
Online Appendix to:
MAPE-K Formal Templates to Rigorously Design Behaviors for
Self-Adaptive Systems

DIDAC GIL DE LA IGLESIA, Linnaeus University
DANNY WEYNS, Linnaeus University

A. TIMED AUTOMATA AND TIMED COMPUTATIONAL TREE LOGIC
A timed automaton (TA) is a finite-state machine extended with clock variables that models a be-
havior. Clock variables are used to synchronize behaviors. Additionally, automata can communicate
through channels, where the sender behavior x! synchronizes with the receiver behavior x?.

A timed automaton is a tuple (N, l0, T, Label, C, clock, guard, invariant) [Bengtsson and Yi
2004] in which:

N a non-empty, finite set of locations (or nodes) with an initial lo-
cation l0 2 N ;

T ✓ L⇥ L a set of transitions;
Label : N ! 2AP a function that assigns to each location l 2 N a set Label(l) of

atomic positions;
C a finite set of clocks;
clock : T ! 2C a function that assigns to each transition t 2 T a set of clocks

clocks(t);
guard : T ! (C) a function that labels each transition t 2 T with a clock con-

straint guard(t) over C;
inv : N ! (C) a function that assigns to each node an invariant.

In this work, we use UPPAAL [Behrmann et al. 2006] to model TA. In UPPAAL behavior
specifications can be complemented with expressions specified in a C-like language to define
data structures (struct concept) and functions. We follow UPPAAL symbol’s conventions for the
description of the behavior templates, presented in Table IV.

The following points apply to the specification of the behaviors and should be considered to
understand internal node behaviors and interactions between the automata.

— Automata do not synchronize except with signal? / signal!
— Conditions are evaluated locally by the node executing a given automaton
— Functions are executed locally on the node executing a given automaton
— Conditions are evaluated before a transition is selected for execution
— Functions are executed (synchronously) as a result of selecting a given transition
— A transition may have no function/signal associated with it

Transitions between TA’s states can fire either by an event-triggering or time-triggering. With
event-triggering one automaton triggers another via a signal sent through a channel. This case is
illustrated in Fig. 24-left, where an automaton with a behavior B1 fires a signal in order to trigger
a transition on the behavior B2. In this case, we say that the second behavior B2 is dependent on
B1, as this would not be able to execute transitions without the corresponding signal from the first.
Optionally, data may be transferred from a behavior B1 to a B2 using a knowledge repository. With
time-triggering a transition is fired based on state invariants and time conditions. This case is shown

c� 2015 ACM 1556-4665/2015/01-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, Article X, Publication date: January 2015.

App–2 D. Gil de la Iglesia and D. Weyns

Table IV. Conventions in Timed Automata figures

Figure Name Description

State A
State States of behaviors are represented by circles and (option-

ally) annotated in red on top of the associated state.
Committed State Committed states are represented with circles containing

the c character. Committed states must be left without time
consumption.

Urgent State Urgent states of behaviors are represented with circles
containing the u character. Urgent states must be left as
soon as exiting conditions are found (normally defined by
conditions on outgoing transitions).

Initial State Initial states of behaviors are represented by double-lined
circles. There must be one unique Initial State per automa-
ton, specifying the behavior state when the system starts.

t<=Period
Invariants Invariants that need to be satisfied in certain states are an-

notated in purple under the related state.
Transition Transitions between two states are represented by direc-

tional arrows, showing the origin and destination of the
transition.

condition() Conditions Conditions determine the possibility for a transition to be
taken. Conditions to enable firing of transitions between
states are annotated in green under the related transition.

signal? Signal Signals used for communication between behaviors are
annotated dark blue over the associated transition.

function()
Function Functions associated with behaviors are annotated in light

blue under the associated transition. Functions are exe-
cuted when the related transition is taken.

in Fig. 24-right, where a behavior B2 autonomously executes transitions in the automaton on a time-
based approach (Tick). Due to the autonomy of the behavior with respect to another B1 behavior,
time triggering requires a data repository to store shared knowledge whenever information needs to
be transferred between behaviors. In general, time-triggering is less efficient in terms of verification
(as it implies more execution threads).

