig. 17 shows the “add branch” of the Execute behavior tem-
plate. The “remove branch” has a similar structure.

We identified three phases in an Execute behavior: preparation, execution (doAction) and post-
execution. First, the Execute behavior is triggered to take action (Execute Add[Node_ID]?). The
behaviour checks whether the managed system is ready to invoke the planned actions (isSystem-
Ready(Prepare)), an example is waitRequired() in the robot transportation case. If the system is not
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PlanCompleted

<

isPostExecDone() &&
Completed == actionsPending()
~

Waiting PrepareAdd

isSystemReady(Prepare)
prepare()

O Execute Add[Node ID]?

lisPreparationDone

DoActionsAdd

isSystemReady(Do)
invokeNextAction()
Effector_Add[Node_ID]!

lisActionDone

isActionDone
PostExecutionAdd

isSystemReady(Post)
postAction()

lisPostExecDone

isPostExecDone() &&
L Pending == actionsPending()

Fig. 17. Execute behavior template with time-triggering

ready, the behavior performs preparation tasks (PrepareAdd state) before executing the actions to
add a resource to the managed system. Preparation typically includes steps such as locking certain
resources (as in the mobile learning case), ensuring that the managed system is in a safe (quiescent)
state, etc. Such preparation may require multiple preparation steps.

Once preparation is completed, the behavior moves to the DoActionsAdd, where adaptation ac-
tions are performed (such as integrating a new phone or activating a lane) via the (invokeNextAc-
tion() function and the Effector_Add[Node_ID]! signal.

Adding resources may require PostExecutionAdd tasks that are handled by the postAction() func-
tion. Examples are unlocking resources of the managed system and updating internal information in
the Knowledge. Finally, the Execute behavior checks whether the plan is completed (actionsPend-
ing()). If more actions are Pending, the behavior returns to the PrepareAdd state from where it
repeats the process to execute the next actions to the managed system.

5. PROPERTY SPECIFICATION TEMPLATES FOR VERIFYING MAPE-K FEEDBACK LOOPS

Timed computational tree logic (TCTL) allows designers to specify properties of the MAPE-K
behaviors modeled in TA and verify whether the models comply with the properties. Properties
specified in TCTL quantify over paths of the state space of the model and allow to verify reacha-
bility, safety, and liveness properties. During the design of the different self-adaptive systems, we
defined a variety of properties. Before we present reusable property specification templates, we first
illustrate some of the properties we specified for the two running cases.

In order to verify properties of the design of a self-adaptive system, it is important to note that the
behavioral models of the MAPE-K feedback loop need to be integrated with models of the managed
system and its environment. Section 3 provides some excerpts of the models for the mobile learning
and the robot transportation cases; however, we do not further elaborate on the behaviors of the
managed system and the environment as they are domain-specific and not the focus of this paper.

Mobile Learning Case

We discuss three properties in the mobile learning case that we used to verify the self-adaptive
behavior.
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Gl: SAAnalyze (X) .Incomplete --> SAAnalyze (X) .Complete || SAAnalyze (X).Redundant

G2: SAAnalyze (X) .Incomplete --> SAExecute (X).LookForFreeGPS

G3: SAAnalyze (X) .Complete && ManagedSystemKnowledge [X] .member [Y]==USED &&
EnvironmentKnowledge [X] .GPS[Y].state == DOWN --> SAAnalyze (X).Incomplete

Property G1 states that if an Analyze behavior detects that a group is incomplete and it needs a
GPS service to satisfy the current requirements (state Incomplete), eventually the MAPE behaviors
will solve the problem by adding a GPS service to the group (state Complete or Redundant) (the
latter state may result for example when a GPS device is recovered during the adaptation process).
This property verifies that the adaptation goals for the mobile learning case are achieved.

Property G2 allows states that whenever the Analyze behavior detects that a group is incom-
plete, the Execute behavior will eventually start looking for a GPS service (LookForFreeGPS). This
property verifies the correct coordination and interactions between behaviors of the MAPE loop.

Finally, property G3 states that when an Analyzer finds a group that is complete, but one of
the used resources (ManagedSystemKnowledge[X].member[Y]==USED, Y being the resource) is
down (EnvironmentKnowledge[X].GPS[Y].state = DOWN), eventually the Analyzer will detect this
failure and mark the Incomplete state (which will trigger the Plan behavior to look for a replacement
of the GPS service). This property verifies the correct behavior of an internal MAPE behaviour.

