KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA

Celestijnenlaan 200 A — B-3001 Leuven

An Architecture-Centric Approach for Software Engineering
with Situated Multiagent Systems

Jury : Proefschrift voorgedragen tot
Prof. Dr. ir.-arch. H. Neuckermans, voorzitter het behalen van het doctoraat
Prof. Dr. T. Holvoet, promotor in de Ingenieurswetenschappen
Prof. Dr. ir. P. Verbaeten, promotor

Prof. Dr. ir. Y. Berbers door

Prof. Dr. ir. H. Blockeel Danny Weyns

Prof. Dr. ir. W. Joosen
Dr. HV.D. Parunak
(NewVectors, LLC, Ann Arbor, MI, USA)
Prof. Dr. F. Zambonelli
(University of Modena and Reggio Emilia, Italy)

U.D.C. 681.3, 681.3xD2

October 2006

(©Katholieke Universiteit Leuven — Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D /2006/7515 /66
ISBN 90-5682-732-4

Abstract

Developing and managing today’s distributed applications is hard. Three important
reasons for the increasing complexity that characterize a large family of systems are:
(1) stakeholders involved in the systems have various, often conflicting quality require-
ments; (2) the systems are subject to highly dynamic and changing operating condi-
tions; (3) activity in the systems is inherently localized, global control is hard to achieve
or even impossible.

In this dissertation, we present an approach for developing such complex systems.
The approach integrates situated multiagent systems as software architecture in a
mainstream software engineering process. Key aspects of the approach are architecture-
centric software development, self-management, and decentralized control. Architecture-
centric software development compels the stakeholders involved in a system to deal
explicitly with quality goals and tradeoffs between the various system requirements.
Self-management enables a software system to deal autonomously with the dynamic
and changing circumstances in which it has to operate. Key qualities for endowing
systems with abilities to manage dynamism and change are flexibility and openness.
Decentralized control is essential to cope with the inherent locality of activity. In a
system where global control is not an option, the functionality of the system has to be
achieved by collaborating subsystems.

We present an advanced model for situated multiagent systems that integrates the
environment as a first-class design abstraction with an integral model for situated agents
that provides advanced mechanisms for adaptive behavior. These mechanisms enable
situated agents to manage the changing situation in the environment autonomously; the
multiagent system can cope with agents leaving the system and new agents that enter.
Control in a situated multiagent system is decentralized, situated agents cooperate to
achieve the overall functionality of the system.

From our experiences with building various situated multiagent system applica-
tions, we have developed a reference architecture for situated multiagent systems. This
reference architecture maps the advanced model for situated multiagent systems on
an abstract system decomposition. We give an overview of the various views of the
architecture, and we explain how the reference architecture can guide architects when
developing new applications that share the common base of the reference architecture.

We have applied a situated multiagent system in a industrial automated trans-
portation system. The architectural design, the development, and the evaluation of
this complex application has considerably contributed to the development of the refer-
ence architecture. We give an overview of the software architecture of the system, and
we discuss the evaluation of the architecture. The successful development of this chal-
lenging application demonstrates how multiagent systems can be integrated as software
architecture in mainstream software engineering.

Acknowledgements

Deze thesis is het resultaat van het onderzoek dat ik de voorbije vijf jaren heb
verricht in de DistriNet onderzoeksgroep. Het was een fascinerende en uitermate
leerzame ervaring. Ik heb het geluk gehad in een echt team te kunnen werken—
AgentWise, met een uitstekende coach. Het onderzoek heeft me naar verre plaat-
sen op de wereld gebracht, ik heb interessante mensen ontmoet en samen met hen
heb ik fascinerende dingen op touw gezet. Bij het afsluiten van mijn doctoraat wil
ik iedereen die dit mee heeft mogelijk gemaakt van harte bedanken.

Vooreerst wil ik mijn promotoren Prof. Tom Holvoet en Prof. Pierre Verbaeten
van harte bedanken voor het vertrouwen dat ze mij hebben geschonken om mijn
onderzoek te kunnen verrichten. Bedankt voor de ruimte Tom die ik heb gekregen
om mijn eigen weg te kunnen zoeken. Bedankt voor je luisterbereidheid, ondanks
alle drukte. En bovenal bedankt voor je scherpe feedback, het heeft me telkens
opnieuw gestimuleerd om het beste uit mezelf naar boven te brengen.

Naast Tom en Pierre bedank ik de leden van mijn begeleidingscommissie Prof.
Yolande Berbers en Prof. Hendrik Blockeel voor het zorgvuldig nalezen van deze
tekst en de waardevolle commentaar. I would like to express my sincere gratitude
to Dr. Van Parunak, Prof. Franco Zambonelli, and Prof. Wouter Joosen for ac-
cepting to be members of the jury, and to Prof. Herman Neuckermans for chairing
the jury.

Thanks to Liz Sonenberg, Wouter Joosen, and Pieter Jan 't Hoen for the
valuable feedback on the initial outline of this thesis.

Een bijzonder woord van dank aan Eddy Truyen. Als begeleider van mijn
master thesis en daarna als bureaugenoot heeft hij mij naadloos in het onder-
zoek ingeleid. Hij heeft me de principes—en de passie—bijgebracht om papers te
schrijven. Eddy, ik denk met bijzonder veel genoegen terug aan onze jaren in de
M-blok.

Zonder mijn collega’s van AgentWise kan ik me mijn onderzoek moeilijk voor-
stellen. De kritische houding voor mekaars werk heeft ons telkens opnieuw de gren-
zen doen verleggen. Mijn bijzondere dank gaat uit naar Elke Steegmans voor onze
samenwerking rond rollen, en naar Kurt Schelfthout met wie ik lief en leed heb

ii

gedeeld bij de ontwikkeling van de controle software voor automatisch bestuur-
de voertuigen op Egemin. Ik bedank Alexander Helleboogh voor de aangename
samenwerking. Bedankt Lexe voor al onze “stimulerende coffiepauzes” waaruit
menig nieuw inzicht is ontsproten. Dank ook aan Nelis Boucké voor de samen-
werking. Nelis, je creativiteit en kritische kijk hebben me altijd plezier gedaan,
ik kijk uit naar onze verdere samenwerking. Ik wil iedereen van het team ook
bedanken voor de inzet voor de EAMAS workshops.

Graag wil ook de onderzoekers van DistriNet bedanken voor de aandacht en
de stimulerende feedback op mijn onderzoek tijdens de voorbije jaren. Dank ook
aan Esther, Karin en Margot, alsook Jean en de rest van de systeemgroep voor
jullie inzet.

Het EMC? project in samenwerking met Egemin was een bijzonder leerrijke
ervaring. Dank in het bijzonder aan Tom Lefever en Jan Wielemans. Tom en Jan,
jullie engagement en inzet waren onontbeerlijk voor het succesvol toepassen van
ons onderzoek in de praktijk.

