

Future of Software Engineering and Multiagent Systems

FOSE-MAS 2008

Danny Weyns (Edt.)

Whitestein Technologies AG | Pestalozzistrasse 24 | CH-8032 Zürich
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2008 Whitestein Technologies AG

All rights reserved.

AAMAS 2008 FOSE Panel

Opportunities to Support Wide-spread
Adoption of Software Agents

Dr. Monique Calisti, Whitestein Technologies AG

AAMAS 2008 FOSE Panel
Opportunities to Support Wide-spread Adoption of Software Agents
Dr. Monique Calisti, Whitestein Technologies AG

wt.aamas08fose.wtposition | v1.0 | 2008-03-10 | MCA page 2 of 5
Copyright © 2008 Whitestein Technologies AG
Strictly confidential. All rights reserved.

Introduction
Whitestein Technologies is a leading innovator in the area of software
agent technologies and autonomic computing. Our offering includes
various agent-based products, solutions, and services for selected
applications and industries, as well as a comprehensive middleware for the
development and operation of autonomic, self-managing, and self-
organizing systems and networks.

Several years of success with real-world deployments have shown that the
advanced capabilities of software agents have matured enough to enable
the design and implementation of a new generation of enterprise
solutions, which are able to optimize their processes and to flexibly adapt
in real-time to changing and unforeseen run-time conditions and
requirements.

This, however, can only be realized by:

Providing solid agent methodologies, platforms, tools and products for
enterprise-grade development and deployment of agent technology.

Facilitating the understanding of agent technology in close
combination with specific application-driven business requirements.

Taking into account dynamics of markets and complementary
technologies.

We are happy to contribute to the FOSE-MAS session and present our
perspective on its topics by answering the main questions the organizers
put forward. We hope that our answers will be the ground for further
discussion in Portugal.

Questionnaire

What are the main aspects that hamper progress in software
engineering and MAS?

Lack of substantial efforts and focus in:

Programming languages

Libraries (meaning availability of deployable software)

AAMAS 2008 FOSE Panel
Opportunities to Support Wide-spread Adoption of Software Agents
Dr. Monique Calisti, Whitestein Technologies AG

wt.aamas08fose.wtposition | v1.0 | 2008-03-10 | MCA page 3 of 5
Copyright © 2008 Whitestein Technologies AG
Strictly confidential. All rights reserved.

Inverted precedence between techniques and methodologies: software
techniques should come first (meaning earlier research and maturity
level) than methodologies.

Why is state-of-the-art in MAS research and engineering
insufficiently reflected in state-of-the-practice in complex
distributed systems?

Essentially for two main reasons:

The "state-of-the-practice" as such does not typically need any
academic/scientific blessing: it just happens. Particularly, in the modern
information exchange landscape (open-source movements, community-
centric development, etc.) a "normal user" will not bother too much with
the labels or underlying conceptual frameworks. She will just make the
best use of what is readily available to suit her needs. Given the above-
mentioned bias of the agent-MAS research community away from
delivering concrete and usable software incarnations of their ideas, the
agent concepts end up being severely under-represented.

Secondly, the diversity of people background and agendas within what has
become the "agent community", which is a strength in other instances,
ends up hampering the possibility to focus and synergize efforts towards a
more restricted set of goals. This, however, would typically be a pre-
requisite to the effective delivery of practical, directly applicable results,
particularly software deliverables.

What is the future for agent-oriented methodologies?

From a research point of view agent-oriented methodologies can keep on
refining conceptual and procedural aspects concerning agent-oriented
software engineering. On the other hand, we see little hope from an
adoption point of view as long as not enough attention is devoted to the
delivery of concrete languages, libraries and tools that can be used to build
applications, with no pre-requisite knowledge of agent oriented
methodologies. Only after that people will start feeling the need of
methodological support to bring order in what they are already doing.

What are the strong and weak points of state-of-the-art agent
programming languages?

In our opinion, there simply isn't yet enough work about agent
programming languages from a software engineering point of view. This
means that most of the scientific work one can find when looking for
keywords such as "agent-oriented programming" does not really deal with
programming language design issues and even less with the specification,
realization and assessment of actual prototype programming languages.

AAMAS 2008 FOSE Panel
Opportunities to Support Wide-spread Adoption of Software Agents
Dr. Monique Calisti, Whitestein Technologies AG

wt.aamas08fose.wtposition | v1.0 | 2008-03-10 | MCA page 4 of 5
Copyright © 2008 Whitestein Technologies AG
Strictly confidential. All rights reserved.

What makes software engineering of MAS different from
mainstream software engineering?

Firstly, and luckily, the differences are increasingly being reduced. The fact
that both the problem definition and the principled solution architectures
of a mainstream system of today are much more similar to a MAS than it
was 10 years ago is a sign that the agent community successfully foresaw
the evolution of modern software engineering.

However, the full MAS conceptual framework seems to still have more
than that in stock. Some of the ever-standing challenges of software
engineering (reducing the gap between business users and system
architects, enhancing the unforeseen reuse of software components,
building homeostatic self-management into software systems) will be, in
our opinion, better addressed by relying on suitable concrete applications
of MAS ideas.

What are the key research challenges for software engineering
and MAS?

Research challenges should not be mandated or defined too narrowly, of
course. Here, we only suggest a few directions.

In MAS, one can have different kind of entities:

Autonomous, reactive software components, typically the agents.

Non-autonomous, reactive software components, e.g., services,
artifacts.

Passive, representational software components, e.g., objects, data.

Which category should be typed, and how? Should there be the same type
system for all these three categories? How would the type system, e.g., for
agents look like? Why?

What is it that we have to do to promote industrial adoption
of AOSE? Can we do that, and how?

Producing more tangible deliverables (software applications, languages,
libraries, tools that are concrete and usable incarnations of agent ideas) is
a general pre-requisite. Contrary to popular belief, industry representatives
are not hostile towards specific terms (such as "agent") when a concrete
solution is provided. Of course, if the sales pitch is totally lacking concrete
technological grasp, buzzwords are all that's left. But good ideas that solve
relevant problems are always welcome, and names become less relevant.

Another key factor is the availability of technology transfer mechanisms,
institutions and ultimately, people: the current situation can be improved.
A series of University-level measures can be set up (or improved) to
produce graduates that, without any specific research profile, simply have
the MAS ideas and techniques as part of their professional bag. At the PhD
level, doctors should be able to properly introduce theoretical MAS
research concepts in their work environment if/when they apply. What

AAMAS 2008 FOSE Panel
Opportunities to Support Wide-spread Adoption of Software Agents
Dr. Monique Calisti, Whitestein Technologies AG

wt.aamas08fose.wtposition | v1.0 | 2008-03-10 | MCA page 5 of 5
Copyright © 2008 Whitestein Technologies AG
Strictly confidential. All rights reserved.

seems to be missing the most is a (probably PhD-grade) category of people
who could play the role of technology evangelist and technical leader in
an innovative industrial setting. More PhD positions should be geared
towards this more practical kind of consulting stance, resulting in people
who can understand the theory and the research state-of-the-art, but also
comprehend the actual business and technical environment they will be
operating in.