Robot Traffic Case
We discuss two representative properties that we specified and verified for the robot traffic case.
R1l: Analyze (X) .ElementsMissing —--> PlanEnableOrAdd (X) .EnableOrAdd

R2: Monitor (X) .DisablelLaneRequest && disabledLane[X] == Lane_Z -->
Execute (X) .DisableLane && disabledLane[X] == Lane_Z

Property R1 states that when the Analyze detects that map elements are missing in the robot
knowledge, the Plan will eventually add (PlanEnableOrAdd state in the Plan behavior) the missing
parts of the map layout. This property focuses on guaranteeing correct interactions between Analyze
and Plan behaviors, which is a critical aspect of the correctness of the self-adaptive behavior.

Property R2 states that when the Monitor behavior receives a request to disable a lane Z, that
lane will eventually be disabled by the Execute behavior®. This property guarantees that the MAPE
behaviors disable lanes correctly, which is one of the self-adaptation goals of this case.

5.1. Property Specification Templates

Now we present a set of generic properties for MAPE-K feedback loops that we derived from the
design of the concrete self-adaptive systems we have developed. The property specification tem-
plates can be classified in three groups as shown in Fig. 18. Group 1, Adaptation Goal Specification
Templates, includes properties related to the realisation of the adaptation goal by the MAPE-K feed-
back loop. Group 2, Intra-Behavior Specification Templates, specifies properties of internal MAPE
component behaviors. Group 3, Inter-Behavior Specification Templates, focuses on properties that
specify the interaction between multiple behaviors of a MAPE-K loop.

We provide a representative set of property specification templates of each group. For additional
properties, we refer the interested reader to the project website.

5.1.1. Adaptation Goal Specification Templates. The adaptation goal specification templates fo-
cus on providing evidence about the realization of the self-adaptation goals. Therefore, they allow
verifying that when a self-adaptive system requires adaptation, eventually the adaptation will be
carried out. Examples of this type of templates are G1 and R2 in the illustrative scenarios.

P1l: Analyze(X) .Unsatisfied --> Analyze(X).Satisfied || Analyze(X) .Oversatisfied

P1 defines that when an Analyze behavior (Fig. 10) at node X detects that the managed system
is in an unsatisfied state, the MAPE behaviors will eventually adapt the managed system bringing it

disabledLane[X] is a global variable used to identify one (or more) specific lane(s) to be disabled
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Fig. 18. Groups of property specification templates

in a satisfied or oversatisfied state. Property P1 is based on the assumption that eventually resources
will become available to achieve the adaptation goal.

5.1.2. Intra-Behavior Specification Templates. Intra-behavior specification templates focus on
verification of properties of individual MAPE behaviors, independently of the other MAPE be-
haviors.

P2: (ConcernKnowledge[X].required_resources >
ManagedSystemKnowledge [X] .used_resources) —--> Analyze (X) .Unsatisfied

P3: Plan (X) .AddResource —--> Plan(X) .Satisfied

P4: Plan (X) .ReleaseResource —--> Plan(X) .Satisfied

P5: Execute (X) .DoActionAdd —--> Execute (X).PlanCompleted

P6: Execute (X) .DoActionRelease —--> Execute (X).PlanCompleted

P2 generalises properties such as G3. P2 defines that when the resources used by the managed
system are not sufficient according the requirements defined in the Knowledge, the Analyze behav-
ior will eventually detect this Unsatisfied situation. The “greater than” symbol (>) is an abstract
operator that checks whether the used resources satisfy the required resources (i.e., number of re-
sources, quality of resources, etc.). This operator needs to be instantiated for the domain at hand.
Intra-behavior properties are particularly relevant for complex behaviors. E.g., in complex adapta-
tion scenarios, it is important to verify that the Plan behaviour creates adequate plans that will adapt
the managed system as required. P3 and P4 are two property specification templates for a Plan
behavior (Fig. 13) to verify whether adding (P3) and releasing a resource (P4) from the managed
system leads to a Satisfied state. Similarly, PS5 and P6 are specification templates for an Execute
behavior (Fig. 17) to verify whether the plan for adding a resource to the managed system (P5) and
releasing a resource from the managed system (P6) are correctly executed.

5.1.3. Inter-Behavior Specification Templates. Intra-behavior specification templates focus on in-
teractions between MAPE behaviors; they are generalizations of properties such as R1 and G2.

