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Abstract—Modern software systems are subject to uncer-
tainties, such as dynamics in the availability of resources or
changes of system goals. Self-adaptation enables a system to
reason about runtime models to adapt itself and realises its
goals under uncertainties. Our focus is on providing guarantees
for adaption goals. A prominent approach to provide such
guarantees is automated verification of a stochastic model
that encodes up-to-date knowledge of the system and relevant
qualities. The verification results allow selecting an adaption
option that satisfies the goals. There are two issues with this
state of the art approach: i) changing goals at runtime (a
challenging type of uncertainty) is difficult, and ii) exhaustive
verification suffers from the state space explosion problem. In
this paper, we propose a novel modular approach for decision
making in self-adaptive systems that combines distinct models
for each relevant quality with runtime simulation of the models.
Distinct models support on the fly changes of goals. Simulation
enables efficient decision making to select an adaptation option
that satisfies the system goals. The tradeoff is that simulation
results can only provide guarantees with a certain level of
accuracy. We demonstrate the benefits and tradeoffs of the
approach for a service-based telecare system.

Keywords-Self-adaptation; models and simulation at run-
time; TAS exemplar;

I. INTRODUCTION

Over the past years, various self-adaptation approaches
have been proposed to deal with the dynamics and uncertain-
ties of software systems (e.g., the availability of resources
or changes of system goals may be difficult to predict at
design time). Central to these approaches are feedback loops
equipped with models that are updated at runtime, when new
knowledge becomes available. The system uses these models
to reflect upon itself and achieve its goals by adapting
itself in response to changing conditions [7], [11]. With the
increasing demand for self-adaptation in applications with
critical goals, providing guarantees for the system goals has
become an important subject of research [25], [8], [27].

One prominent approach to provide such guarantees is
runtime automated verification that allows checking whether
certain properties hold for the system model during op-
eration. There is a particular interest in using stochastic
models that encode system behaviour and knowledge of
relevant qualities. The probabilities of the transitions can
be based on value estimates provided by domain experts,

but as these values may change over time they need to
be updated online [12]. Verification of a stochastic model
through exhaustive analysis of the state-transition graph
of the system model enables to calculate expected quality
properties (e.g., likelihood of failures, expected response
times) for different adaptation options, allowing the system
to select an option that satisfies the system goals and adapt
accordingly [5], [4].

There are two issues with this state of the art approach.
Encoding the system behavior and knowledge of different
quality properties in a single model lacks flexibility to
change goals at runtime, which is an important, but chal-
lenging type of uncertainty [11]. Furthermore, exhaustive
verification suffers from the state-space explosion problem,
which puts constraints on the time and resources required
to perform verification, and the size of the models that can
be verified. This problem becomes particular relevant for
verification at runtime, when time and resources are often
constrained. Optimisation techniques have been proposed,
for example caching and lookahead [16], but new approaches
will be required to provide guarantees for self-adaptation at
runtime in an efficient way.

In this paper, we propose a novel modular approach for
decision making in self-adaptive systems that is based on
distinct models for each relevant quality combined with
runtime simulation of the models. Distinct models support
on the fly changes of goals. Simulation enables efficient
decision making to select an adaptation option that satisfies
the system goals. By using statistical techniques, simulation
allows to provide results with a required level of accuracy.
Simulation is less time and resource consuming compared
exhaustive verification approaches. However, the tradeoff is
that the guarantees are bounded to a certain level of accuracy.

The remainder of this paper is structured as follows.
Section II discusses selected related work. In Section III,
we introduce a telecare system that we use for illustration
and evaluation. Section IV introduces the novel modular
approach for decision making in self-adaptive systems. In
Section V, we evaluate the approach using the telecare
system. Section VI wraps up and outlines directions for
future work.



II. RELATED WORK

We have divided related work in three parts: i) runtime
automated verification, ii) simulation in self-adaptive sys-
tems, and iii) adaptation goals. We limit the discussion to a
selection of representative approaches from the huge body
of work that has been developed over the past years.