What actions are required to advance research in software
engineering and MAS?

We foresee three main action streams:

Include in the research agenda the aspects, which are more software-
centric (design, implementation and testing).

Try to establish more liaisons with research communities that focus
on programming languages, libraries and infrastructures (particularly
for distributed systems).

Try to better promote the agent-driven research programme within
institutions and bodies funding and organizing the R&D broad
context like the EU Commission in the ICT space.

Moving Multiagent Systems from Research to Practice
By Scott A. DeLoach, Kansas State University

The state-­‐of-­‐the-­‐art in multiagent research and engineering is insufficiently reflected in state-­‐of-­‐the-­‐practice in
complex distributed systems for the basic reason that we have yet to demonstrate, or at least publicize, the
significant benefits of using true agent-­‐oriented approaches to solve complex problems. I believe that many
practitioners do not see the multiagent approach as being technically superior; for every multiagent system that
achieves success, it is possible to envision a non-­‐agent approach that is equally suited for the task. After all,
almost all agent systems are programmed in the same programming languages as non-­‐agent systems. What we
have failed to demonstrate is that the agent approach can yield technically competitive (or better) solutions
with a real benefit, most likely in terms of reduced costs, greater reliability, greater flexibility, or a greater
chance of repeatable success. Agent-­‐oriented software engineering lies directly at the heart of this problem.
What we need to show is that we can build reliable complex, distributed systems using agent-­‐oriented
approaches that are repeatable and sound.

However, there are currently several obstacles that hamper progress towards being able to use multiagent
systems and agent-­‐oriented software engineering in mainstream applications. These include

1. the lack of a common understanding of key multiagent concepts,
2. the lack of a set of common notations and models, and
3. the lack of flexible, industrial strength methods and techniques for developing multiagent systems.

The lack of an agreement on the key multiagent concepts and their definitions is the first obstacle to be
breached in the battle toward making multiagent systems a mainstream paradigm. For instance, the vast
majority of computer science students and practicing professionals would be easily able to define and generally
agree upon the basic definitions of the object-­‐oriented notions of objects, classes, generalization, specialization,
and aggregation. Yet, at the same time, most experienced multiagent researchers would have a difficult time
trying to reach agreement on the commonly used notions of agents, roles, conversations, plans, organizations,
or capabilities. The closest thing we have to agreement is on the definition of an intelligent agent as a
computational system that senses and acts autonomously in a dynamic environment in order to realize a set of
goals [6]. Although many researchers and practitioners use the names to represent similar concepts, the real
problem lies in the relationships between the concepts.

A second major obstacle I see is the lack of a common notation and models for multiagent concepts. Of course,
given that we have not decided on the definition of the concepts and their relationships themselves, finding a
common representation may seem like an insignificant problem. However, a lack of a common notation makes it
hard for practitioners to investigate different methods and techniques since they have to relearn notation for
each different approach. Also, a common notation makes the similarities between approaches and models much
easier to spot. In recent work with Lin Padgham and Michael Winikoff, we found that after putting our
respective set of models (O-­‐MaSE [5] and Prometheus [4]) into a common notation, the similarities between the
two methodologies and the concepts we used was much more readily apparent.

The third obstacle is the lack of strong industry acceptance for any current agent-­‐oriented methodologies.
Reasons for this lack of acceptance include the variety of concepts and approaches upon which these
methodologies are based along with a lack of tools to support them. However, I believe that one of the major
reasons for this lack of acceptance is that the current set of methodologies tends to be inflexible and hard to
extend for a variety of applications. One solution is to allow users to customize methodologies to the different
types of applications being developed. There have been some suggestions for increasing industrial acceptance.
For instance, Odell et al. suggest presenting new techniques as an incremental extension of known and trusted
methods [3], Bernon et al. suggest the integration of existing agent-­‐oriented methodologies into one highly
defined methodology [1], and Henderson-­‐Sellers suggests the use of method engineering [2].

Based on these observations, I think that agent-­‐oriented software engineering researchers and multiagent
systems researchers must address the obstacles address above. We must work on defining a core set of
concepts that are well understood and accepted amongst all multiagent practitioners. Essentially, this boils
down to defining a core metamodel for multiagent systems. While not all concepts and relationships need be
represented, the core concepts and their relationships must be defined. There has been work toward defining a
common [1], unfortunately, the proposed metamodels tend to be overly complex and of limited practical use.
Once this first step is in place, the next two steps, creating a common notation, and creating industrial strength
methods and techniques can be pursued. Finally, having a industrial strength methods and techniques in place
will enable the ultimate goal of demonstrating the usefulness of multiagent approaches in the development of
sound and repeatable complex, distributed systems.

[1] Bernon C., Cossentino M., Gleizes M., Turci P., and Zambonelli F.: A study of some multi-­‐agent meta-­‐
models. In: Odell, J., Giorgini, P., and Müller, J. (eds.) Agent Oriented Software Engineering V. LNCS 3382.
Springer-­‐Verlag, Berlin Heidelberg New York (2004) 62–77.

[2] Henderson-­‐Sellers, B., and Giorgini P. (eds.): Agent-­‐Oriented Methodologies, Idea Group Inc., 2005.

[3] Odell J., Parunak V. D., and Bauer B.: Representing Agent Interactions Protocols in UML. In: Ciancarini, P.,
and Wooldridge, M. (eds.): Agent Oriented Software Engineering. LNCS. 1957. Springer-­‐Verlag, Berlin
Heidelberg New York (2001) 121–140.

[4] Padgham, L. and Winikoff, M. Developing Intelligent Agent Systems: A Practical Guide. John Wiley and Sons,
2004. ISBN 0-­‐470-­‐86120-­‐7.

[5] Garcia-­‐Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., and Valenzuela, J. O-­‐MaSE: A Customizable
Approach to Developing Multiagent Development Processes. In Luck, M., and Padgham, L. (eds.), Agent-­‐
Oriented Software Engineering VIII: The 8th International Workshop on Agent Oriented Software

Engineering (AOSE 2007), LNCS 4951, 1-­‐15, Springer-­‐Verlag: Berlin.

[6] Russell, Stuart J. & Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle
River, NJ: Prentice Hall, ISBN 0-­‐13-­‐790395-­‐2

The MAS – SE Gap: Bridging the Divide
Michael Georgeff

Precedence Research and Monash University, Melbourne, Australia

What are the main aspects that hamper progress in software engineering and MAS?