P7: Analyze (X) .Unsatisfied --> Plan (X) .AddResource
P8: Plan (X) .ReleasePlanReady —-> Execute (X).DoActionRelease
P9: Plan (X) .AddPlanReady —--> Execute (X) .DoActionAdd

P7 defines a property to verify the correct collaboration between the Analyze (Fig. 10) and Plan
(Fig. 13) behaviors; i.e., when the Analyze behaviour detects an unsatisfactory state of the man-
aged system, eventually the Plan behavior will create a plan to add a resource. P8 and P9 describe
templates to verify the correct interaction between Plan and Execute (Fig. 17) behaviors. P8 spec-
ifies that when a Plan behaviour has generated a plan to release a resource, this plan is eventually
executed by the Execute behavior. P9 specifies the correct execution of a plan to add a resource.
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6. ASSESSMENT OF THE MAPE-K FORMAL TEMPLATES

To demonstrate the reusability of the MAPE-K Formal Templates for new applications in the tar-
get domain, we performed four case studies in the context of a course in a Software Engineering
Master’s degree at Linnaeus University. Through multiple case studies, it is possible to obtain qual-
itative evidence using techniques such as interviews, observations, and recordings [Adelman 1991;
Miles and Huberman 1994; Yin 2009]. The aim of the case studies is to explore the usefulness and
reusability of the templates, rather than aiming to be conclusive. The study results allow us to better
understand and reason about how the participants used the templates in different cases. We focus on
the setting of the case studies and the results. The complete material of the study is available at the
project website [Gil de la Iglesia et al. 2014], including the protocol for the study, course materials,
session recordings, and the detailed results.

6.1. Study Setting

The study was performed in the context of the 4DV108: Advanced Software Design Master’s course
during a period of 6 weeks. The course included different phases on the design of a self-adaptive
system with MAPE-K loops using formal methods.

We carried out four case studies. Each case study comprises a participant that designs and imple-
ments a self-adaptive system from a freely selected application domain which fits the characteristics
of the target domain presented in Section 3. The selected application domains were smart homes,
security system and vehicular traffic systems. Each case study is treated as a holistic unit with no in-
dependent embedded units [Yin 2009]. Thus, we take an holistic study approach with multiple-cases
and study the data that is produced during the whole design and development process.

It is important to point out that the case studies are subject to a number of restrictions. In partic-
ular, the participants had no prior experience in the design of self-adaptive systems nor the use of
formal methods. As such, we have to be careful with deriving conclusions about the effectiveness of
the templates from the observations. However, as stated above, our primary goal of the case studies
was explorative, aiming to get an insight in how the participants used the templates as well as the
potential reuse of the templates.

Fig. 19 shows an overview of the course with the design of the study.

Week |<---Formal Models lecture ____ Week |<---MAPEKlecture ________
'% 1 Task 1: Select application domain 4 _ Task 3: Select SA requirement
£ c
o P
= ] Task 2: Specification and B Tasl_<_4: Specn‘lcahon and i
E 5 2 verification of the managed system : ‘g_ 5 verification of the self-adaptation
2
3 £3
F 3
o
© 3 @ 6
Task 5: Interviews

KEY DWeek <--- Lecture <— Task

Fig. 19. Overview of 6-week course in which the study took place

The study included the following tasks that the participants had to perform:

Task 1. Select an application (managed system). The participants were not limited in the selec-
tion of the application domain (e.g., robotics, logistics, aeronautics, etc.) except that the applica-
tion should comply with the characteristics of the farget domain (described in Sec. 3)

Task 2. Design and specify the managed system behavior and required domain properties, and
verify the properties.
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Task 3. Select a self-adaptive requirement for the managed system that focuses on robustness or
openness. The participants were not restricted in the specifics of the self-adaptation goal.

Task 4. Design and specify a self-adaptive solution for the managed system (design and required
properties), and verify the correctness of properties of self-adaptive system.

Task 5. Participate in semi-structured interviews.

In Week 1, the participants were introduced to TA, TCTL and UPPAAL, the tool used for designing
and verifying the formal models. In Week 4, the participants were introduced to the concept of
self-adaptive systems, the MAPE-K reference model and the MAPE-K Formal Templates.

Throughout the study, the students were followed up closely by the course holders. After each
step, we collected the designs to study the progression of the participants. At the end of the study,
we carried out individual semi-structured interviews (Task 5) of about 30 minutes. The goal of the
interview was to collect data about the participant experiences during the application design and the
use of the templates in their domains.

6.1.1. Research Questions. The concrete aim of the study was to answer a set of research ques-
tions (RQ) that address reusability from different viewpoints.

RQI. To what extent can the MAPE-K Templates be applied to applications that share the char-
acteristics of the target domain?