In the autumn of 2003, I contacted Van Parunak and Fabien Michel with the
idea to organize a workshop on the role of the environment in multiagent systems.
Their enthusiastic reaction was the forerunner of an exciting experience. The
successful EAMAS workshops in New York, Utrecht, and Hakodate have put the
environment on the map of multiagent system research. Van and Fabien, thank
you for the very enjoyable and productive collaboration! I am grateful to Andrea
Omicini and Jim Odell for our collaboration, in particular the joint work on the
JAAMAS paper. Thanks also to Alessandro Ricci, Mirko Viroli, Giuseppe Vizarri,
Michael Schumacher, and Eric Platon, for the collaborations.

Ik wil mijn familie bedanken, in Testelt en in Lint. Va en moe, bedankt voor alle
goede zorgen en de kansen die ik heb gekregen. Doctoraatswerk is boeiend, maar
soms ook moeilijk. Omringd zijn door mensen die “mee” zijn in het avontuur is
van ontschatbare waarde. Frankie, onze vrijdagavonden waren telkens een moment
waar ik naar uit kon zien. Ik hoop dat we nog vele inspirerende gesprekken bij
“een Roche” mogen beleven!

Lieve Marina, beter dan wie ken jij de grillen van mijn gedrevenheid. Zonder
jouw begrip, je steun, je zorgzaamheid,... zou dit doctoraat nooit gelukt zijn. Lieve
Eva en Tessa, eindelijk, papa is afgestudeerd! Jullie interesse voor mijn “agentjes”
heeft me steeds plezier gedaan. Het is fijn te zien hoe jullie nu zelf met inzet en
plezier studeren.

Danny Weyns
Augustus 2006

Contents

1 Introduction
1.1 Self-Managing Applications
1.2 Situated Multiagent Systems
1.3 Multiagent Systems and Software Architecture
1.4 Mechanisms for Adaptivity in Situated Multiagent Systems
1.5 Contributions L
1.6 Overview e

2 Architecture-Centric Software Development
2.1 Architectural Design in the Development Life Cycle
2.2 Functional & Quality Attribute Requirements
2.3 Architectural Design L oL oo oL
2.3.1 Architectural Approaches and Reference Architecture
2.3.2 Architectural Design with a Reference Architecture
2.3.3 Documenting Software Architecture
2.3.4 Evaluating Software Architecture
2.4 From Software Architecture to Detailed Design and Implementation
2.5 SUMMATY . . ¢ v v v e e e e e

3 Advanced Model for Situated Multiagent Systems

3.1 Historical Overview of Situated Agent Systems
3.1.1 Single Agent Systems
3.1.2 From Collective Reactive Behavior to Situated Multiagent
Systems

3.2 The Packet-World
3.3 The Environment as a First-Class Design Abstraction
3.3.1 Levels of Support Provided by the Environment
3.3.2 Definition of the Environment as a First-Class Abstraction
3.3.3 Functionalities of the Environment

3.4 Advanced Mechanisms of Adaptivity for Situated Agents.
3.4.1 Agent State o

iii

iv CONTENTS
3.4.2 Selective Perception 0oL 49
3.4.3 Behavior-Based Action Selection Extended with Roles and

Situated Commitments 51
3.4.4 Protocol-Based Communication 58
3.5 Summary e e e 60
4 A Reference Architecture for Situated Multiagent Systems 63
4.1 Rationale and Background oo 64
4.1.1 Reference Architecture Rationale 64
4.1.2 Characteristics and Requirements of the Target Application
Domain of the Reference Architecture 65
4.1.3 Development Process of the Reference Architecture 65
4.1.4 Organization of the Reference Architecture Documentation 66
4.2 Integrated Model for Situated Multiagent Systems 67
4.2.1 Model of the Environment 67
4.2.2 Model of the Agent 71
4.3 Module Decomposition View 74
4.3.1 Module Decomposition View Packet 1:
Situated Multiagent System 75
4.3.2 Module Decomposition View Packet 2:
Agent 80
4.3.3 Module Decomposition View Packet 3:
Application Environment 85
4.4 Component and Connector Shared Data View 91
4.4.1 C & C Shared Data View Packet 1:
Agento 91
4.4.2 C & C Shared Data View Packet 2:
Application Environment 94
4.5 Component & Connector Collaborating Components View 96
4.5.1 C&C Collaborating Components View Packet 1:
Perception and Representation Generator 97
4.5.2 C&C Collaborating Components View Packet 2:
Decision Making and Interaction 100
4.5.3 C&C Collaborating Components View Packet 3:
Communication and Communication Service 104
4.6 Component and Connector Communicating Processes View 108
4.6.1 C & C Communicating Processes View Packet 1:
Perception, Interaction, and Communication 109
4.7 A Framework that Implements the Reference Architecture 112
4.8 SUMMATY . .« . v v e e e e 113

CONTENTS v

5 Architectural Design of an AGV Transportation System 115
5.1 AGYV Transportation System 117
5.1.1 Main Functionalities 117
5.1.2 Quality Requirements 118
5.2 Overview of the Software Architecture of the Transportation System 119
5.2.1 Architectural Design 119
5.2.2 Overview of the AGV Transportation System Software . . . 120
5.2.3 Situated Multiagent System for the AGV Transportation
System 122
5.3 Documentation of the Software Architecture 127
5.3.1 Deployment View of the AGV Transportation System . . . 127
5.3.2 Module Decomposition of the AGV Control System 129
5.3.3 Module Decomposition of the Transport Base System . . . 131
5.3.4 Collaborating Components View of the AGV Agent 133
5.3.5 Collaborating Components View of the Local Virtual Envi-
ronment . .. o.o. Lo Lo 136
5.4 Transport Assignment 140
5.4.1 Gradient Field Based Transport Assignment. 141
5.4.2 Protocol-Based Transport Assignment 150
5.5 Collision Avoidance 158
5.5.1 Decentralized Mechanism for Collision Avoidance 159
5.5.2 Software Architecture: Communicating Processes for Colli-
sion Avoidanceo 162
5.6 ATAM Evaluation, 164
5.6.1 ATAM Workshop 165
5.6.2 Tobacco Warehouse Transportation System 165
5.6.3 Utility Tree« ... 166
5.6.4 Analysis of Architectural Approaches. 166
5.6.5 Reflection on the ATAM Workshop 171
5.6.6 Demonstrator of AGV Transportation System 172
5.7 Concluding Remarks 0L 172
6 Related Work 175
6.1 Architectural Styles and Multiagent Systems 175
6.2 Reference Models and Architectures for Multiagent Systems 178
6.3 Scheduling and Routing of AGV Transportation Systems 183
7 Conclusions 187
7.1 Contributions 188
7.2 Lessons Learned from Applying Multiagent Systems in Practice . . 189
7.3 Future work 190