This is a big question and I don’t propose a complete answer, but rather restrict my
comments to where I think MAS can have an impact on SE. The key to SE is having
the right models and levels of abstraction for capturing data and process. We
have done a reasonable job of with the data. But we have not moved very far in
modeling processes so that they are easy to understand, adaptable, extensible,
and capable of handling the complexity of real world applications. In particular,
business value depends on the ease with which business processes can be
customized to individual customers and business conditions. Different business units
must be able to create and change their own services, independently of others.
Moreover, today’s highly connected business environment requires continuous
adaptation and process change. These demands pose severe challenges for
service orchestration if the promise of approaches such as SOA—business level
adaptability, faster time to market, and lower total cost of ownership—are to be
realized. Conventional programming methodologies and business process
languages are not up to the task, and it is here that MAS can transform the industry.

Why is state-of-the-art in MAS research and engineering insufficiently reflected in state-
of-the-practice in complex distributed systems?

1. We have not done a good job in identifying the value proposition for MAS in a
sufficiently large range of application domains to make it compelling;

2. We have done a poor job in translating the way we describe MAS into the
framework used in conventional SE and systems development environments,
particularly to the people that count (CIOs, CTOs);

3. We have not sufficiently focused on the key ideas, instead selling a whole
package of complex concepts and mechanisms that go beyond the needs of
mainstream SE; and

4. We have not sufficiently well integrated our methodologies, frameworks and
languages into existing – and more importantly emerging – development and
run-time infrastructures.

What is the future for agent-oriented methodologies?

AO methodologies have a strong future in designing agent systems for research and
prototyping complex distributed systems, but will have no future in mainstream SE
unless we do four things:

1) Stop distinguishing agent systems from other types of system (distributed or not).
That is, frame and sell the AO methodologies as general system development or
SOA methodologies, not as some specialized methodology only suited for MAS.

2) Bring AO methodologies down to the practice level. The theory is important, but
real SEs require real, practical methodologies, patterns and rules that can be
understood and used by anyone.

3) Ensure that the terminologies and frameworks we use build on conventional
methodologies, at the same time introducing new concepts in the way
conventional SEs can understand.

4) Get the target level of abstraction right – AO methodologies work well at the
level of goal and services composition, but carry too much baggage for low
level process design.

What are the strong and weak points of state-of-the-art agent programming
languages?

While this depends very much on the particular language (which cover an enormous
range), the best of them have the following strengths and weaknesses:

Strengths: Expressive power and flexibility, the concept/semantics of “goals”, loose
coupling of goals and processes, context sensitivity of processes, integration of
event driven and goal driven processing, handling of exceptions, handling of
variant processes/extensions, “patterns” or interaction/coordination based on
social models

Weaknesses: New languages (always hard to motivate), insufficient perceived value-
add to change from conventional approaches, insufficiently
powerful/robust/integrated programming development environments to mitigate
the risk of adoption, insufficient integration with existing tools and frameworks.

What makes software engineering of MAS different from mainstream software
engineering?

Higher, more “natural”, more expressive levels of abstraction, context sensitivity of
processes, concept/semantics of “goals”, handling of exceptions and extensions,
loose coupling of service model extended to processes at all levels. Mainstream SE
does a much better job than MAS currently does in handling the important
practical problems that arise in building real enterprise applications. To get the
best of both worlds, we need to do much more to integrate with mainstream SE.
Instead of trying to develop our own frameworks, methodologies and languages,
an alternative is to introduce the key concepts into mainstream frameworks (e.g.,
IBM’s “Business Services Fabric” uses some of the ideas behind context sensitive
goal-directed processing, though not expressed in MAS terms).

What are the key research challenges for software engineering and MAS?

 Bring the key ideas (concepts, methodologies) from software engineering, SOA,
and MAS together;

 Plus the usual problems: service composition and orchestration, identifying and
handling goal/process interactions (both positive and negative), semantics of
goal directed processing, communication (speech) acts and patterns.

What is it that we have to do to promote industrial adoption of AOSE? Can we do that,
and how?

Influence the influencers. Get the story out to the businesses, the CIOs of large
companies. Who influence them? The Gartner’s, Forresters, mainstream CIO
publications, and large enterprises that are early adopter of the technology.

Transform the story into something that conventional software engineers understand.
Make it an extension or progression of service oriented and event driven
architectures. Identify the weak points in SOA and show how MAS solves these
problems. (My attempt at this can be found in the June 2006 issue of DM Review:
“Service Orchestration: The Next Big Challenge”)

Focus on the concepts and methodologies, not new languages. Let the concepts and
methodologies drive extensions to BPEL, SOA. Don’t try to replace them (yet).
Give up on separate standards for agent systems – seeing MAS as different from
services oriented systems and needing a special set of standards should be the
option of last resort.

Focus on and standardize the key ideas (e.g., goal directed orchestration), preferably
by extensions to existing concepts (e.g., loosely coupled services).

If we do build our own tools, languages and frameworks, make sure that they fully
integrate with existing programming and development platforms. But this can be a
massive expense, and it is likely that only the very large software infrastructure
companies such as IBM, MS, Oracle could do so.

Or alternatively, give up on the enterprise level and focus instead on high flexibility,
user-driven service composition and orchestration, such as mash-ups and high level
composition of services and components at the user end. Build the tools to allow
naïve users to do this. Develop “patterns” or “packs” of goal-directed agents that
can be re-used (by end users) in multiple applications. Develop specialized
“packs” for specialized domains. But make sure the resulting components/services
fully integrate/interoperate with the conventional environment and mainstream
infrastructure

What actions are required to advance research in software engineering and MAS?

Bring together leadership in SOA and MAS, develop a strongly motivated special
interest group of influential researchers and industry in both fields to understand
which concepts of MAS can translate to SOA and which MAS concepts add most
value to SOA.

How to Get Multi-Agent Systems Accepted in Industry?
Danny Weyns, DistriNet Labs, Katholieke Universiteit Leuven, Belgium

We share the sigh with many researchers in the multi-agent system (MAS) community that
too much of the quality and relevant research in the area of MAS is under represented in the
development of complex distributed systems in practice / in industry today. MAS research has
developed a wide body of knowledge on foundations and engineering principles for designing
and developing complex distributed systems. Despite the enormous research efforts and a
number of successful industrial applications, the state-of-the-art in MAS research and
engineering is insufficiently reflected in state-of-the-practice in complex distributed systems.