RQ2. Do the Behavior Specification Templates allow the specification of MAPE-K behaviors for
the specific self-adaptive systems, and if so, how?

RQ3. Do the Property Specification Templates allow the specification of properties for MAPE-K
loops of the specific self-adaptive systems, and if so, how?

With RQ1, we wanted to provide initial evidence that the templates can be applied to additional
applications in the farget domain; i.e., applications that were not used as a basis from which the
MAPE-K Formal Templates were derived. With RQ2, we wanted to analyze the reusability of the
MAPE-K templates and to investigate the types of reuse of the behavior templates during the study.
Similarly, with RQ3 we wanted to analyze the reuse of the MAPE-K property templates.

6.2. Analysis of the Results

We studied the design models of the different applications to identify the use of different parts
of the behavior specification templates (states, transitions, functions, data structures) and property
specification templates in the different application domains. Finally, we used the interviews to cross-
check the results from the analysis process and complement them with first-hand experiences from
the participants and feedback.

We present the results following the three research questions. We start with providing results
about the reusability of the MAPE-K Formal Templates in different application domains. Then, we
provide results w.r.t. reuse of the Behavior specification templates and we conclude with results for
reuse of the Property specification templates.

6.2.1. Application Domains. During the study, the subjects designed self-adaptive systems from
different application domains, including one smart house system, one security system and two ve-
hicular traffic systems. Due to space limitations, we illustrate the analysis of the results with two of
the four case studies. We selected two cases that provide a good and complementary coverage of
the use of different aspects of the templates.

Case-1 is a smart house system that controls the heating system. The controller senses the tem-
perature outside the house via a wireless channel, and it processes this information to adapt the
heating regulator when needed. The controller was initially designed to work with one temperature
sensor and one heating system regulator. When a second temperature sensor is added to the sys-
tem, the controller would read data only from the last introduced sensor. To avoid biased data from
a single temperature sensor, the home owner wanted the system to take into account temperature
measures from multiple sensors around the house, which is an openness requirement. To that end,
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Table . Behavior Specification Template selection (left), and State selection per MAPE Behavior (right)

Template | Instances | Triggering Template | Total States | Selected (%) | New
Probe 8 E Monitor 30 15 (50%) 2
Monitor 6 E&T Analyze 20 15 (75%) g
Analyze 4 E&T Plan 20 9 @5%) 0
Plan 4 E Execute 36 TT(19.64%) | 0
Execute 4 E
Efoctor 1 = [ TOTAL | 126 | 50(39.68%) | 6 |

a self-adaptation solution was applied to the managed system that enables the system to introduce
new temperature sensors and incorporate their measurements.

Case-2 is a vehicular traffic application that controls traffic-lights to handle possible obstructions
on the road; the obstructions can be sensed through traffic cameras. The quality of the cameras that
identify obstacles depend on the scope of their view. Cameras have a higher precision with a narrow
scope covering only one road. Therefore, two traffic cameras were placed on each crossing, in order
to observe the traffic conditions from west and south sides providing a high degree of accuracy.
The system was designed to notify drivers to take an alternative way (“turn right”) using the traffic-
lights when obstructions are detected. The goal of the self-adaptation in this case was to maintain a
complete coverage of the roads when a camera failed by modifying the remaining camera settings
in order to cover the west and south ways, at the cost of accuracy. This case specified a managing
system that deal with system robustness to failing cameras.

Based on the collected data, we can answer research question RQ1 — Can the MAPE-K Templates
be applied to applications that share the characteristics of the target domain? — positively as the
templates were successfully applied to four different applications that fit in the target domain. We
provide now a detailed analysis on the levels of reuse of MAPE-K Formal Templates in the study.

6.2.2. Reuse Behavior Specification Templates. In all the cases, the participants designed distinct
automata for Probe, Monitor, Analyze, Plan, Execute and Effector behaviors. For all the cases, one
automaton was specified for Analyze, Plan, Execute and Effector behaviors. For Monitor behaviors,
more than one automaton on average were used. Self-adaptive systems usually require multiple
data sources to monitor the managed system and its environment. We observed that multiple Probe
behaviors were used to collect data (2 probes on average). The data is summarized in Table I-left.

We observed that event-triggered behaviors (£ in Table I-left) were selected in all the cases, and
complemented in some particular cases with time-triggering mechanisms (7 in Table I-left) in order
to specify time-out behaviors (e.g., Monitor and Analyze behaviors for Case-2). Fig. 20 shows
an example where the behavior implements a time-out function using a time-triggering approach
(b==3 and b<=3). We will zoom in on some specifics of this behavior below.