7.4 Closing Reflection 0 .. 192

vi CONTENTS

A Formal Specification of the Reference Architecture
A.1 Architecture Elements of the Module Decomposition View
A.1.1 Module Decomposition View Packet 1:
Situated Multiagent System
A.1.2 Module Decomposition View Packet 2:
Agent
A.1.3 Module Decomposition View Packet 3:
Application Environment
A.2 Architecture Elements of the Shared Data View
A.2.1 C & C Shared Data View Packet 1:
Agent
A.2.2 C & C Shared Data View Packet 2:
Application Environment
A.3 Architecture Elements of the Collaborating Components View . . .
A.3.1 C & C Collaborating Components View Packet 1:
Perception and Representation Generator
A.3.2 C & C Collaborating Components View Packet 2:
Decision Making and Interaction
A.3.3 C & C Collaborating Components View Packet 3:
Communication and Communication Service

B A Framework for Situated Multiagent Systems
B.1 General Overview of the Framework
B.1.1 Overview of the Agent Package
B.1.2 Overview of the Application Environment Package
B.2 Decision Making with a Free-Flow Tree
B.3 Simultaneous Actions in the Environment
B.3.1 Simultaneous Actions
B.3.2 Support for Simultaneous Actions in the Framework
B.4 Applying the Framework to an Experimental Robot Application .
B.4.1 Robot Application L.
B.4.2 Applying the Framework

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8
3.9

3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Architectural design in the software development life cycle 12
Sample utility treeo o o 21
Conceptual flow of the ATAM 22
Subsumption Architecture for a simple robot 27
Agent Network Architecture for a simple robot 29
Example of the Packet-World 38
Indirect coordination in the Packet-World 40
Agents directly access the deployment context 41
Abstraction level that shields agents from the details of the deploy-

ment contexto Lo 41
The environment mediates the interaction with resources and among

agents L 42
Free-flow tree for a Packet-World agent 53

Free-flow tree for a Packet-World agent with roles and situated com-
mitments (system node, combination functions, and stimuli of ac-

tivity nodes omitted)o Lo 56
Situated commitment Charging with its goal role Maintain 57
UML sequence diagram of the communication protocol to set up a

chain in the Packet-World 59
Environment modelo oo 68
Agent model Lo 72
Interfaces of agent, application environment, and deployment context 76
Interfaces of the agent modules 82
Interfaces of the application environment modules 87
Decomposition application environment 90
Shared data view of an agent 92
Shared data view of the application environment 95
Collaborating components of perception and representation generator 98
Collaborating components of decision making and interaction . . . 101

vii

viii LIST OF FIGURES

4.11 Collaborating components of communication and communication
SETVICE e 105

4.12 Communicating processes view for perception, interaction, and com-
munication 110
5.1 An AGV at work in a cheese factory 116
5.2 Software layers of the AGV transportation system 121
5.3 Context diagram of the AGV transportation system 122
5.4 Schematic overview of an AGV transportation system 123
5.5 High-level model of an AGV transportation system 124
5.6 Deployment view of the AGV transportation system 128
5.7 Module uses view of the AGV control system 129
5.8 Module uses view of the transport base system 132
5.9 Collaborating components view of the AGV agent 134

5.10 Collaborating components view of the local virtual environment of
AGVs . . e 137

5.11 Example scenario of field-based transport assignment. Lines repre-

sent paths of the layout, small circles represent nodes at crossroads,

hexagons represent transports, dotted circles represent transport
fields, and full circles AGV fields. 142

5.12 Two successive scenarios in which AGV 1 follows the gradient of
the combined fields. For clarity, we have not drawn the fields. . . . 142

5.13 Decision making component of the AGV agent for field-based trans-
port assignmento 144
5.14 Map used for testing transport assignment 146
5.15 Amount of messages being sent oL 148
5.16 Percentage of completed transports 149
5.17 Average waiting time for transports 150
5.18 Average waiting time for transports per pick location 151

5.19 High-level description of the DynCNET protocol for transport as-
signment Lo L 152
5.20 Amount of messages being sent per finished transport 154
5.21 (a) Number of unicast messages, (b) Number of broadcast messages. 155
5.22 Average waiting time oL 155
5.23 Number of finished transports 156
5.24 Number of finished transports in the stress test 156
5.25 Messages per finished transports 157

5.26 Average waiting time per finished transport with a 95 % confidence
interval 158

5.27 (a) Two AGVs approaching, (b) A conflict is detected, (¢) One AGV
passes safely, (d) The second AGV can pass as well. 160
5.28 Determining nearby AGVs 161
5.29 Communicating processes for collision avoidance 163

LIST OF FIGURES ix

5.30 Excerpt of the utility tree for the tobacco warehouse transportation
system 167
5.31 Analysis architectural approaches with respect to flexibility 168
5.32 Analysis architectural approaches with respect to bandwidth usage 170
5.33 Bandwidth usage in a test setting oL 171
5.34 Demonstrator with AGVsin action 173
A.1 Top-level decomposition of a situated multiagent system with the
deployment context oL oL oL 218
A.2 Module decomposition of an agent 223
A.3 Module decomposition of the application environment 225
A.4 Repository and data accessors of an agent 227
A.5 Repositories and data accessors of the application environment . . 229
A.6 Collaborating components of perception and representation generator232
A.7 Collaborating components of decision making and interaction . . . 236
A.8 Collaborating components of communication & communication ser-
VICE . .o e e 240
B.1 General overview of the framework 248
B.2 General overview of the Agent package 249
B.3 General overview of the Application Environment package 252
B.4 Overview of the Free-flow package 256
B.5 Example of simultaneous actions in the Packet-World 260
B.6 Main classes of the framework involved in the execution of simulta-
neous actions oL Lo 261
B.7 Simulation of the robot application 265
B.8 A robot carrying a packet 265
B.9 The environment with the robots in action. 266
B.10 Deployment of the robot software 267

B.11 Protocol to coordinate the transfer of a packet 268

LIST OF FIGURES

Chapter 1

Introduction

Developing and managing today’s distributed applications is hard. Three impor-
tant reasons for the complexity form the starting point of this research. One reason
for the complexity is the increasing demand on the quality of software [35, 171].
Different stakeholders interested in the software (users, project leaders, architects,
developers, maintainers, etc.) usually have various expectations on the quality of
the software (performance, flexibility, maintainability, etc.). Dealing with these—
usually competing—quality requirements, and the project and business constraints
(budgets, schedules, etc.), pose difficult challenges to software engineers.

A second important reason why the development and management of dis-
tributed applications is hard are the highly dynamic and changing operating
conditions in which today’s distributed applications operate. Applications are
expected to cope with dynamically changing workloads, unpredictable peaks in
demand, continuous changes in availability of resources and services, particular
failure modes, variations in network traffic, etc. Wireless communication intro-
duces great opportunities for the further integration of computing resources, how-
ever, it also introduces additional complexity due to the pervasiveness of network
connectivity and continuous topological changes in the network [195, 167, 242].