There is an increasing trend in the use of formal methods
at runtime in self-adaptive systems [29]. [12] represents
the possible execution flows of a system at runtime with
a discrete time Markov chain. The probabilities that repre-
sent uncertainties are dynamically updated with a Bayesian
estimator. [13] proposes a two-step verification approach: a
pre-computation step computes a set of symbolic expres-
sions, which represent satisfaction of the requirements, a
verification step then evaluates the formula by replacing the
variables with values gathered at runtime. In [5], formally
specified requirements are automatically analyzed using
runtime model checking techniques to identify and enforce
optimal configurations and resource allocations of service
systems that are modeled using a Markov model. [17]
uses a Markov decision model of the system that enables
an interpreter to drive the execution of the system and
guarantee the highest utility for a set of quality properties.
[14] propose a effective lightweight filtering approach that
learns and continuously updates the transition probabilities
of discrete time Markov models of the system. In summary,
state of the art proposes to equip the feedback loop with a
stochastic model that maintains up-to-date knowledge about
the relevant qualities and uncertainties of the system. This
model is kept alive and used by automated verification to
identify system configurations that comply with the required
goals and adapt the system as required.

Simulation allows to explore many different states of
the system without being prevented by an infinite (or at
least very large) state space. Simulation runs can provide
guarantees at different levels of fidelity, based on the level of
abstraction of the model used and number of simulation runs
applied. Simulation is a commonly used for evaluating novel
approaches for self-adaptation [29]. Evaluation can also
be used during the engineering process, e.g., to iteratively
improve the design of self-adaptive systems, as in [6]. Sim-
ulation is rarely used to support decision making at runtime
in self-adaptive systems. One example is [23], that presents
an approach that automatically builds a dynamic model of
a business process to realise service level agreements, while
optimizing system resources. The prediction is based on a
simulation model whose parameters are tuned at runtime.
As recently pointed out [27], simulation offers interesting
opportunities to provide guarantees for self-adaptive systems
at runtime. However, the approach has not been well studied
yet.

A variety of goal models have been proposed to deal with
adaptation. We highlight a few representative examples. The

RELAX language [31] allows temporal relaxation of require-
ments to capture uncertainty. FLAGS [1] proposes “crisp
goals” specified in linear temporal logic and “fuzzy goals”
specified in fuzzy temporal language. [24] distinguishes
“awareness requirements” that refer to situations that require
adaptation and “evolution requirements” that prescribe what
to do in these situations. While several approaches support
the operationalisation of adaptation based on goal models,
further research is required to support solutions that allow
changing adaptation goals on the fly [11], [8].

III. TELE ASSISTANCE SYSTEM

The Tele Assistance System (TAS) provides health sup-
port to users in their home [5], [28]. Users wear a device that
uses third-party remote services from health care, pharmacy,
and emergency service providers. Fig. 1 shows the TAS
workflow that comprises different services. The workflow
can be triggered periodically to measure the user’s vital pa-
rameters and invoke a medical analysis service. Depending
upon the analysis result a pharmacy service can be invoked
to deliver new medication to the user or change his/her
dose of medication, or the alarm service can be invoked,
dispatching an ambulance to the user. The user can also
invoke the alarm service directly via a panic button.
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Drug Service
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Figure 1: TAS workflow

Multiple service providers provide concrete services for
Alarm service, Medical analysis service, and Drug service,
abbr. by AS, MAS, and DS respectively. Concrete services
have a failure rate F rate and an invocation Cost. Table I
shows the initial values declared by the service providers.

Table I: Third party service profiles for TAS

S.No AS MAS DS
F rate Cost F rate Cost F rate Cost

1 0.11 4.0 0.12 4.0 0.01 5.0
2 0.04 12.0 0.07 14.0 0.03 3.0
3 0.18 2.0 0.18 2.0 0.05 2.0
4 0.08 3.0 0.10 6.0 0.07 1.0
5 0.14 5.0 0.15 3.0 0.02 4.0

As a default behavior we assume that TAS selects a par-
ticular configuration of services, e.g. {AS3, MAS4, DS1}.
We consider two types of uncertainties in TAS. The first one
is related to the actions performed to the system. As shown
in Fig. 1, we assume that on average 75% of the requests
are (automatically triggered) checks of vital parameters and



25% are emergency calls invoked by the user. After checking
vital parameters, depending upon the result 66% of the
requests invoke the drug service, and 34% of the requests
invoke the alarm service. However, these probabilities can
change over time. The second uncertainty is related to the
concrete services of the system. These uncertainties include
the availability of services and quality parameters of running
services. Depending upon load on the system, the network
and other conditions the initial values of the failure rates
and response times of the services are subject to change.