In our experience, a babylonic mismatch is a crucial factor in this fact – research in MAS
profiles itself as an isolated community, and as such may create artificial thresholds to
convince mainstream software engineers of its merits. A poignant example of the isolation is
the lack of any reference to results from MAS research in the paper collection of the track on
the future of software engineering at the International Conference on Software Engineering
2007 [1]. We argue that grounding agent-oriented software engineering in mainstream
software engineering can amplify industrial adoption of MAS. Although this may sound as a
self-evident claim, the question remains how this can be put into practice.

To underpin our claim, we show how the integration of our MAS expertise in mainstream
software architecture was crucial for developing an industrial automated transportation
system [2]. In this application, we applied a MAS for decentralized control of automatic
guided vehicles (AGVs) that transport loads in an industrial environment. The application was
developed in a joint R&D project between DistriNet Labs and Egemin, a leading
manufacturer of industrial logistic systems.

Dealing with stakeholders’ requirements
The general motivation to apply a MAS in the AGV control system were new and future
quality requirements, in particular flexibility (deal autonomously with dynamic operating
conditions) and openness (deal autonomously with AGVs entering and leaving the system).
However, for a complex system such as the AGV control system the stakeholders have
various, often conflicting requirements. E.g., performance is a major requirement for
customers, configurability is important for deployment engineers, while budget is a prime
concern of the project leader. To clarify system requirements before starting architectural
design, we organized a four days Quality Attribute Workshop (QAW). A QAW is an
established method to identify and prioritize important quality attributes in terms of concrete
scenarios. The highest ranked quality scenarios are the main drivers for architectural design.
The QAW enabled us (1) to precisely specify the qualities addressed by adopting a MAS, and
(2) to determine their importance relative to other qualities. This was important for preventing
the industrial partner from overestimating or underestimating agent technology.

Managing complexity
AGV control systems are very complex software systems. The design and implementation of
the MAS-based AGV control system needed +8 man-years of effort. The delivered code base
consists of about 100,000 lines of C# code. Such complexity can only be managed through
abstraction. Software architecture is centered on the idea of reducing complexity through
abstraction and separation of concerns. In the AGV control system, software architecture
allowed us to manage the complexity of the MAS at different levels of abstraction (intra-agent
and inter-agent structures, behavior, and hardware/software allocation).

Integrating MAS with its software environment
In an industrial setting, systems are not built in isolation. When introducing a MAS, it must be
integrated with its environment (common frameworks, legacy systems, etc.). In Egemin,
.NET is the standard environment and the company uses an in-house developed framework
called E’pia that provides common middleware services to support inter-node
communication, persistency, security, and logging. Examples of legacy systems with which
the MAS needed to be integrated are the warehouse management system that generates the
transport tasks and the low-level control software of the AGVs. Software architecture was the
key to accommodate the integration of the MAS with its environment. We integrated E'pia as
a basic layer that provides the required services to deal with various crucial requirements.
With respect to legacy systems, we were able to develop proper mediator components/agents
to integrate legacy systems with the MAS.

Architectural design and evaluation
Preceding experiences with developing MAS applications with characteristics and
requirements similar as the AGV control system yielded a set of architectural patterns for
MAS and a supporting middleware for mobile applications. Initially, we faced the problem
how we could exploit these reusable assets and integrate them in the design of the AGV
control system. The solution was the Attribute-Driven Design method (ADD). ADD is a
well-established method for architectural design that is based on understanding how to
achieve quality goals through proven architectural approaches. During the architectural
design, we employed the patterns for MAS, together with a number of common architectural
patterns, to decompose and structure the system and realize the required functionalities and
qualities. To pinpoint the qualities and tradeoffs implied by the decentralized MAS
architecture, a disciplined evaluation of the software architecture was necessary. Therefore,
we organized a one day ATAM (Architectural Tradeoff Analysis Method). During the ATAM
an external evaluation team, together with the main stakeholders, determined the trade-offs
and risks with respect to satisfying important quality attribute scenarios, particularly scenarios
related to flexibility, openness, performance, and robustness. One important outcome of the
ATAM was an improved insight on the tradeoff between flexibility and communication load.

Impact of MAS on the company’s organization
From our experience, a crucial issue with respect to industrial adoption of MAS is the impact
of MAS on the company’s organization. At Egemin, the existing AGV control system has a
centralized server-oriented architecture. The MAS-based approach on the other hand has a
decentralized architecture. Switching from a centralized toward a decentralized agent-based
architecture is a big step with far reaching effects for a company, not only for the software but
for the whole organization. To give one example: in the centralized architecture task
assignment to AVGs is based on application-specific rules that are associated with particular
locations in the environment. A team of layout engineers is responsible for defining these
rules. In the decentralized architecture, however, tasks are assigned by means of a dynamic
protocol between AGV agents and transport agents. This protocol must be tuned per project,
but this requires other skills. Our experience indicates that the integration of an agent-based
approach should be done in a controlled way, step-by-step. Software architecture is the
indispensable vehicle for stepwise integration of MAS. It provides the required level of
abstraction to reason about, and dealing with gradual integration of MAS.

Conclusion
We have put forward the position that grounding MAS in mainstream software engineering
can amplify industrial adoption of MAS. By linking MAS to software architecture, we were
able to convince the industrial partner of the benefits of MAS in the AGV control system.

Self-adaptability, scalability, and local autonomy are generally considered as key properties to
tackle the growing complexity of software. These are exactly properties that characterize

MAS. The body of knowledge developed by the MAS research community is therefore of
crucial importance. It is our firm belief that only by sharing our know-how and putting it in a
broader setting of mainstream software engineering, especially software architecture, the
fruits of our research will develop to their full abilities.

Bibliography
[1] L. Briand and A. Wolf. International Conference on Software Engineering 2007, Future of
Software Engineering. IEEE Computer Society, 2007.
[2] D. Weyns and T. Holvoet. Architectural Design of a Situated Multi-Agent System for
Controlling Automatic Guided Vehicles. Special Issue on Multi-Agent Systems and Software
Architecture, International Journal on Agent-Oriented Software Engineering, 2(1), 2008.

The Future of Agent-Based Software Engineering:

Goals and Verification & Validation are Key

Michael Winikoff
∗

RMIT University
winikoff@gmail.com

Marketing

The key question is this: how to “market” the results of work in our field to other research fields and
to practitioners?

There is no easy answer, but a multi-pronged strategy needs to be used which includes:

1. Clearly identifying (and quantifying? [1]) the “value-add” of agent technology, and telling a
simpler and easier-to-understand “story”. I believe that this story should focus on the words
“complexity”, “adaptability”, and “goals”; and not on the words “agent” or “autonomous”.

2. Working against the perception of agents as “esoteric AI” by continuing the excellent work of
AgentLink in documenting case studies of agent-based solutions to real problems [5].

3. Providing agent-based solutions in other areas, such as service-oriented computing [3] and au-
tonomic computing, and publishing in those areas’ conferences and journals.