In addition to the complexity resulting from the demanding quality attributes
and the dynamic operating conditions, the nature of a large family of such dis-
tributed applications is such that global control is hard to achieve. Activity in
these applications is inherently localized, i.e. global access to resources is difficult
to achieve or even infeasible. Example domains are automated transportation
systems and robotics, mobile and ad-hoc networks, and wireless sensor networks.

In this research we propose an architecture-centric approach to develop such
complex applications. Architecture, in particular software architecture, is crucial
for managing complexity and achieving the required quality attributes of the sys-
tem. The approach aims for self-managing systems, i.e. systems that are able to
manage dynamism and change autonomously. The cornerstone of the approach is

2 Introduction

situated multiagent systems. Situated multiagent systems provide a way to model
self-managing decentralized systems; decentralized control is essential to cope with
the inherent locality of activity of the target applications.

In the remainder of this introduction, we start by explaining self-management.
Next, we introduce situated multiagent systems. We explain our perspective on
software engineering with multiagent systems, and we give an overview of mech-
anisms for adaptation in situated multiagent systems we have developed. The
introduction concludes with a summary of the contributions of this research and
an overview of the text.

1.1 Self-Managing Applications

Information Technology industry recognizes the rising problems of managing com-
plex distributed applications and has started initiatives to face them. Example are
IBM’s Autonomic Computing [2] and Microsoft’s Dynamic Systems Initiative [4].
These and similar initiatives recognize self-management as the only option to face
growing problems. The general idea of self-management is to endow computing
systems with the ability to manage themselves according to high-level objectives
specified by humans. [110] divides self-management into four functional areas: (1)
self-configuration: i.e. automatically configure components to adapt themselves
to different environments; (2) self-healing: i.e. automatically discover, diagnose,
and correct faults; (3) self-optimization: i.e. automatically monitor and adapt re-
sources to ensure optimal functioning regarding the defined requirements; and (4)
self-protection: i.e. anticipate, identify, and protect against arbitrary attacks.

To enable self-management, distributed applications must be equipped with
suitable techniques and supported by appropriate infrastructure. In this, the en-
vironment will occupy a prominent position. A self-managing system must take
the appropriate actions based on the situation sensed in the environment. This re-
quires functionality for monitoring, decision making, and action execution. Local
adjustments have to be in line with system-wide self-managing policies. This re-
quires coordination of behavior within and among different applications. To meet
these challenges, a whole range of useful techniques have been explored, such as
techniques for problem probing [48], learning and adaptation techniques [231, 151],
market mechanisms [103], and techniques to control and exploit emergent behav-
ior [238, 155]. Supporting middleware has been developed, see e.g. [140, 131, 86].
However, the ultimate realization of self-management poses enormous research
challenges [109].

In our research, we consider self-management as a system’s ability to manage
dynamism and change autonomously. With dynamism and change we refer to the
variable circumstances a system can be subjected to during operation, such as
altering workloads, variations in availability of resources and services, and sub-
systems that join and leave. Our focus on self-management is closely related to

1.2 Situated Multiagent Systems 3

self-optimization and self-healing (as defined in [110]). Self-configuration and self-
protection are outside the scope of this research.

1.2 Situated Multiagent Systems

Research in multiagent systems is concerned with the study, behavior, and con-
struction of a collection of autonomous agents that interact with each other and
their environment [188]. [72] defines a multiagent system as “a loosely coupled net-
work of problem solvers (agents) that interact to solve problems that are beyond
the individual capabilities or knowledge of each problem solver.” Characteristics of
multiagent systems are: (1) each agent has incomplete information or capabilities
for solving the problem and, thus, has a limited viewpoint; (2) there is no system
global control; (3) data are distributed; and (4) computation is asynchronous.

Situated multiagent systems are one family of multiagent systems. A situated
multiagent system consists of a (distributed) environment populated with a set
of agents that cooperate to solve a complex problem in a decentralized way. A
situated agent has an explicit position in the environment and has local access to
the environment, i.e. each agent is placed in a local context which it can perceive
and in which it can act and interact with other agents. System functionality results
from the agents’ interactions in the environment, rather than from their individual
capabilities.

A situated agent uses a behavior-based action selection mechanism to select
actions. Behavior-based action selection is driven by stimuli perceived in the
environment as well as internal stimuli. Situated agents employ internal state for
decision making insofar this state relates to (1) general static information of the
system (e.g. fixed priority rules); (2) dynamic information related to the agent’s
current context (e.g. a temporal agreement for collaboration with a neighboring
agent); or (3) issues internal to the agent (e.g. a threshold value used as a switch
for changing roles).

In situated multiagent systems, the environment is an essential part of the
system. The environment encapsulates resources and enables agents to access
the resources. Moreover, the environment enables agents to interact with one
another, it is the medium for agents to share information and coordinate their
behavior. A typical example of environment-mediated coordination is a digital
pheromone [41, 52, 154] which software agents use to coordinate their behavior. A
digital pheromone is a dynamic structure in the environment that aggregates with
additional pheromone that is dropped, diffuses in space and evaporates over time.
Agents can use pheromones to dynamically form paths to locations of interest. In-
direct exchange of information through the environment enables the coordination
of the agents’ individual loci of control. Control in a situated multiagent system
is thus distributed among agents and the mediating environment.

4 Introduction

Self-Management. In a situated multiagent system, self-management is essen-
tially based on the ability of agents to adapt their behavior. Due to the efficiency
of action selection, situated agents can rapidly respond to changing circumstances.
Besides this form of “instant” flexibility, specific mechanisms have been developed
that allow situated agents to adapt their behavior over time. Mechanisms for adap-
tive behavior enable situated agents to switch to the most appropriate behavior
when circumstances in the environment change over time. The environment can
play an active role in self-management. An example of this latter is a pheromone
path that disappears over time, preventing agents to follow paths to outdated
information.

1.3 Multiagent Systems and Software Architec-
ture

Our research puts forward an architecture-centric approach for software engineer-
ing with multiagent systems. Our perspective on the essential purpose of multia-
gent systems is as follows:

A multiagent system provides the software to solve a problem by struc-
turing the system into a number of interacting autonomous entities
embedded in an environment in order to achieve the functional and
quality requirements of the system.

This perspective states that multiagent systems provides the software to solve a
problem. In particular, a multiagent system structures the system as a number of
interacting elements in order to achieve the requirements of the system. This is
exactly what software architecture is about. [35] defines software architecture as:
“the structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among them.”
Software elements (or in general architectural elements) provide the functional-
ity of the system, while the required quality attributes (performance, usability,
modifiability, etc.) are primarily achieved through the structures of the software
architecture.