We apply self-adaptation to TAS to deal with uncertainty
related to failures, cost, and service time. An offline analysis
may find a configuration which supports the set of require-
ments. But as there are many uncertainties associated with
TAS, there is a need for adapting the current configuration
at runtime based on the actual values of these uncertainties.

IV. MODULAR DECISION MAKING APPROACH FOR
SELF-ADAPTATION

We introduce the novel modular decision making ap-
proach for self-adaptation in two steps. We start with a high
level overview of the model for self-adaptation we use in
this research. Then we zoom in on change management, the
central part of decision making for self-adaptation.

A. Model for Self-adaptation

In this research, we study architecture-based self-
adaptation, where a self-adaptive system consists of a man-
aged system that provides the domain functionality and a
managing system that monitors and adapt the managed sys-
tem [22], [15], [21], [26]. Furthermore, we look at managing
systems that are realised with a MAPE-K based feedback
loop that is divided in four components: Monitor, Analyze,
Plan, and Execute [19], [30], that share common Knowledge
(hence, MAPE-K). Knowledge comprises models that pro-
vide a causally connected self-representation of the managed
system referring to the structure, behavior, goals, and other
relevant aspects of the system [3].

Fig. 2 shows the high-level overview of the model for self-
adaptation that we use in our research. The model conforms
to the three-layer model of Kramer and Magee [21].

The Managed System is the software that is subject of
adaptation. At a given time the managed system has a par-
ticular configuration that is determined by the arrangement
and settings of the running components that make up the
Managed System. The set of possible configurations can
change over time. We refer to the different choices for adap-
tation from a given configuration as the adaptation options,
or alternatively the possible configurations. Adapting the
managed system means selecting an adaptation option and
changing the current configuration accordingly. We assume
that the Managed System is equipped with probes and
effectors to support monitoring the system and apply adap-
tations. How these probes and effectors are realised is out

ExecutorPlannerAnalyzerMonitor
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Knowledge Repository

Effectors

Managed System

Change Management

Goal Management
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Figure 2: High-level model for self-adaptation

of scope of this paper. The Managed System is deployed in
an environment that can be the physical world or computing
elements that are not under control of the Managed System.
The Managed System and the environment may expose
stochastic behavior.

The Managing System comprises two sublayers: Change
Management and Goal Management. Change Management
adapts the Managed System at runtime, using the MAPE
components of the feedback loop that interact with the
Knowledge Repository. The MAPE components can trigger
one another, for example, the Analyser may trigger the
Planner once analysis is completed. The Analyser is sup-
ported by a Runtime Simulator that can run simulations on
the models of the Knowledge Repository during operation.
In our current work on modular decision making for self-
adaptation, we consider single MAPE loops. Extensions
to interacting MAPE loops is subject of our future work.
Goal Management enables to adapt Change Management
itself. Goal Management offers an interface to the user to
change the adaptation logic, for example, to change the
models of the knowledge repository, or change the MAPE
functions. Changing the adaptation software should be done
safely, e.g., in quiescent states [20]. We do not elaborate in
these technical aspects as the primary focus of this paper is
on Change Management.

Example – TAS is an example of a Managed System and
a configuration of this system is an orchestration of a set
of concrete services. The adaptation options for TAS are
the different combinations of available concrete services.
These possible configurations can change over time, e.g.,
when concrete services are no longer available or new



services appear. The current configuration can be adapted
by replacing one or more concrete services that provide
better quality of service. TAS exposes stochastic behavior
both with respect to the actions invoked to the system as
changes in the quality and other parameters of the concrete
services. To deal with the uncertainties, a Managing System
is added to TAS that aims to guarantee the system goals
regardless of the uncertainties.

We have developed a concrete realisation of the modular
approach for decision making in self-adaptive systems that
we used for evaluation (see Section V). For additional
information, we refer to the project website.1

B. Change Management

Fig. 3 shows the key elements of Change Management.
We start with explaining the elements of the Knowledge
Repository. Then we explain the MAPE components.