ObstacleCameraWorking
AnalyzeTrafficSignal[id]?

& b=
Plan_Satisfied[id]! b=0

AnalyzeCamera[ldF\fé\

Analyzing

ObstacleCameraFailed

AnalyzeTrafficSignal[id]?

. b=0

Plan_Unsatisfied[id]!

Fig. 20. Analyze behavior for a vehicular traffic system

The selection of event-triggering was explained as a particular requirement for the application
domains. However, the complexity in modeling time-triggered behaviors was another factor for the
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selection. One of the participants stated: “Event-trigger is [the approach] I used the most. If [ want
to perform some actions, it is easy for me to send a signal. But time-triggering is hard to control.”

Regarding the reuse of the behavior specifications, one participant stated: “I used all the tem-
plates, but I simplified them. I took away some states that were not necessary for the behavior,
[but still] maintained the same logic”. Reduction of the templates as a refinement approach was
common to all the cases. Fig. 21 is an example of template refinement by reduction. It shows the
Monitor behavior for the smart house system in which the preProcessing step has been removed.
The updateKnowledge function has been refined (see Declaration 7) to update knowledge of the
ManagedSystem represented by the MSData structure shown in Declaration 6. Concretely, the mon-
itor is triggered when an additional temperature sensor is detected. The updateKnowledge function
then registers the new sensor in the ManagedSystemKnowledge, which in turn allows the Analyze
behavior to detect the need for self-adaptation.

Waiting Monitoring

)
Omomtor? \9 getSensors()

KnowledgeUpdated

analyze! \9 updateKnowledge()

Fig. 21. Monitor behavior (Smart house system)

// Knowledge base SA
typedef struct {

int sensorlD;

int value;

int failureflag ;
}Data;

Z 3 0 ® a0 owm o

Data MSData [5]; //SA can support up to 5 sensors
N

Declaration 6. ManagedSystemKnowledge refinement (Smart house system)

void updateKnowledge(){
for(i=0; i <5 ;i++){
MSDatali].sensorID = sens]i].sensorID;
MSDatali].value = sensli]. value;

o I - VS

Declaration 7. Monitor functions refinement (Smart house system)

All the participants confirmed that they have based the design of their behaviors on the Behavior
Specification Templates. We observed that the self-adaptation solutions that were required for the
application domains did not require all the features provided by the Behavior Specification Tem-
plates. Therefore, the participants selected a subset of the states of the templates. This is particularly
clear in the Plan and Execute behaviors, where only add branches were used, with no preparation
and postactions states. Table I-right shows the level of reuse of states in the templates. For example,
from the potential 30 states in Monitor specifications (5 states/Monitor x 6 Monitor behaviors spec-
ified), we count a total of 15 reused states, and 2 new states required for the behavior specification.
For the specifications of Plan and Execute behaviors, only add branches were used.

We illustrate behavior specification template reuse and refinement with two other examples (we
already gave one above for Monitor). Fig. 22-left shows the Plan behavior for the vehicular traffic
application. In this case, the participant refined and reduced the Plan behavior template in order
to cover the addition of a resource in the system (UseCameraSouth) when the west camera failed
(Plan_Unsatisfied[id]?). In Fig. 22-right, we observe a refinement of the Execute behavior template
for the smart house system. In this particular case, the Execute behavior calculates the average of
the different temperature sensors via calculateAV() (which refines the invokeNextAction() function)
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and feeds the controller of the heating system with the updated values (signal updateValue! to syn-
chronize with the Effector behavior).

CalculateAverage Update
UseCameraSouth Y verag P
execute? calcAV == 1
Plan_Unsatisfied[id]? @ calculateAV( O
updateT == 1
Execute_Change[id]! updateValue!

Fig. 22. Plan behavior for a vehicular traffic system system (left). Execute behavior for a smart house system (right)

In a small number of cases, the participants extended the behavior templates with additional
states. We identified two reasons for these behavior extensions. First, intermediate states are used to
refine parts of the existing behavior. Fig. 23 shows an instance of a state extension. In the Analyze
behavior of the smart house system, the Unsatisfied state has been extended with two substates (PD
and PS) in order to differentiate different types of undersatisfaction (when temperature sensors have
different and equal values).

NoNeedSA
SAflag == 0 fé\
N\
Number Values
analyze? fé\ C
O PD
& checkNumber() planN == 1 /(-:\
NeedSA & plan_Different!
_ PS
SAflag '= 0 /a a planN == 0 /a
StheckValues() &/ & plan_Same!