As such, multiagent systems are in essence a family—yet a large family—of
software architectures. Based on the problem analysis that yields the functional
and quality attribute requirements of the system, the architect may or may not
choose for a multiagent system-based solution. Quality attribute requirements
such as flexibility, openness, and robustness may be arguments for the designer
to choose for a multiagent system software architecture. As such, we consider
multiagent systems as one valuable family of approaches to solve software prob-
lems in a large spectrum of possible ways to solve problems. Typical architectural
elements of a multiagent system software architecture are agents, environment,

1.3 Multiagent Systems and Software Architecture 5

resources, services, etc. The relationships between the elements are very diverse,
ranging from environment-mediated interaction between cooperative agents via
virtual pheromone trails to complex negotiation protocols in a society of self-
interested agents. In short, multiagent systems are a rich family of architectural
approaches with specific characteristics, useful for a diversity of challenging appli-
cation domains.

Reference Architecture for Situated Multiagent Systems. [78] defines a
reference architecture as “the generalized architecture of several end systems that
share a common domain.” A reference architecture provides a base for instantiat-
ing new software architectures for classes of systems that share the common base
of the reference architecture.

In our research we have developed a reference architecture for situated multia-
gent systems. The reference architecture embodies the knowledge and expertise we
have acquired during our research. The reference architecture generalizes and ex-
tracts common functions and structures from various experimental applications we
have studied and built. These applications provide different degrees of complexity
and various forms of dynamism and change. Applications include a prototypi-
cal peer-to-peer file sharing system, a simulation of an automatic guided vehicle
transportation system, and several experimental robotic applications. Besides
these basic applications, the development of the reference architecture is consid-
erably based on experiences with an industrial logistic transportation system for
warehouses.

The reference architecture is an asset for reuse, it can serve as a blueprint for
developing software architectures for the kind of distributed applications we target
in this research. The reference architecture also offers a vehicle to study and learn
the basic structures and mechanisms of situated multiagent systems.

Current Practice in Agent-Oriented Software Engineering. Whereas our
research aims to integrate multiagent systems with mainstream software engineer-
ing, current practice in agent-oriented software engineering considers multiagent
systems as a radically new way of engineering software. Here is a list of illustrating
quotes from literature of the past five years:

e There is a fundamental mismatch between the concepts used by object-
oriented developers and other mainstream software engineering paradigms,
and the agent-oriented view. [...] Existing software development techniques
are unsuitable to realize the potential of agents as a software engineering
paradigm. [235]

o Whether agent-oriented approaches catch on as a software engineering paradigm
[is determined by] the degree to which agents represent a radical departure
from current software engineering thinking. [102]

6 Introduction

e We are on the edge of a revolutionary shift of paradigm, pioneered by the
multiagent systems community, and likely to change our very attitudes in
software modelling and engineering. [242]

e Agent-based computing can be considered as a new general-purpose paradigm
for software development, which tends to radically influence the way a soft-
ware system is conceived and developed. [241]

This vision has led to the development of numerous multiagent system methodolo-
gies. Some of the methodologies focus on particular phases of the software develop-
ment process, e.g. Gaia [240]. Others cover the full software development life cycle,
an example is Tropos [81]. Some of the proposed methodologies adopt mechanisms
and practices from mainstream software engineering. Prometheus [146] is inspired
by object-oriented mechanisms. Mase [233] uses practices of the Unified Process.
Adelfe [40] uses constructs of the Unified Modeling Language. However, nearly all
methodologies take an independent position, little or not related to mainstream
software engineering practice.

The firm position of being a radically new paradigm for software development
isolates agent-oriented software engineering from mainstream software engineering.
Instead of considering multiagent systems as a radically new approach for soft-
ware development, we aim to integrate multiagent systems in a general software
engineering process. By considering multiagent systems essentially as software
architecture, multiagent systems get a clear and prominent role in the software
development process. The architecture-centric approach for software engineering
with multiagent systems proposed in this research contributes to the integration
of multiagent systems with mainstream software engineering.

1.4 Mechanisms for Adaptivity in Situated Mul-
tiagent Systems

To support architectural design of self-managing applications with situated mul-
tiagent systems, we have developed an advanced model for situated multiagent
systems that extends state-of-the-art approaches in the domain. This model in-
tegrates the environment as a first-class abstraction with an advanced model for
situated agents that includes explicit support for different concerns of agents and
that supports various mechanisms for adaptivity.

Environment as a First-Class Abstraction in Multiagent Systems. Our
research puts forward the environment as an independent building block with
state and processes that can be exploited when designing multiagent system ap-
plications. Important responsibilities of the environment are: (1) the environment
enables agents to access resources external to the multiagent system, it provides a

1.4 Mechanisms for Adaptivity in Situated Multiagent Systems 7

medium for agents to share information, and it enables agents to interact; (2) the
environment can mediate the access to resources and information, and the inter-
action among agents. As a mediator, the environment can define various laws for
the multiagent system that constrain the activity of the agents; (3) the environ-
ment can maintain dynamics that happen independently of agents’ activity, such
as maintenance of digital pheromones and monitoring and maintaining a represen-
tation of resources external to the multiagent system.

Integral Model for Situated Agents. Existing models of situated agents are
typically restricted to mechanisms for action selection. Other concerns such as
perception and communication are not dealt with, or integrated in the action
selection model in an ad-hoc manner. In our research, we have developed an ad-
vanced model for situated agents that integrates different concerns of agents and
that supports various mechanism for adaptivity.

We have developed a model for selective perception that enables an agent to
direct its perception at the relevant aspects of the environment according to its
current tasks. Selective perception allows an agent to adapt its observation with
changing circumstances. This facilitates better situation awareness and helps to
keep processing of perceived data under control.

We have endowed situated agents with abilities for explicit social interaction.
This enables agents to exchange information directly with one another and set up
collaborations. In particular, we have extended behavior-based action selection
mechanisms with the notions of role and situated commitment. A role represents
a coherent part of an agent’s functionality in the context of an organization. We
consider an organization as a group of agents that can play one or more roles and
that work together. A situated commitment represents a social attitude of an
agent, i.e. an agreement of an agent to play a particular role in an organization.
Roles and situated commitments enable agents to set up collaborations and play
different roles in such collaborations. Situated commitments in a collaboration
typically depend on the actual context the involved agents are placed in. This
approach enables agents to adapt their behavior with changing circumstances in
the environment.

We have developed a model for protocol-based communication that enables
situated agents to exchange messages according to communication protocols, i.e.
well-defined sequences of messages. Message exchange is typically associated with
cognitive agents, where the information encoded in the messages is related to
mental state (beliefs, intentions, plans, etc.). This generally assumed perspec-
tive on communication does not fit the approach of situated multiagent systems.
Protocol-based communication puts the focus of communication on the relation-
ship between the exchanged messages. Direct communication enables situated
agents to exchange information, and to set up collaborations reflected in mutual
situated commitments.