1) Knowledge Repository: The Managed System Model
and Environment Model capture the essential elements of
the managed system and its environment that are needed
to make adaptation decisions. The Quality Models capture
the characteristics of the different qualities that are subject
of adaptation. All the models are parameterised, where
the parameters represent variability and/or uncertainty of
model elements. A central aspect of the modular approach
for decision making in self-adaptive systems is the use
of distinct quality models. The approach does not assume
any particular types of models; any type of model that
supports simulation at runtime (if needed) can be used. In
our current realisation, we use stochastic timed automate
(STA) as modeling language. STA are a stochastic extension
of timed automata [2], [9]. A timed automaton is a finite
state machine extended with a set of real-valued clocks. STA
allow to represent uncertainties by probabilities associated
with transitions in the models. Furthermore, STA models
can be parameterized to capture variations or changes in the
system or the environment.

For each quality model, a set of Simulation Queries
is provided. A simulation query enables determining an
estimate for the value of a quality property for a possible
configuration by running one or more simulations on the
configuration model with the corresponding quality model.
A simulation query is formulated as simulate N [<=
bound]{E1, .., Ek}, where N is the number of simulation
runs to be performed, bound is the time bound on the
simulation runs, and E1, ..., Ek are state-based expressions
that need to be monitored during the simulation. The time is
the simulation time, where each tick represents a period of
wall clock time. So, a query simulates the system N times
over a given period of time to provide insight to the user on
the behavior of the system for the expressions E1, ..., Ek.

1homepage.lnu.se/staff/daweaa/ActivFORMS/Model-based-simulation.htm

The Adaptation Goals define the objectives that need to be
realised by the MAPE components. The modular approach
for decision making in self-adaptive systems supports any
type of representation of adaptation goals. In our current
realisation, we represent adaptation goals as a set of rules
defined over the quality properties that are subject of adap-
tation.

Finally, the Current Adaptation Options list the possible
configurations of the managed system that may be ranked
based on the adaptation goals. The Current Plan comprises
the set of actions that are required to adapt the current
configuration to the selected adaptation option.

Example – The Managed System and Environment Model of
TAS capture essential aspects of the telecare system and its
users. E.g., the environment model represents the behavior
of the user, where the preferences for user actions can be
expressed as probabilities. The model of the managed system
captures the essential elements of the TAS workflow. The
concrete services that are used by the system are parameters
in the model. In TAS, we use distinct models for failure
behavior of services, service times of service invocations,
and cost for using TAS. Each quality model is provided with
a simulation query that enables determining an estimate for
the value of a quality property for a possible configuration.
For example, a query to estimate the expected average failure
rate of a possible configuration based on 35 simulations,
each for a period of 100 time units could be:

simulate 35[<= 100]{AssistanceService.failureRate}
Examples of adaptation goals in TAS are:

R1 : averageCost <= 8 (× 10−3)
R2 : averageResponseT ime <= 2.5 s (× 10−3)

The first rule states that the average cost per invocation
should not exceed 8 units per 1000 invocations. The second
rule states that the average response time per service invo-
cation should be below 2.5 seconds per 1000 invocations.

The current adaptation options is a list of the possible
configurations of the managed system with estimates of the
respective qualities. Here is an example entry in this list:

{MAS1, DS4, AS5}, fRate= 0.12, cost = 8.5, sTime = 17

The current plan in TAS contains a set of required service
replacements to transfer the current configuration to the new
configuration selected by the decision making mechanism.

2) MAPE Components: The Monitor component tracks
the behavior of the managed system and the environment
through probes updating the runtime models. The monitor
comprises distinct Updating components for each runtime
model. The approach does not assume any particular type
of updating mechanism. Examples are basic updating mech-
anisms that update the parameter values of models based
on changes in the underlying system or the environment, or
more advanced mechanisms such as Bayesian and reinforce-
ment learners.
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Figure 3: Change Management of the modular approach for decision making in self-adaptive systems