Finally, I believe it’s important to produce useful tools, not just papers; and that it’s essential to “close
the loop” by using our tools and techniques “in anger” [6], thus gaining feedback to guide further
work, including detecting unrealistic assumptions.

Agent-Oriented Software Engineering (AOSE)

I agree with Scott DeLoach that reducing differences and moving towards standardisation are impor-
tant (although I believe that this alone is not sufficient).

I disagree with Mike Georgeff that we still need to “Bring AO methodologies down to the prac-

tice level”: I believe strongly that this has already been achieved by recent methodologies such as
Prometheus.

A key challenge is how to design more dynamic agent systems, including those where the structure
of the system changes at runtime, and those that exhibit emergent behaviour. Current methodologies
are mostly still limited to the design of relatively static and predictable agent systems. Another key
area for future work is the “non-classical” phases of the software life-cycle: debugging, testing and
software maintenance and evolution.

∗This “type 2” position statement was written while on sabbatical at Otago University, Dunedin. I would like to thank
Stephen Cranefield for comments on a draft.

Key Research Issues

Goals: I believe that we will (eventually) look back and view the contribution of our work as being
“goal oriented programming/design”, rather than “autonomous agents”. Goals, achieved persistently
and flexibly, are what give agents their adaptability, and, if our agents are adaptable, then it arguably
makes sense to investigate building on this to form a robust and adaptable society of agents. However,
there is more research to be done: how to make the design process more goal-oriented? what goal
types are useful? how to deal with interactions between goals? how to use flexible and robust goal
achievement by single agents to enable multiple agents to achieve goals in a robust and flexible way?
how does this compare with conventional approaches for choreography/orchestration? how does this
compare with agent-based approaches (e.g. norms, protocols, social commitments, teamwork)? how
to design goal-based agents in systems which exhibit emergent behaviour? how to ascribe goals to
non-goal-based (and possibly emergent) behaviours?

Validation & Verification: A recurring issue in practice [5, 4] is how to obtain confidence that an
agent system will behave appropriately in a range of situations. Conventional testing is less effective
for flexible adaptable software, since there are many more possible behaviours to be tested. An ob-
vious answer to this problem is the use of some form of formal methods [2]. However, much more
research is needed to make this practical. One key challenge is that typically we don’t want to just
check well-known properties such as liveness or safety, but also various forms of domain-specific cor-
rectness. For instance, what does it mean for a manufacturing management and optimisation system
[5, section 3] to be functioning correctly? A second key challenge is dealing with systems that are
dynamic, including those whose structure may change. One possible approach is to use an assume-
guarantee style reasoning [2], another is to defer (some) reasoning and checking to run-time.

References

[1] Steve S. Benfield, Jim Hendrickson, and Daniel Galanti. Making a strong business case for multiagent

technology. In Peter Stone and Gerhard Weiss, editors, Autonomous Agents and Multi-Agent Systems

(AAMAS), pages 10–15. ACM Press, 2006.

[2] Matthew B. Dwyer, John Hatcliff, Corina Pasareanu, Robby, and Willem Visser. Formal software analy-

sis: Emerging trends in software model checking. In International Conference on Software Engineering:

Future of Software Engineering, pages 120–136, May 2007.

[3] Michael N. Huhns, Munindar P. Singh, Mark Burstein, Keith Decker, Edmund Durfee, Tim Finin, Les
Gasser, Hrishikesh Goradia, Nick Jennings, Kiran Lakkaraju, Hideyaki Nakashima, H. Van Dyke Parunak,
Jeffrey S. Rosenschein, Alicia Ruvinsky, Gita Sukthankar, Samarth Swarup, Katia Sycara, Milind Tambe,
Tom Wagner, and Laura Zavala. Research directions for service-oriented multiagent systems. IEEE

Internet Computing, 9(6):65–70, November-December 2005.

[4] M. Luck and P. McBurney Computing as interaction: agent and agreement technologies. In: V. Marik
(Editor): Proceedings of the 2008 IEEE International Conference on Distributed Human-Machine Systems.
Athens, Greece, March 2008.

[5] S. Munroe, T. Miller, R.A. Belecheanu, M. Pechoucek, P. McBurney, and M. Luck. Crossing the agent

technology chasm: Experiences and challenges in commercial applications of agents. Knowledge

Engineering Review, 21(4):345–392, 2006.

[6] Philip Wadler. Functional programming: An angry half-dozen. SIGPLAN Notices, 33(2):25–30, Febru-
ary 1998.

Industry traction for MAS technology: Would a rose by any
other name smell as sweet?
(Position paper submitted to the AAMAS-2008 session on the “Future of software
engineering and multi-agent systems”)

Aditya Ghose, Decision Systems Lab, University of Wollongong, NSW 2522
Australia (aditya@uow.edu.au)

The multi-agent systems (MAS) community faces a crisis that many are unwilling to
acknowledge. We are all acutely aware of how MAS concepts and technologies seem
to have failed to gain significant industry traction (a few notable exceptions aside).
Other research communities (e.g., the service-oriented computing community) have
gained far greater industry acceptance for their outputs, in far shorter time. But the
crisis stems from an even greater threat: the co-opting of agent/MAS concepts in other
research communities, particularly the service–oriented computing community. The
connections between agents and services run deep, and are to some degree recognized
and addressed in the literature. Like agents, services can be viewed as autonomous,
reactive components. Think of a dynamic service broker – itself a service - that re-
computes service compositions on the fly (in response to changing service
requirements and a dynamic operating context), in a manner akin to reactive agent
programming, from a library of available services, just as one would compute
composite agent plans from a plan library. Thus agent planning can manifest itself as
service composition, agent negotiation as SLA (service level agreement) negotiation,
and so on. I did an informal analysis of the papers presented at a recent major
conference on service-oriented computing, and concluded that at least 60% of these
had agent technology underpinnings in some form or the other. In other words, even
as the MAS community worries about marginalization by industry, our research
outcomes are finding useful and significant industry application, but under the banner
of services.

It might be argued that this is not necessarily a bad thing. We might ask, for example,
whether the nomenclature of our research (e.g., agents vs. services) should matter as
long as we get to explore the really interesting and important questions. I submit that
the nomenclature does indeed matter. We know from the sociology of research that
different research cultures exist within different research communities. The MAS
community offers a research culture that encourages the exploration of different
questions, and in a different style, to those that the services community encourages.
So should we worry about ending re-labelling our work as services research in our
quest for industry relevance? Yes, we should. The label matters – it can influence
research culture, style and content.