8 Introduction

1.5 Contributions

This research contributes with a new perspective on software engineering for mul-
tiagent systems. Especially, this research integrates situated multiagent systems
as software architecture in a general software engineering process. Concrete con-
tributions are:

e An advanced model for situated multiagent systems that links up with state-
of-the-art approaches in the domain of multiagent systems. In particular, the
model: (1) promotes the environment to a first-class abstraction that can be
used creatively in the design of situated multiagent system applications [216,
223, 215]; and (2) extends state-of-the-art models for situated agents from
mechanisms for action selection to an integral model that includes support
for different concerns [206, 212], such as perception, social behavior, and
direct communication.

o A set of mechanisms for architectural design, including: environment infras-
tructure for perception, action, and communication; laws that constrain the
activity of agents; dynamics in the environment [230, 208, 209]; virtual en-
vironment [218]; selective perception [224, 228]; advanced action selection
mechanisms with roles and situated commitments [226, 184]; protocol-based
communication [227].

e A reference architecture that maps the advanced model for situated multi-
agent systems onto a system decomposition [210, 214, 213]. The reference
architecture for situated multiagent systems integrates a set of architectural
best practices from various applications we have studied and built. The ref-
erence architecture provides an asset base engineers can draw from when
developing self-managing applications. The reference architecture also offers
a vehicle to study and learn the advanced perspective on situated multiagent
systems we have developed in our research.

To demonstrate the feasibility of the reference architecture, we have devel-
oped an object-oriented framework that implements the architecture, and
we have instantiated the framework for several prototype applications.

e The application of a situated multiagent system in a complex industrial ap-
plication that uses automatic guided vehicles to transport loads through a
warehouse [222, 221, 217, 177]. In particular, we have applied the various
mechanisms for architectural design of situated multiagent systems to meet
the functionality and satisfy the important quality attribute requirements of
the system. The insights derived from the architectural design of this ap-
plication have considerably contributed to the development of the reference
architecture. The development of this application consisted of the follow-
ing activities: (1) elicitation of the functional requirements of the system;

1.6 Overview 9

(2) elicitation and prioritization of the quality requirements; (3) incremental
development of a software architecture; (4) evaluation of the software ar-
chitecture; (5) incremental implementation of the application; (6) testing to
verify the main system requirements.

e A disciplined evaluation of the software architecture of this industrial ap-
plication [198, 211, 45]. For the elicitation and prioritization of the quality
requirements and the evaluation of the software architecture we have applied
the Architectural Tradeoff Analysis Method?!.

1.6 Overview

We conclude this introduction with an overview of this text. After the introduc-
tion, the text contains six chapters and a conclusion.

In chapter 2, we zoom in on architecture-centric software development, pro-
viding a detailed context in which situated multiagent systems will be used later
on.

Chapter 3 explains our perspective on situated multiagent systems. We give
an overview of the history of situated agent systems, and from this background
we describe our perspective on situated multiagent systems. In this chapter, we
introduce the Packet-World that we use as an illustrative case.

In chapter 4 we present the reference architecture for situated multiagent sys-
tems we have developed in our research. We describe different views of the refer-
ence architecture and we specify the variation mechanisms for applying the archi-
tecture to build concrete software architectures.

Chapter 5 elaborates on the development of an industrial transportation sys-
tem as a situated multiagent system. Starting from the system requirements, we
discuss the architectural design of the application, we explain how the software
architecture of this application is related to the reference architecture, and how
it has contributed to the development of the reference architecture. We zoom in
on the evaluation of the software architecture and we discuss test results collected
from an implemented system.

In chapter 6, we discuss related work that explicitly connects software archi-
tecture with multiagent systems. We also examine related work on the control of
automated transportation systems.

Finally in chapter 7 we draw up conclusions. We summarize the contributions
of this research and we report lessons we learned from applying multiagent system
technology in practice. To conclude, we outline possible venues for future research.

IThe Architectural Tradeoff Analysis Method (ATAM) is developed at the Software Engi-
neering Institute [12] of Carnegie Mellon University. It is one of the most mature approaches for
software architecture evaluation currently available [61].

10

Introduction

Chapter 2

Architecture-Centric
Software Development

Since the early 1990s, software architecture has been subject of increasing interest
in software engineering research and practice. [61] gives three important reasons
why architecture is important to software systems: (1) it is a vehicle for commu-
nication among stakeholders. Software architecture provides a basis for creating
mutual understanding and consensus about the software system; (2) it is the man-
ifestation of the earliest design decisions that have the most significant influence
on system qualities. The tradeoffs between various qualities are all manifested in
the software architecture; and (3) it is a reusable, transferable abstraction of a
system. Software architecture constitutes a surveyable model for how a system is
structured and works. This model is transferable to other systems with similar
requirements and can promote large-scale reuse of design.

In this chapter, we zoom in on architecture-centric software development and
provide a detailed context in which multiagent systems will be used later on. We
start with situating architectural design in a software development life-cycle. Next,
we briefly discuss requirement eliciting, the preparatory step to start architectural
design. Subsequently we discuss architectural design. In this step, the various
system requirements are achieved by architectural decisions based on architectural
approaches such as architectural styles or a reference architecture. We explain
how a software architecture is documented, and we zoom in on the evaluation of
software architecture. To conclude, we briefly explain how software architecture
serves as a basis for detailed design and implementation of the system.

11

12 Architecture-Centric Software Development

2.1 Architectural Design in the Development Life
Cycle

To understand the context of our approach for software development with multi-
agent systems, we first situate architectural design in a software development life
cycle. We use the evolutionary delivering life cycle [135, 35], see Fig. 2.1. This life

Domain P
Modeling [
‘—> Requirements |
Engineering |
Phase 1
Architectural |
Design -
/| Develop
Core System
Design
¥ Software
Architecture
Y
Document
Sofware . .
Architecture Deve!op Dellver'FlnaI
¢ Version Version
Evaluate
Sofware ;
Architecture Y
Incorporate Phase 2
Feedback

Figure 2.1: Architectural design in the software development life cycle

cycle model puts architectural design in the middle of the development activities.
The main idea of the model is to support incremental software development and
to incorporate early feedback from the stakeholders. The life-cycle consists of two
main phases: developing the core system and delivering the final software product.

In the first phase the core system is developed. This phase includes four ac-
tivities: defining a domain model, performing a system requirements analysis, de-
signing the software architecture, and developing the core system. Requirements
analysis includes the formulation of functional requirements of the system as well

2.2 Functional & Quality Attribute Requirements 13

as eliciting and prioritizing of the quality attributes requirements. Designing the
software architecture includes the design and documentation of the software ar-
chitecture, and an evaluation of the architecture. The development of the core
system includes detailed design, implementation and testing. The software engi-
neering process is an iterative process, the core system is developed incrementally,
passing multiple times through the different stages of the development process.
Fig. 2.1 shows how architectural design iterates with requirements analysis on
the one hand, and with the development of the core system on the other hand.
The output of the first phase is a domain model, a list of system requirements, a
software architecture, and an implementation of the core of the software system.