The Analyzer component analyses the up to date knowl-
edge of the models to determine whether an adaption is
required. To that end, the Analyzer uses the Runtime Simu-
lator to estimate the qualities of each possible configuration.
Concretely, the Analyzer starts with selecting models (man-
aged system model for a concrete configuration, environment
model, and a particular quality model. Then the Analyzer
invokes the simulation query for the given quality model.
The parameters of the simulation query (N and bound) are
configured based on the required accuracy. The simulator
uses the selected models to compute an estimate for the
quality using the simulation query. This estimate is returned
to the Analyzer. In our current research, we use the standard
error of the mean (SEM) as a measure to determine the
accuracy of the simulation queries. The SEM quantifies how
precisely a simulation result represents the true mean of the
population (and is thus expressed in units of the data). SEM
takes into account the value of the standard deviation and the
sample size. Concretely, we use the relative SEM (RSEM),
which is the SEM divided by the sample mean and expressed
as a percentage. For example, a RSEM of 5 % represents an
accuracy with a SEM of plus/minus 0.5 for a mean value
of 10. Evidently, more accurate results (better estimates)
require smaller RSEM values and thus more simulation
runs. Currently, we empirically determine the number of
simulation runs required for a particular accuracy based on
offline experiments. Once the Analyzer has performed an

analysis of all the qualities for all the possible configurations,
it writes the adaption options to the Knowledge Repository.

The Planner component ranks the adaptation options
based on the adaptation goals and creates a plan for the
highest ranked option. This plan is then used by the Executor
component to adapt the managed system.

Example – The TAS Monitor comprises Updating com-
ponents for the different runtime models. The preferences
of user actions of the environment model are periodically
updated based on information directly retrieved from the
service providers. The Updating mechanism of the managed
system model tracks concrete services that disappear or new
concrete services that become available and updates the
knowledge accordingly. For the properties of the different
quality models (failure rates, response time, queue lengths)
we use simple learning algorithms that track the averages
of the respective properties over a period of time. The
TAS Analyzer uses the Uppaal-SMC engine [9] to perform
the simulations of the runtime models. To determine the
parameters of the simulation queries we performed a series
of offline experiments for different TAS configurations with
different qualities and parameter settings. Based on these
results, we have set the number of required simulations
to 50 for a RSEM of 10% and to 125 for a RSEM of
5%. For details of this experiments, we refer to the project
website. The selection of the adaption option for TAS is
based on sequentially applying the rules that define the



adaptation goals. As an example, for an adaptation scenario
that considers failure rates, cost, and service time, first the
possible configurations with a failure rate below a required
value are selected. From this set the possible configurations
with a cost below a certain value are selected. Finally, the
configuration with the lowest service time is selected and a
plan is generated and executed to adapt the system.

V. EVALUATION

We now evaluate the modular approach for decision
making in self-adaptive systems using a prototype realisation
of TAS. We start with presenting the different runtime
models that we used in the experiments. Then, we present
the results of a first series of experiments in which we
consider failure rates and service invocation costs. Next,
we extend the first case taking into account the service
time of TAS, demonstrating the flexibility of the modular
approach. We conclude with experiments that show the
scalability of the approach by comparing the adaptation time
with an exhaustive approach based on runtime quantitative
verification.

A. Runtime Models

The runtime models of TAS are modeled using stochastic
timed automata (STA); an extension of timed automata with
stochastic behavior. STA communicate through broadcast
signals and shared variables creating networks of STA.

Fig. 4 shows the environment model that represents the
actions invoked to TAS. We use a scenario where each
time tick either a sample of the vital parameters is taken
from the user (with a probability value of p ANALYSIS) or
the alarm button is pushed by the user (with a probability
p EMERGENCY, which is equal to 1 - p ANALYSIS). A
sample is sent for analysis via the signal medicalAnalysis!,
while pushing the alarm button triggers an emergency call
via the emergency! signal. The probabilities are updated
at runtime. After invoking an action, TAS processes the
request. Once the service completes, the user is notified via
the serviced? signal.

Figure 4: Environment model

Fig. 5 shows the model of the managed system. The
system starts with assigning concrete services to the work-
flow using the function assignServices(AD, MAS, DS) and
then waits for incoming requests. The parameters AD, MAS,

DS can be assigned any concrete instance that is available
of the alarm services, medical analysis services, and drug
services respectively. Upon receiving a request for medical
analysis or an emergency call, respectively the signals vi-
talParamMsg! or the buttonMsg! are sent to the workflow
model (i.e., a selected quality model as we will discuss
below). The managed system model keeps track of the
number of invocations, which is required by the quality
models to calculate averages. After invoking the workflow
the request is processed in the Processing state until the
done? signal is received, which triggers a notification to the
Environment model via the serviced! signal.