Fig. 23. Analyze behavior for a smart house system (right)

The second reason is the need for intermediate states in the behavior. The Analyze behavior in
Fig. 20 illustrates this; the role of the matchResources() function is specified through a sequence of
signals. When a camera is requested to provide the traffic conditions (AnalyzeTrafficSignal[id]?), it
is expected to respond (AnalyzeCamera[id]?) in less than 3 time units (b==3). If accomplished, the
system is considered to be in a Satisfied state (ObstacleCameraWorking). Otherwise, the camera is
considered to be in a failed state (ObstacleCameraFailed), and the system is in an Undersatisfied
state. To specify the sequence of signals, an additional state is introduced in the automaton.

This leads us to the analysis of reuse of functions in the behavior templates. We observed that
only 20 from a total of 76 functions in the behavior templates were used for the specification of the
MAPE behaviors (Table II). This selection aligns with the reduction of states (and transitions) used
for specifying the behaviors. The selected functions were refined in order to specify the domain-
specific part of the self-adaptation logic, usually via the specification of the functions.

However, we identified one particular case in which a function was replaced by a specified se-
quence of expected signals (time-out example in Fig. 20). We did not identify cases in which new
functions were introduced to model MAPE-K behaviors.

The automata and the language primitives used to define functions and data structures can be
considered as simplified C-like code. One of the interviewees indicated that the code used for the
behavior specification may be highly reusable for the actual software implementation. However, an-
other participant pointed to difficulties in transferring the design of signals and channels to software
code. This confirms common sense that timed automata to formalize the MAPE-K behaviors have
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Table Il. Function selection per MAPE Behav-
ior

Functions | Total | Selected (%) | New
Monitor 24 5(20.83%) 0
Analyze 20 9 (45%) 0

Plan 4 1(25%) 0
Execute 28 5 (17.86%) 0
\ TOTAL \ 76 \ 20 (26.31%) \ 0 \

Table Ill. Adaptation Goal Property selection (left), Intra-behavior Property selection (center), and Inter-behavior
Property selection (right)

Involved Behavior | Instances Scope Instances Monitsoc:gfml ze InStTnces
Monitor 0 Monitor 0 Anal ze—Pla}rll 1
Analyze 3 Analyze 5 Plan—yExecute 3

Plan 2 Plan 1 Execute-Effector 1
Execute 0 Execute 0 Plan-Effector 1
| TOTAL 3 [TOTAL [ 6 |  TOTAL | 7 |

limitations in terms of the expressiveness, and some behavior abstractions (such as communication
among distributed nodes) typically require more complex implementations.

Based on the results of our analysis, we can answer the second research question RQ2 — Do
the Behavior Specification Templates allow the behavior specification of MAPE-K components for
the specific self-adaptive systems, and if so, how? — positively. We observed that reuse of behavior
templates was achieved via refinement, reduction, and the use of multiple instances of the templates.
We observed different types of refinement, including refinement of states, transitions, functions
(specification and logic) and knowledge structures.

6.2.3. Reuse Property Specification Templates. The participants used the property specification
templates of the three groups to verify adaptation goals, intra-behavior relations and inter-behavior
relations. In total, 16 properties were specified in the different case studies (see Table III).

Three properties were used to verify the overall adaptation goals. One of these properties was
specified using the Analyze behavior only; the two others were specified using the Analyze and
Plan behaviors. Six properties were used to verify the correctness of internal MAPE component
behaviors. We observed that particular attention was given to verification of the correctness of the
Analyze behavior (five cases; the sixth case related to the correctness of the Plan behavior). Finally,
seven properties were used to verify the interaction between MAPE behaviors. Five of these prop-
erties involved the Plan behavior. In summary, we observe that the Analyze and Plan behaviors are
considered as the most critical behaviors for self-adaptation by the participants. We illustrate each
group of property specification templates with concrete instances.