In the second phase, subsequent versions of the system are developed until the
final software product can be delivered. In principle there is no feedback loop from
the second to the first phase although in practice specific architectural refinements
may be necessary.

2.2 Functional & Quality Attribute Requirements

Architectural design can start when the most important system requirements are
known. This set of requirements are usually called the architectural drivers and
include functional and quality attribute requirements.

Functionality is the ability of the system to perform the tasks for which it is
intended. To perform a task, software elements have to be assigned correct re-
sponsibilities for coordinating with other elements to offer the required function-
ality. Functional requirements of a system are typically expressed as use cases, see
e.g. [120]. A use case lists the steps, necessary to accomplish a functional goal for
an actor that uses the system. In our research, we also use scenarios that describe
interactions among parts in the system—rather than interactions that are initiated
by an external actor. An example is a scenario that describes the requirement of
collision avoidance of automatic vehicles on crossroads. Functionality does not
depend on the structure of the system. In principle, if functionality were the only
requirement, the system could exist as a single monolithic module with no internal
structure at all [35]. Since functionality is largely independent of the structure of
the software system, we do not go into details how functional requirements are
collected.

Quality is the degree to which a system meets the nonfunctional requirements
in the context of the required functionality. Quality attributes are nonfunctional
properties of a software system such as performance, usability, and modifiabil-
ity. Achieving quality attributes must be considered throughout the development
process of a software system. However, software architecture is critical to the real-
ization of most quality attributes, it provides the basis for achieving quality. For
the expression of quality requirements we use quality attribute scenarios [34]. A
quality attribute scenario consists of three parts:

14 Architecture-Centric Software Development

1. Stimulus: an internally or externally generated condition that affects (a part
of) the system and that needs to be considered when it arrives at the system;
e.g. a user invokes a function, a maintainer makes a change, a component
fails, etc.

2. Environment: the conditions under which the stimulus occurs; e.g. at run-
time with system in normal operation, at design time, etc.

3. Response: the activity that is undertaken—through the architecture—when
the stimulus arrives, the response should be measurable so that the require-
ment can be tested; e.g. the change requires a person-month of work, the
error is displayed within five seconds, the system switches to save mode, etc.

Here is an example of a quality attribute scenario:

An Automatic Guided Vehicle (AGV) gets broken and blocks a path un-
der normal system operation. Other AGVs have to record this, choose
an alternative route—if available—and continue their work.

The stimulus in this example is “An Automatic Guided Vehicle (AGV) gets bro-
ken and blocks a path”, the environment is “normal system operation”, and the
response is “other AGVs have to record this, choose an alternative route—if
available—and continue their work”.

Quality attribute scenarios provide a means to transform vaguely formulated
qualities such as “the system shall be modifiable” or “the system shall exhibit
acceptable flexibility” into concrete expressions. Scenarios are useful in under-
standing a system’s qualities; formulating scenarios help stakeholders to express
their preferences about the system in a clear way. Scenarios help the architect
to make directed decisions and are a primary vehicle for analysis and evaluation
of the software architecture. Ideally, the quality attribute scenarios of the system
are collected and prioritized before the start of architectural design, e.g. during
a quality attribute workshop [33]. Often however, a number of iterations will be
necessary to gather and order system’s requirements. In our research, we have
used utility trees [61] to elicit and prioritize quality attribute scenarios. A utility
tree provides a mechanism for the architect and the other stakeholders involved
in a system to define and prioritize the relevant quality requirements precisely.
We elaborate on utility trees in section 2.3.4 when we discuss the evaluation of
software architecture.

2.3 Architectural Design

Designing a software architecture is moving from system requirements to archi-
tectural decisions. Besides a well-founded design method, this crucial engineering
step requires thorough knowledge and experiences from architects.

2.3 Architectural Design 15

In this section, we explain architectural design with a reference architecture.
We explain the different types of views we have used to document a reference
architecture, and we explain variation mechanisms to apply a reference architecture
to design a concrete software architecture. After that we explain the approach for
architectural design we have used in our research, and we motivate the need for
good documentation of a software architecture. We conclude with explaining the
evaluation of a software architecture.

2.3.1 Architectural Approaches and Reference Architecture

The achievement of a system’s quality attributes is based on design decisions.
Such decisions are called tactics. A tactic is a widely used architectural approach
that has proven to be useful to achieve a particular quality [35, 171]. For exam-
ple, “rollback” is a tactic to recover from a failure aiming to increase a system
availability, or “concurrency” is a tactic to manage resource access aiming to im-
prove performance. Actually, to realize one or more tactics an architect typically
chooses an appropriate architectural style [180]. [35] defines an architectural style
as “a description of architectural elements and relation types together with a set
of constraints on how they may be used.” An architectural style' is a recurring
architectural approach that exhibits particular quality attributes. Examples of
common architectural styles are layers, pipe-and-filter, and blackboard. Reference
architectures [164, 35] go one step further in reuse of best practices in architectural
design. A reference architecture integrates a set of architectural patterns that have
proven their value for a particular family of applications. The Rational Unified
Process [118] defines a reference architecture as “a predefined set of architectural
patterns [...] proven for use in particular business and technical contexts, together
with supporting artifacts to enable their use.” A reference architecture serves
as a blueprint for developing software architectures for a family of applications.
Such family of applications is characterized by specific functionality and quality
attribute requirements. Essential to a reference architecture are mechanisms to ap-
ply the reference architecture to a specific application. We use the term variation
mechanism [85, 28, 142] to denote such mechanisms. The concept of a reference
architecture is very similar to an application framework in object-oriented tech-
nology [104] and to a product line architecture [62]. In fact, the terms reference
architecture and product line architecture are often used interchangeably [78].

Architectural Views. A reference architecture can be described by several views
that emphasize different aspects of a software architecture. Building upon the work
of Parnas [149] and Perry & Wolf [157], Kruchten introduced four main views of
software architecture [117]. Each view emphasizes specific architectural aspects
that are useful to different stakeholders. The logical view gives a description of

L An alternative term for architectural style often used in literature is “architectural pattern”.

16 Architecture-Centric Software Development

the services the system should offer to the end users; the process view captures
the concurrency and synchronization aspects of the design; the physical view de-
scribes the mapping of the software onto the hardware and reflects its distribution
aspects; and the development view describes the organization of the software and
associates the software modules to development teams. A final additional view
shows how the elements of the four views work together.

Based on [99], Rozanski and Woods [171] introduce the notion of a viewpoint
that is defined as “a collection of patterns, templates, and conventions for con-
structing one type of view. It defines the stakeholders whose concerns are reflected
in the viewpoint and the guidelines, principles, and template models for construct-
ing its views.” A viewpoint guides the architect in constructing a particular type of
view. The authors put forward six core viewpoints: functional, information, con-
currency, development, deployment, and operational. Orthogonal to viewpoints,
the authors introduce the notion of architectural perspective to capture concerns
that are common to many or all views. An architectural perspective is defined
as “a collection of activities, tactics, and guidelines that are used to ensure that
a system exhibits a particular set of related quality properties that require con-
sideration across a number of the system’s architectural views.” Architectural
perspectives guide the architect through the process of analyzing and modifying
the software architecture to make sure it exhibits particular quality properties.
Architectural perspectives include: accessibility, availability, evolution, interna-
tionalization, performance and salability, security and usability.