Figure 5: Managed System model

Fig. 6 shows the quality model of failure behavior of
the assistance service of TAS. The model allows estimating
failure rates of assistance service invocations. An assistance
service invocation fails if any of the services that is needed
fails. If the alarm service is directly invoked calculating the
failure rate is straightforward and equal to the actual failure
rate of the concrete alarm service that is used (getASFR()).
If the medical analysis service is invoked the failure rate
is calculated by summing the failure rate of the concrete
analysis service plus a fraction of the failure rate of the
concrete alarm service or drug service, depending on service
that is required service (that is, the path that is taken
based on the probabilities p INDIRECT EMERGENCY and
p CHANGE MEDICATION). Finally, the average failure
rate is calculated using the total number of invocations.
By increasing the number of simulations of the model, the
estimated average failure rate will get closer to the real
average. The simulation queries to estimate failure rates with
an accuracy of RSEM 10% and 5% respectively are:

simulate1[<= 50]AssistanceService.avgFRate
simulate1[<= 125]AssistanceService.avgFRate

Fig. 7 shows the quality model to calculate estimated
costs of using the assistance service. The total cost of an
invocation is equal to the sum of the costs of the concrete
services used. Similarly to estimating the failure rate, the
total cost per invocation depends on the path that is taken in
the workflow, based on the probabilities of the actions taken
and types of services invoked. The simulation queries to
estimate average cost with RSEM 10% and 5% respectively



Figure 6: Quality model: Failure rate

are:

simulate1[<= 50]AssistanceService.avgCost
simulate1[<= 125]AssistanceService.avgCost

Figure 7: Quality model: Cost

B. Experiments with Two Qualities

In the first experiment, we focus on two qualities: failure
rate and cost. Concretely, adaptation should guarantee the
following quality requirements:
R1. failureRate <= 1.5 (× 10−3)
R2. averageCost <= 8 (× 10−3)
R3. Subject to R1 and R2 being satisfied, the failureRate

should be minimized.
We use the TAS setting with five concrete instances

per service type as described in Section III and Table I
in particular. We added uncertainty to probabilities of the
service failure rates and invoked requests based on a normal
distribution with a standard deviation of 0.05 and 0.10
respectively. The experiments are performed on a Macbook
with 2.5 GHz Core i7 processor, and 16 GB 1600MHz DD3
RAM.

Fig. 8 shows the simulation results of all possible con-
figurations of TAS and selected configuration for adaptation
at a given point in time. Each configuration is represented
by a dot that shows the estimated values for failure rate
and average cost of that configuration. The rectangle area
demarcated by the dotted lines contains all the possible
configurations that comply with requirements R1 and R2.
Based on requirement R3 the configuration with the lowest
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failure rate is selected for adaption. Note that the dot for
each configuration is an estimate with an accuracy that is
based on the simulation query used, in this particular case
a query with accuracy of SEM 5%.

Fig. 9 shows how the change of estimated quality proper-
ties over time due to uncertainties, incl. changes in the user
behavior and the quality properties. We can see that the cost
requirement (R2) of the initially selected configuration in
Fig. 8 (Config 1 in Fig. 9) is violated. Hence, another con-
figuration is selected now (Config 2). This figure underpins
the importance of adaptation at runtime.

We now discuss the results of adaptation. Fig. 10 shows
the result of a series of 10000 invocations of the assistance
service with simulation queries of RSEM 5% and 10%.
The managed system checks for adaptation every 500 in-
vocations. Aligned with requirements R1 and R2, we have



calculated the failure rates and average costs over a moving
window of 1000 invocations. The boxplots for failure rate
show that the required value of 0.15 is satified. The boxplots
for the average cost show that the cost remains below the
required 8 units at all times with some exceptions for RSEM
of 10%. The boxplots for adaptation times show the tradeoff
of getting stronger guarantees based on different accuracy
levels, i.e., RSEM of 5% takes almost double the adaptation
time as RSEM of 10%; the major part of this time is used
for runtime simulation to estimate the quality properties of
the adaptation options.