There are things, though, that we can learn from the success story of service-oriented
computing in terms of gaining and retaining industry relevance:

 Offer a simpler value proposition. The services community offers a very
simple value proposition: it is easier to model, design and deploy systems
from distributed collections of components packaged as services (some of the
recent discourse on service modelling refers to use of anthropomorphic
constructs, further blurring the distinctions between our communities). The

mailto:aditya@uow.edu.au

MAS value proposition is far more complex. The notion of “agentification”,
and the questions explored by much of the agent-oriented software
engineering (AOSE) sub-community has a similar feel, but the MAS
community has a myriad other technology offerings. These offering often
come with the baggage of legacy industry (mis)perceptions regarding “heavy”
AI techniques that underpin a lot of MAS research.

 Offer an incremental value proposition. The MAS value proposition, in some
ways, calls for radical changes to the state of industry practice. The service-
oriented computing value proposition required far more incremental changes.
Industry prefers incremental change to radical change.

 Define a core agenda, while admitting a diversity of subsidiary themes. The
core research agenda for the services community is driven by software
engineering concerns: service specification, discovery, composition and
deployment. The AOSE research agenda has a similar feel, but the broader
MAS research agenda is far more diffuse.

So what can we do now? Two strategies deserve our attention:

 Mediate the deployment MAS research in industry through AOSE paradigms:
We have made comments that may appear critical of the MAS community: its
complex value proposition for industry, its requirement for radical changes to
the state of industry practice, and its diffuse research agenda. These should not
be read as critiques. The breadth, depth and complexity of the ideas explored
by the MAS community are its strengths and underpin the rich intellectual
outputs that the community generates. AOSE research, by definition,
addresses industry relevant concerns, and can form the packaging required to
make the broader outputs of the MAS community more acceptable for
industry.

 Pro-actively engage the service-oriented computing community (both research
and industry): This reinforces a point made by Michael Georgeff in his panel
submission. We need to highlight the substantial intersection between the
services and MAS research agendas. We need to make explicit the agent
technology antecedents of several key services concepts. We must use the
connections with services concepts as yet another avenue for industry
deployment of our research.

In the meantime, we must disagree with Shakespeare. He argues for the primacy of
substance over form, of content over packaging when he says through the voice of
Juliet: “that which we call a rose, by any other name would smell as sweet”. In our
quest for industry relevance, form and packaging assume unexpected importance and
impose on us additional obligations in interpreting our research results for industry.

FOSE-MAS 2008 – Type 2 Position Statement

SWOT-analysis and its implications

Paul Valckenaers, Paul Verstraete and Bart Saint Germain
K.U.Leuven, Belgium

Strengths, Weaknesses, Opportunities and Threats for the application of multi-agent systems relative to
its mainstream alternatives shape the search space for FOSE-MAS.

The most relevant strength of mainstream software engineering and technologies is that they, ceteris
paribus, are a user’s first choice and enjoy critical user mass. MAS need a compelling reason, in the
perception of their customers, to be selected. The most relevant weakness of multi-agent systems is that
they are not a mainstream technology and lack the associated maturity and massive support. Inherent
qualities of MAS are unconvincing to prospective users whenever they perceive mainstream technologies
to answer their needs. Therefore, FOSE-MAS must target applications with decisive value to
customers for which mainstream IT is unable to offer a satisfactory solution.

The most relevant weakness of mainstream IT is generally referred to as rigidity: severe limits to its ability
to adapt, self-organize, auto-configure, etc. in dynamic and sophisticated environments. Conversely,
mainstream IT is able to provide solutions when:

 The application environment may be adapted to the technical requirements/limitations of the
software. Enterprise Resource Planning systems (ERP) belong to this category: business
and administrative processes are re-engineered to fit the ERP software limitations. Note that
ERP consultants have a ‘rule of dumb’ stating that ERP is unsuited for the core business.

 The application environment is sufficiently stable/simple/important for a customized solution.
Again, rigidity is tolerable because adaptation is not required and/or is achieved by brute
force (big budgets, supervision by skilled personnel).

This leaves to FOSE-MAS a target comprising core business related applications that exhibit
variability and heterogeneity and in which accounting for the application specifics is vital.
Fortunately, this coincides with a generally accepted strength of MAS technology. A large application area
with these properties concerns industry, transport, energy, etc. in which the application bottle-neck is the
decisive element. In contrast, applications that only manipulate information often are too malleable to
qualify.

An opportunity for MAS is its highly-regarded status in software technology. Conversely, a serious threat
to MAS is its overly academic image associated with prolonged conceptual discussions, tolerance for
combinatorial explosions and application domain ignorance.

More relevant for the research agenda are customers accepting the limitations of mainstream IT because
they ignore/disbelieve the ability of MAS to deliver a competitive edge. In this respect, MAS-SE needs to
deliver confidence-building solutions:

 Practical convincing MAS applications
 Incremental development with intermediate applicable results but also promising a

decisive competitive edge in the end
 Speedy application development
 Integration with non-MAS systems
 Integration and harmonization with mainstream software engineering

In the above, coping with a dynamic complex environment is crucial. Here, it is insufficient to have MAS
technology that is able to handle such environments in principle only. MAS-SE technology needs to
CAPTURE DOMAIN KNOWLEDGE IN SOFTWARE ARTIFACTS – components, frameworks,
architectures – to avoid that every application needs to build this from scratch and learn
application-related lessons repeatedly.

AGREEMENT TECHNOLOGIES
Towards a new programming paradigm for agent-oriented technologies

Juan A. Rodríguez-Aguilar, IIIA-CSIC, Spain

Nowadays, most current transactions and interactions at business level, but
also at leisure level, are mediated by computers and computer networks. From
email to virtual worlds, the way people work and enjoy their free time has
changed dramatically in less than a generation time. However, the biggest
impact of this pervasive use has been on the way applications are thought and
developed. These applications require components to which more and more
complex tasks can be delegated, components that show higher levels of
intelligence, components that are capable of sophisticated ways of interacting,
as they are massively distributed, sometimes embedded in all sort of appliances
and sensors. This is precisely the scenario we believe agent-oriented
technology can contribute to.

Therefore, there is a need for developing models, frameworks, methods and
algorithms for constructing large-scale open distributed computer systems
where autonomy, interaction and mobility are the key characteristics. We
envision that such technologies can be structured around the concept of
agreement among computational agents. We envisage a new programming
paradigm that is based on two concepts: (1) a normative context or agreement
environment [1], that determines the rules of the game, i.e. how the interactions
between agents are going to happen, and (2) a call-by agreement interaction method
that is based on a two step process: first the establishment of an agreement for action
between the agents that respects the normative context, and second, the actual
program call for the enactment of the action.