The following properties are instances of Adaptation Goal Specification template P1:

Pl: Analyze (X) .Unsatisfied -->
Analyze (X) .Satisfied || Analyze (X) .Oversatisfied

Prl: Plan(l) .UseCameraSouth --> Analyze(l).0ObstacleCameraWorking
Pr2: AlarmAnalyze (0) .NotWorked —--> AlarmAnalyze (0) .Worked
Pr3: Room.SmokeIncreased and Alarm(0) .Broken ——>

Alarm(l) .Red_loud and Alarm(2) .Red_loud

Prl specifies a property for a vehicular traffic system that verifies that when the West camera
failed and the planner plans to use the South camera to detect obstacles (Plan(1).UseCameraSouth)
the Analyzer will eventually reach a Satisfied state (as a result of the adaptation process), that is, the
obstacle camera is working properly (Analyze(1).ObstacleCameraWorking). Pr2 and Pr3 belong to
a third case study focusing on a security system for fire detection. Property Pr2 specifies a prop-
erty for a fire detection system that verifies that when the Alarm Analyzer detects that the detection
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system is not working properly (AlarmAnalyze(0).NotWorked), this problem will eventually be re-
solved (AlarmAnalyze(0).Worked). Property Pr3 specifies that when increasing smoke is detected
and an alarm in one of room is broken, the alarms in the other rooms are directly put in highest
alarm (Alarm(x).Red_loud).

The following properties are instances of Intra-Behavior Specification template P2:

P2: (ConcernKnowledge [X].required_resources >
ManagedSystemKnowledge [X] .used_resources) --> Analyze (X).Unsatisfied

Pr4: A[] (Analyzer.NoNeedSA imply numberOfSensors == 1)

Pr5: A[] (Analyzer.NeedSA imply numberOfSensors > 1)

Pr4 and Pr5 specify properties for the smart house system that allow verifying that the Analyzer
correctly detects the need for self-adaptation. Concretely, if only a single temperature sensor is
registered (numberOfSensors == 1), there is no need for adaptation (AnalyzerNoNeedSA), but if
more sensors are registered (numberOfSensors > 1) adaptation is required (Analyzer.NeedSA).

The following properties are instances of an Inter-Behavior Specification template P9:

P9: Plan(X) .AddPlanReady —--> Execute (X) .DoActionAdd

Pr6: Planner.PlanReady —-—-> Executor.CalculateAverage
Pr7: Execute(l).InformCameraSouth --> Effector(l).ChangeCameraAngle

Pr6 specifies specifies a property for the smart house system that verifies that when the planner
is ready to incorporate a new sensor (Planner. PlanReady) the executer will eventually calculate the
average of the sensed values of the sensors (Executor.CalculateAverage) and adapt the managed
system accordingly (see Fig. 22-right). Pr7 specifies a property that involves the Execute and Ef-
fector behavior for a vehicular traffic system. The property verifies that when the alternative south
camera is activated to extend its monitoring scope (Execute(1).InformCameraSouth), the effector
will expand the scope-view of the camera (Effector(1).ChangeCameraAngle) to cover west traffic
(in addition to the south traffic covered in normal conditions).

The case studies demonstrate the reusability of the Property Specification Templates. During the
interviews, the participants acknowledged that they directly used or based their property specifi-
cations on the Property Specification Templates. The templates assisted the participants to identify
properties that were suitable and relevant to verify the correct behavior of their self-adaptive system.

Based on the results of our analysis, we can answer the third research question RQ3 — Do the
Property Specification Templates allow the property specification for MAPE-K loops for the specific
self-adaptive systems, and if so, how? — positively. The Property Specification Templates provide
guidance to the designer to identify concrete properties for the self-adaptive system at hand. The
participants stated that the proposed set of templates covered their needs and the property templates
simplify the verification tasks. One of the participants stated: “The properties [aka. property speci-
fication templates] saved time”. The participants used property specification templates of the three
groups to verify the correctness of their self-adaptive systems. The selection was not equally dis-
tributed; Inter- and Intra-behavior properties were more frequently used than Adaptation Goal Spec-
ification properties. This observation reflects the fact that designers not only verify self-adaptation
goals, but put significant emphasis on the correctness of MAPE behaviors and their interactions.

6.2.4. Reflection on the Study Results. We run four case studies in order to collect qualitative
evidence for the reusability of the MAPE-K Formal Templates. The successful application of the
templates to different applications of the target domain demonstrates the reusability of the templates.

The participants commonly supported the benefits of the templates to reason about the managing
system. One participant stated: “It makes the process clear. I know what the components must do. It
also helped to understand the process expected from managing systems.” Additionally, we obtained
indications that the use of the templates has a positive effect on the required efforts and time to
design the managing systems. The specification of distinct MAPE behaviors allows easier compre-
hension of the component roles. One participant stated: “The way [the templates] are written, they
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almost work for every type of system. They need some small customization. The whole idea was
clear and it saved a lot of time. [Also] it help understanding how the system would work” .

The participants raised concerns in transferring formal specifications into code implementation.
Aspects such as communication between components are highly abstracted in the Behavior Speci-
fication Templates, which allow powerful reusability, but are more difficult to transfer into code.