c

 B1

c

 B2

Data

Time-Triggered
Component

Transition

KEY

Repository

Data access

Behavioral
Process

c

B1

c

 B2

Data

Event-Triggered

signal

Tick

Clock

Event

Fig. 24. Event- (left) and time- (right) triggering approaches for component behaviors

Fig. 25 and Fig. 26 show examples of event triggering and time triggering approaches re-
spectively for a Monitor behavior in a GPS based scenario. In the event triggered approach
(Fig. 25), behavior leaves the Monitoring state when triggered by an event (represented by the
GPSwentDown[PiD]? signal). In this example, the GPSwentDown[Pid]! event informs about a

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, Article X, Publication date: January 2015.

MAPE-K Formal Templates to Rigorously Design Behaviors for Self-Adaptive Systems App–3

required GPS quality threshold being unsatisfied.

Once triggered, the automaton performs specific actions designed for the monitor behavior
and comes back to the Monitoring state. These actions include the collection of the most recent
information regarding the monitored resource (which is identified and labelled with an ID,
caseID=getCase()), the information regarding the group in which this resource is being used
(myMVD=determineMyMVD(Pid)) and an update of the Knowledge(remove Phone(myMVD)). An
identification of the case is required in order to avoid redundant events informing about the same
GPS quality problem.

rem ove_Phone(m yMVD)

m yMVD = determ ineMyMVD(Pid)caseID = getCase()

Monitoring

m yMVD ! = NOGROUP

m yMVD == NOGROUP

! isNew(caseID)
GroupIdentified

GPSwentDown[Pid]? isNew(caseID)

CollectingGroup

Fig. 25. Formal specification behavior with event triggering approach

In the time triggered approach (Fig. 26), a transition in the behavior is triggered periodically via a
clock (t) and a defined period (5 seconds in the example). On this defined period basis, the automaton
leaves the Monitoring state in order to perform the specific monitor actions. Before coming back
to the Monitoring state, the automaton requires that the clock is initialized (t=0) in order to allow
further time based triggers. In the time triggered approach, as the behavior is triggered on a period
basis instead of detected changes in the quality of the GPS module, it is important to check whether
errors have been found or not (caseID==NONE) before further actions are performed.

Monitoring GroupIdentified

rem ove_Phone(m yMVD),
t=0

t = 0

t<= 5

t=0

caseID = getCase() m yMVD = determ ineMyMVD(Pid)

m yMVD ! = NOGROUP

m yMVD == NOGROUP

isNew(caseID)

! isNew(caseID) || caseID==NONE

t == 5

CollectingGroup

Fig. 26. Formal specification behavior with time triggering approach

UPPAAL supports the design of property specification using timed-computational tree logic
(TCTL). TCTL is a formal language for property specification based on TCL extended with clock
variables. The syntax supported by UPPAAL for property specification is defined as follow [Hen-
zinger et al. 1994]:

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, Article X, Publication date: January 2015.

App–4 D. Gil de la Iglesia and D. Weyns

� ::= p | !� | � _ � | EX � | E[� [�] | A[� [�] | z.�
Where:

� is a property to be specified;
p is an atomic proposition or a clock constraint;
EX is an expression applied on a property;
E expresses the existence of a path that fulfills a property;
A expresses the invariant fulfillment of a property;
z expresses a state predicate

Below, we explain the different symbols that can be used in the TCTL sintaxis.

E[]p There is a path in which p will always hold. For example, there is a path where a GPS
module has always NULL coordinates. This is a broken during manufacturing GPS mod-
ule.

E <> p It is possible to reach a state in which p is satisfied. For example, a GPS module will
eventually acquire position coordinates.

A[]p p holds invariantly. For example, location coordinates are always on earth.
A <> p p is inevitable. It will eventually happen. For example, a GPS will eventually fail in gath-

ering accurate positions.
A�� > B If A becomes true, then B will inevitably be true. For example, if a GPS module turns on,

it will eventually collect GPS coordinates.
A imply B If A becomes true, B will become true at the same time. For example, if a GPS acquires

location coordinates, then some accuracy values with respect to the location coordinates
are obtained.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, Article X, Publication date: January 2015.