We believe that agent programming languages must go beyond the current state of the
art, so far focused on the notions of agent architecture and protocol. Even beyond the
ideas represented by WADE [2], which attempts at bringing the notion of process into
agent development by providing support for the execution of tasks defined according to
the workflow metaphor. There is a need for a new programming paradigm that
considers the notions of agreement environment and agreement as first-class citizens.
Thus, the new programming paradigm must allow programmers to create agreement
environments, their access rules, their composition, and even the adaptation
mechanisms that allow them to adapt under changing circumstances. Furthermore, the
programming paradigm must allow the dynamic establishment of agreements, the
verification of the fulfilment of agreements, and the management of agents that fail to
honour their commitments even when agreements are signed. In some sense,
we advocate for a new programming paradigm inspired on the way we humans
act: we firstly set up constraining environments (via organisations or institutions)
wherein social contracts among individuals or companies are dynamically
established and honoured.

In order to found a new programming paradigm, we do not depart from scratch.
Under the umbrella of agreement technologies we consider the techniques and
tools that enable agents to reach and fulfil agreements on the mutual provision
of services. For agreement technologies to succeed in building next generation
open distributed systems there is a wide number of challenges at sight: the

semantic alignments between the different ontologies employed by agents; the
need for negotiation to allow agents to reach agreements; the development of
trust and reputation models that allow to cope with agents that fail to honour
their commitments even when agreements are signed; formal models and tools
for virtual organisations and institutions defining normative contexts, agreement
environments, within which to reach agreements; the need for learning models
to adapt agreement environments; the adaptability of agents to cope with
different agreement environments that may even change over time; and a better
understanding of agreement mechanisms by means of game and decision
theoretic results.

In our view, agent-oriented software engineering has made (and is doing) so far
significant contributions to industry. There is a wealth of agent-oriented
methodologies (e.g. AUML), programming languages and agent-based
platforms (e.g. JACK, Agentis, Whitestein’s Living Systems), and actual-world
applications (e.g. the wide range of business solutions developed by
Whitestein). Nonetheless, we still believe that there is something missing. We
envision that future methodologies, programming languages and tools for MAS-
oriented development must grow around three fundamental notions, namely
agreement environment, agreement, and agent. Thus, agents are situated in
some agreement environment that constrains the dynamic enactment and
fulfilment of agreements as reached by agents. Therefore, from a programmer’s
point of view we shall need to specify and enact environments, to specify and
enact agents, and a machinery to process agreements as agents interact.

Notice that this approach is not far from the way we humans daily operate.
Thus, we daily enact contracts in the framework of some regulatory body that
shape our future interactions.

References

[1] Special issue on environment for multi-agent systems. Autonomous Agents
and Multi-agent Systems. Volume 14, number 1. February 2007.
[2] Workflows and Agents Development Environment.
http://jade.tilab.com/wade/

Position Statement for FOSE-MAS at AAMAS 2008

Towards an Agent-Oriented Paradigm

Jorge J. Gomez-Sanz∗, Fabien Michel†, Eric Platon‡, Alessandro Ricci§

In this position statement, software paradigms are understood as fundamen-
tal styles of programming or engineering regarding how solutions to problems
are to be formulated in terms of fundamental abstractions. The creation of a
new paradigm is mainly motivated by the aim to build better software that can
address increasingly complex requirements. One paradigm can be better than
another for solving a concrete problem in different ways. For instance, it may
be easier to understand, or cheaper to produce/maintain, or more robust.

We argue that a main step essential to advance the research in SE and MAS
and, in particular, for a widespread adoption of AOSE in both industrial and
academic contexts, concerns the identification and development of an agent-
oriented paradigm, focussing on the theory and practice of using agents for
software development. This paradigm is to be contrasted with mainstream
paradigms, such as OO, and its advantages and limitations evidenced.

Agent research elaborates numerous facts and results, but we argue that
there is no paradigm yet, well recognised and accepted by SE and computing
programming communities, and this hampers progress in SE with agents. A
simple evidence for this is given by the very low number of references to AOSE,
agent-oriented programming and agent research in general that can be found
in mainstream SE and computer programming literature, including papers, sur-
veys, books, textbooks. Conversely, the notion of agent is everywhere in AI and
related literature (Russell and Norvig’s book is a main example).

When a paradigm is adopted, different developers produce similar solutions
for the same problem. Despite the progress in AOSE, this is something that it
not happening within our community. So, the question now is why there is no
consensus in the use of agents. We think this is the result of several factors:

∗
Departamento de Sistemas Informáticos y Programación, Universidad Complutense de

Madrid, 28040 Madrid, España. Email: jjgomez@sip.ucm.es

†
CReSTIC / LERI, IUT de Reims-Châlons-CharlevilleRue des crayères BP 1035, 51 687

Reims CEDEX 2, France. Email: fabien.michel@univ-reims.fr

‡
National Institute of Informatics, Honiden Laboratory, 2-1-2 Hitotsubashi, Chiyoda-

ku,101-8430 Tokyo, Japan. Email: platon@nii.ac.jp

§
DEIS, Alma Mater Studiorum Università di Bologna, Via Venezia 52, 47023 Cesena (FC),

Italy. Email: a.ricci@unibo.it

1

• Too little concern with theory and practice of computer programming and
SE, compared to a strong concern with AI. Agents could find a future also
outside (Distributed/Classic) AI, if a focus was put on how to use agents
to effectively build software systems, in particular complex software sys-
tems. There are precedents of a similar evolution in the LISP and Prolog
programming languages, which led to the functional and logic paradigms.

• An overly strong emphasis on theory. Even though there is an important
effort to change this situation, implementation and deployment is still
considered (too) secondary to (pure) theoretical results.

• Not illustrating sufficiently the value of application of agent technology
to problems; failure of disseminating evidence for improvements and cost
savings obtained. Agent technology needs to be assessed and audited, and
to do so, there must exist public benchmarks and code illustrating good
practice. These examples should regard real-world problems.

• Weak involvement of industrial players. Differently from what happened
for other paradigms (e..g., object and service), the agent community seems
not having stimulated the participation and, often, the interest of indus-
trial players in the effort of making the agent paradigm a valuable addition
to the current programming and engineering practices.

Devising an agent paradigm means injecting in the land of SE and programming
theory/practice a new abstraction layer based on first-class agent concepts for
organizing and programming applications and systems, and making it clearly
acknowledged by mainstream SE and computer programming communities and
literature. This implies defining suitable programming languages, and method-
ologies based on shared and accepted computational models and theories. And
these elements need to be based on the experience of the development of sys-
tems exhibiting, for instance, adaptability, robustness, scalability, and auton-
omy. Hence, it will be necessary to gather and organize existing knowledge on
the construction of MAS and promote the dissemination of this knowledge.

Acknowledgments

Many people contributed directly or indirectly to this position statement - which
actually summarizes the discussion developed in a forum on agent-oriented com-
puting. In particular we would like to thank: Paolo Petta, Michael Luck, Brian
Henderson-Sellers, Paolo Giorgini, Yves Demazeaux, James Odell, Juan Pavon,
Amal El Fallah Seghrouchni, Peter McBurney, Van H. Dyke Parunak, Alexis
Drogoul, Massimo Cossentino.