In general, the participants perceived the use of the MAPE-K Formal Templates for the design
of a self-adaptive system as a satisfactory experience. One of the participants phrased it: “/I would
use the templates again] if [ want to design a self-adaptive system, because it makes things easier
Jjust to follow the process”. Note that the statements of the participants should be considered from
the perspective of Masters students with no previous experience in design and development of self-
adaptive systems. However, they show the potential for the reusability of the templates by such
developers. The study results provide initial evidence that defining reusable templates for the field
of self-adaptive systems is promising, which is pointed out as a key challenge in [Filieri et al. 2012].
To get additional evidence for the reuse of the MAPE-K Formal Templates, the qualitative results
of this study need to be complemented with additional quantitative experiments.

During these case studies, the participants were free to select application domains. This was a
critical aspect in order to avoid internal threat to validity of the results. The design of the managed
system was performed before introducing self-adaptation concepts, to study the reuse of the tem-
plates in quasi-real settings, in which a self-adaptive layer is created upon a legacy managed system
design. The students were also free use the MAPE-K Formal Templates for the specification of the
self-adaptive systems’ behaviors. The goal of the course was to rigorously specify and verify the
behaviors of a self-adaptive system, therefore alternative approaches could have been applied. The
recordings of the sessions, interviews, specifications and documentation generated during the study
are available at the project website.

7. CONCLUSIONS

A recent survey [Weyns et al. 2012a] identified a lack of consolidation of the formal design of self-
adaptive systems. The templates presented in this paper consolidate our research efforts on the use of
formal methods for the design and verification of a family of self-adaptive systems. The templates
provide reusable design knowledge, which can be considered as a domain specific language that
allows rigorous modeling and verification of the behaviors of MAPE-based feedback loops for a
target domain of distributed applications in which self-adaptation is used for managing resources
for robustness and openness requirements via adding and removing resources from the system.

We believe that documenting design expertise (such as the templates presented in this paper) is
an important effort in the evolution of an engineering field (in our case the field of self-adaptive
systems). Several researchers share this belief. The first roadmap paper of the community states:
“Creating a catalogue of feedback types and self-adaption techniques is an important and likely
fruitful endeavor our community must undertake.” [Cheng et al. 2009]. Another prominent example
in the related domain of software architecture is: “Mature engineering disciplines are characterized
by handbooks and other reference materials that provide engineers with access to the systematic
knowledge of the field. Cataloging architectural patterns is a first step in this direction.” [Shaw
and Clements 2006]. When defining the behavior and property specification templates we had to
balance between generality and usability. More specific templates are potentially more expressive
and provide designers more fine-grained elements for modeling and verification. However, more
specific templates introduce more complexity, which may hamper their usability. It may also limit
the applicability of the templates in terms of the target domain. To find the right balance we derived
the templates from different applications and validated the results with new cases. The templates
have shown to be useful for the specification of behaviors of different application scenarios as
demonstrated in the case studies. Whether they are useful for other domains, requires further study.

Following the essentials of the MAPE-K reference model, the behavior templates support the de-
sign of the MAPE functions as distinct behaviors. Benefits of designing the distinct adaptation func-
tions are: support for fine grained verification, increase of adaptation understandability and reduc-
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tion of system’s complexity; the latter was demonstrated in a recent empirical experiment [Weyns
et al. 2013a]. The case studies reported in this paper support these claims, we observed a reduction
in efforts, both in terms of time to understand the MAPE behaviors and their design for concrete
applications.

However, our experiences have also identified some limitations in terms of expressiveness of
modeling. Timed automata provide an intuitive modeling language, but, the language primitives
primarily support modeling of behavioral aspects of designs. Furthermore, aspects such as messag-
ing and communication protocols, which are commonly used in distributed systems, can be difficult
to model with the language primitives of timed-automata. Therefore, in some cases it may become
challenging to model the behavior of a distributed self-adaptive system.

In our future efforts, we consider the application of the MAPE-K Formal Templates to more com-
plex self-adaptive systems. This will allow us to further test the appropriateness of both the behavior
and property specification templates and, moreover, their applicability to larger-scale applications.
We plan to focus on the knowledge part of the MAPE-K loop and define reusable model templates
for particular sub-domains. In this research line, we plan to incorporate support for modeling and
verifying probabilistic properties, which are essential to model uncertainties in self-adaptive sys-
tems. Finally, we also plan to study interacting MAPE-K loops which are essential to deal with
multiple concerns and self-adaptation in decentralized settings.
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