0.04

0.06

0.08

0.10

10% 5%

Fa
ilu

re
 R

at
e

0.3

0.4

0.5

10% 5%

A
da

pt
at

io
n 

tim
e 

(s
)

7.0

7.5

8.0

8.5

9.0

10% 5%

C
os
t

Relative SEM 10% 5%

Figure 10: Results over 10000 runs for the first experiment

C. Experiments with Three Qualities

We now demonstrate the flexibility of our approach by
adding additional goals and rules. Concretely, we add a
new quality property that is subject of adaptation: service
time. Service time comprises two components: the response
time of invocations of concrete services and the waiting
time due to queues with pending invocations. Service time
is an important concern in TAS as users may need to get
treatments quickly.

Table II shows initial estimated response times (in sec)
and queue lengths (pending invocations) for the concrete
services.

Table II: Average queue lengths and response times

S.No AS MAS DS
Rtime Qlen. Rtime Qlen. Rtime Qlen.

1 5.7 3 11.0 1 8.0 1
2 7.3 2 9.4 4 7.7 3
3 3.8 5 20.0 2 11.0 5
4 9.5 1 8.0 6 10.0 2
5 18.6 4 9.0 3 15.0 4

For the adaptation goals, we replace R3 as follows:
R3’. Subject to R1 and R2 being satisfied, the serviceTime

should be minimized.

To realise this new requirement, we need to add a
new quality model to the knowledge repository, update the
adaptation goals, add an Updating component for the new
quality model in the Monitor component and extend the
decision making logic to handle the new quality. Our current
realisation supports such updates on the fly, based on runtime
executable formal models [18], [10] (see also the project
website).

Fig. 11 shows the quality model to estimate service times.
The service time per invocation is accumulated by the time
the request has to wait in the queues plus the actual execution
time, depending on the path that is taken.

Figure 11: Quality model: Service time

For simulation, we used the following query:

simulate1[<= 50]AssistanceService.avgST ime
simulate1[<= 125]AssistanceService.avgST ime

Fig. 12 shows the simulation results of all possible con-
figurations at a given point in time and the configuration that
is selected for adaptation. Among all the configurations that
comply to R1 and R2 (valid configurations), the one with
the lowest service time is selected for adaptation.

Fig. 13 shows the result of 10000 invocations of the
assistance service for RSEM of 10% and 5%. As for the
first experiment, we show the quality properties for a sliding
window of 1000 invocations. The boxplots for failure rate
show similar results for RSEM 5% and 10%; both realise
R1. The boxplots for cost show that RSEM of 5% gives
slightly better results, but RSEM of 10% violates R2 some
times. The boxplots for service times are similar. Similar to
the first experiment, the boxplots for adaptation times show
that RSEM of 5% takes almost double the time as RSEM
of 10%.

D. Scalability

To conclude, we compare the scalability of our approach
with Runtime Quantitative Verification (RQV), an exhaus-
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Figure 12: Adaptation options with selected configuration
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Figure 13: Results over 10000 runs for the first experiment

tively verification technique. For RQV, we used a minimal
discrete time Markov model of TAS and used PRISM for
verification of quality properties. We used the same setup as
in first experiment and systematically increased the number
of concrete services per service type. The probabilities of
actions and quality properties are assigned randomly. Fig. 14
compares the time required for adaptation. The graph shows
that the modular approach is significantly faster than RQV.
On the other hand, RQV guarantees the required qualities,
while the accuracy of simulation is bound to the selected
RSEM. Additional test are required to further compare the
tradeoffs of both approaches.

VI. CONCLUSION AND FUTURE WORK

This research contributes a novel modular approach for
decision making in self-adaptive systems. The approach is
based on distinct runtime models for different qualities sup-
porting on the fly changes of quality models and adaptation
goals. As the approach uses simulation to estimate required
quality properties, it is inherently more efficient compared
to exhaustive approaches. This is confirmed by initial test
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Figure 14: Comparison of scalability with RQV

results. However, the consequence of using simulation is a
reduction of accuracy, which may lead to temporal violations
of requirements. On the other hand, the approach allows to
tradeoff the accuracy provided by the time that is required
to adapt. In the future, we are planning an depth comparison
between the proposed approach and exhaustive approaches.
We also plan to extend the type of queries by studying how
we can use statistical model checking at runtime to support
efficient decision making in self-adaptive systems.
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