2

Domain characteristics lead choice for MAS approach

Virginia Dignum, Frank Dignum
Utrecht University, The Netherlands

{virginia, dignum}@cs.uu.nl

Our main hypothesis is that it is impossible to have one MAS approach that fits all application
domains. The lack of uptake of MAS technology stems at least in part from the fact that
industry does not get handles on which type of approach is suitable for which type of
problem. Therefore it becomes very difficult to assess the possibility of success of this new
technology and people rather stick to known technologies.

Current approaches to the design and implementation of agents and multi-agent systems
exhibit large differences amongst themselves both at conceptual and engineering levels. The
analysis of a problem domain will give rise to different decisions concerning the practical
implementation of the following principles of MAS: the decomposition of problems into
individual tasks or goals for the agents; deciding on interoperability and communication
options for agents; coherence of action and avoidance of conflicts and harmful or useless
interaction; and individual possibilities for representation and reasoning about actions, plans
and knowledge of others. For example, the decision to use a blackboard structure instead of
an ACL for agent communication leads to different types of agent systems (suited for
different types of domains).

There is thus a need for a classification that can be used as a starting point in determining
what type of MAS should be developed for which type of situation (and thus can co-
determine agent methodology, platform, etc.). Of course we would also need a methodology
to determine the right class of MAS given a certain application area, such that we could start
the design of the MAS from the situation at hand instead of starting from a particular MAS
and adjust the situation to fit that type of MAS. So, we are concerned with the relation
between system and environment and how to determine which kind of agent approach better
suits environment characteristics.

Developers of agent systems have typically a fixed number of system components that can be
manipulated, while others are uncontrollable. These components are the agents, their
interfaces to the system environment (API), the agent communication channels, and the agent
environment. In one extreme, the developer has full control over the agents' internal
architecture and interaction while there is no control over any of the agent environment. In the
other extreme the agents are unknown and uncontrolled and the developer fully controls the
agent environment where interaction occurs. Depending on what is controlled and how those
components are specified, different types of agent systems arise.

Hardly any research has been done in the area of decision support to the choice of (MAS)
design methodology. We position that such choice should be guided by the characteristics of
the domain. Important aspects to consider are the possibility/desirability to control the design
of the agents and of the overall organization; the existence of global goals external to the
agents; the degree of control over the interactions; requirements related to the control of
systemic and agent behavior; and, the need for emergent behavior. We are currently holding a
survey to determine the link between domain and approach. Future work is required to further
develop these issues, by extensive evaluation of existing systems and starting a discussion
between different AOSE research groups in order to understand and make explicit the
motivations and differences between approaches.

Concepts, Method Engineering and Future Standardization for
AOSE.

Brian Henderson-Sellers, Professor of Information Systems,
Faculty of Information Technology, University of Technology, Sydney, Australia

The challenges for agent-oriented software engineering include, in my opinion:

 The lack of a good example. Most exemplars I see whilst reviewing articles
use system designs that I could easily accomplish just as well using an object-
oriented development approach. That means that potential users of AOSE are
not persuaded to spend their precious time in getting to grips with the new
ideas of AOSE.

 The persisting gap between agents in the classical or AI-influenced sense and
true AOSE. At agent-oriented conferences like AAMAS, the majority of
attendees more readily fit into the first category. To encourage more AOSE,
there are moves afoot to create a truly software engineering flavoured agent
conference as well as our initiative to create an AOSE focussed journal
(International Journal of Agent-Oriented Software Engineering).

 The lack of true AO programming languages. Taking a historical parallel, it is
often said that the object paradigm, invented in the 1960s, did not take off
until languages like C++, Eiffel and Smalltalk were commercially available in
the late 1980s. The perception is that current AOPLs are front-ends to Java –
ergo, agents are just objects! (Such is the perception of many in both industry
and academe)

 The lack of standards. Perhaps this is a little early but in the last few months
both ISO and the Object Management Group (OMG) as well as FIPA have
been investigating the potential increased output of standards for agents by
these respective standards bodies.

I therefore, in broad terms, agree with Scott deLoach’s position statement with one
exception. I have always believed that it is vital to agree on concepts before notation.
Concepts represent our shared understanding and we must therefore have an agreed
ontology or metamodel. Only then can we ask how we might communicate those
concepts within our community and to users of our work. This is the notation.
Creating a notation requires different skills from creating a metamodel or ontology;
for instance, it requires understanding of semiotics and usability, which are irrelevant
to building a conceptual basis.

Along these lines, I have recently led an ISO study group assessing the maturity of
agent technology for ISO standardization (reporting May 2008). It is likely that one of
the recommendations will be to investigate the likely standardization of the
conceptual basis through a metamodel – an initiative that is also being pursued within
the Object Management Group commencing June 2008. Once such a conceptual base
is reasonably well-established, we should then pursue a common notation.

Finally, as you might expect, I endorse Scott’s comment that in 2005 I advocated –
and still do advocate – situational method engineering as an excellent way to build
organizational-specific and/or project-specific methodologies for use by industry. The

approach has been shown to be successful on several object-oriented projects but, to
the best of my knowledge, not yet in an agent-oriented software engineering
environment. This needs to be done.

	Future of Software Engineering and Multiagent Systems
	FOSE-MAS 2008
	abstracts.pdf
	georgeff.pdf
	The MAS – SE Gap: Bridging the Divide

	weyns.pdf
	How to Get Multi-Agent Systems Accepted in Industry?
	Dealing with stakeholders’ requirements
	Managing complexity
	Integrating MAS with its software environment
	Architectural design and evaluation
	Impact of MAS on the company’s organization
	Conclusion
	Bibliography

	dignum.pdf
	Domain characteristics lead choice for MAS approach

	henderson-sellers.pdf
	Concepts, Method Engineering and Future Standardization for AOSE.

	ghose.pdf
	Industry traction for MAS technology: Would a rose by any other name smell as sweet?

	georgeff.pdf
	The MAS – SE Gap: Bridging the Divide

	weyns.pdf
	How to Get Multi-Agent Systems Accepted in Industry?
	Dealing with stakeholders’ requirements
	Managing complexity
	Integrating MAS with its software environment
	Architectural design and evaluation
	Impact of MAS on the company’s organization
	Conclusion
	Bibliography

	ghose.pdf
	Industry traction for MAS technology: Would a rose by any other name smell as sweet?

	dignum.pdf
	Domain characteristics lead choice for MAS approach

	henderson-sellers.pdf
	Concepts, Method Engineering and Future Standardization for AOSE.