In [60], Clements and his colleagues generalize the notion of a view and relate
views to architectural styles. The authors introduce the concept of a viewtype that
defines the element types and relationship types used to describe the architecture
of a software system from a particular perspective. Each viewtype constrains the
set of elements and the relations that exist in its views. The authors distinguish
between three viewtypes:

1. The module viewtype: views in the module viewtype document a system’s
principal units of implementation.

2. The component-and-connector viewtype: views in the component-and-connec-
tor viewtype document a system’s units of execution.

3. The allocation viewtype: views in the allocation viewtype document the
relationships between a system’s software and its development and execution
environment.

An architectural style is a specialization of a viewtype and reflects a recurring
architectural approach that exhibit specific quality attributes, independent of any
particular system. For example, “layered style” is a specialization of the module
viewtype. The layered style describes (a part of) the system as a set of layers, each
layer is allowed-to-use the services of the layer below. “Communicating processes

2.3 Architectural Design 17

style” is an example of the component-and-connector viewtype. The communicat-
ing processes style describes concurrent units such as processes and threads, and
the connection between the units such as synchronization and control. Finally, a
view is an instance of an architectural style that is bound to specific elements and
relations in a particular system.

In this dissertation, we follow this latter approach and use the notions of archi-
tectural style, view, and the three viewtypes—module, component-and-connector,
and allocation viewtype—as presented by Clements et al. in [60].

Variation Mechanisms. In addition to views, a reference architecture specifies
variation mechanisms and explains how these mechanisms can be applied to build
a software architecture for a concrete system. A reference architecture can provide
different variation mechanisms. Some examples are:

e Omission of an element: particular elements of the reference architecture are
not common for every application; if applicable the architect can leave out
such variable elements.

e Concretization of an abstract element: several elements in the reference ar-
chitecture are abstractly defined and must be made concrete according to
the requirements of the application at hand.

e Definition of behavior: the behavior of several elements is abstractly defined,
the architect has to define concrete behaviors according to the requirements
of the application at hand.

Some variation mechanisms are straightforward to apply, others however, may
require additional support to help the architect. For some tasks established tech-
niques are available, such as interaction diagrams and statecharts. However, other
tasks require dedicated design guidelines. The documentation of a reference archi-
tecture should clearly describe what the applicable variation mechanisms are and
how they can be exercised.

2.3.2 Architectural Design with a Reference Architecture

Architectural design requires a systematic approach to develop a software architec-
ture that meets the required functionality and satisfies the quality requirements. In
our research, we use techniques from the Attribute Driven Design (ADD [55, 35])
method to design the architecture for a software system with a reference archi-
tecture. ADD is a decomposition method that is based on understanding how to
achieve quality goals through proven architectural approaches. Usually, the archi-
tect starts from the system as a whole and then iteratively refines the architectural
elements, until the elements are sufficiently fine-grained to start detailed design

18 Architecture-Centric Software Development

and implementation. At that point, the software architecture becomes a prescrip-
tive plan for construction of the system that enables effective satisfaction of the
systems functional and quality requirements [101, 60].

At each stage of the decomposition the architect selects an architectural el-
ement for refinement and determines the architectural drivers, i.e. the combina-
tion of functional goals and quality attribute scenarios that have to be realized.
Then the architect selects an appropriate architectural approach that satisfies the
drivers, decomposes the architectural element, and allocates functionality to the
sub-elements.

A reference architecture can serve as a blueprint to guide the architect through
the decomposition process. A reference architecture provides an integrated set of
architectural patterns the architect can draw from to select suitable architectural
solutions. The variation mechanisms specify how the abstract structures of the
reference architecture can be applied to build a concrete design. However, it is
important to notice that the reference architecture neither provides a ready-made
cookbook for architectural design, nor should it stifle the creativity of the architect.
Using a reference architecture does not relieve the architect from difficult architec-
tural issues, including the selection of supplementary architectural approaches to
deal with specific system requirements. A reference architecture offers a reusable
set of architectural assets for building software architectures for concrete applica-
tions. Yet, this set is not complete and needs to be complemented with additional
architectural approaches.

In summary, for the architecture design of a software system with a refer-
ence architecture, the ADD process can be used to iteratively refine the software
architecture, and the reference architecture can serve as a guidance in this de-
composition process. In addition, common architectural approaches have to be
applied to refine and extend architectural elements when necessary according to
the requirements of the system at hand.

2.3.3 Documenting Software Architecture

To be effective, a software architecture must be well-organized and unambiguously
communicated to the varied group of stakeholders. Therefore, good documenta-
tion of the software architecture is of utmost importance. The documentation
must be general enough to be quickly understandable but also concrete enough
to guide developers to construct the system. [60] gives three fundamental uses of
architecture documentation:

1. Architecture serves as a means for education. Software architecture is a
useful instrument to introduce new people to the system, such as new team
members, external analysts, etc.

2. Communication among stakeholders. The software architecture represents
a common abstraction that serves as a primary vehicle for communication

2.3 Architectural Design 19

among stakeholders. Software architecture forms a basis for project orga-
nization, it imposes constraints on the design and implementation of the
system, it is a starting point for maintenance activities, etc.

3. Software architecture serves as a basis for system analysis. The architecture
must contain the necessary information to evaluate the various attributes;
we elaborate on architecture evaluation in the next section.

The documentation of a software architecture consists of the relevant views com-
pleted with additional information that applies to different views. Views can
be described with an architectural description language (ADL [136]). The ADL
may be a formal or semi-formal descriptive language, a graphical language, or a
combination of both. The Software Engineering Institute (SEI [12]) maintains a
website [5] that provides links to websites of numerous ADLs. ADLs differ in many
aspects, some languages are only intended for modeling, others offer support for
formal analysis. Some ADLs are independent of any programming language, oth-
ers are integrated with a particular programming language. This latter property
is important to obtain guarantees that an implemented system conforms to its
architecture. Many authors prefer the Unified Modeling Language (UML [13]) as
ADL. Unfortunately, UML does not offer direct support for many architectural
elements such as modules, layers and interface semantics. Since no ADL provides
the facilities to completely document the various viewtypes we use to document
software architectures (as explained in section 2.3.1), we employ a hybrid descrip-
tion language that uses UML constructs where possible. Each diagram is provided
with a key that explains the meaning of the symbols used. Furthermore, we use
a simple formal notation based on set theory to specify the various architectural
elements and their relationships.

What views should be documented depends on the goals of the documentation.
A software architecture intended for initial project planning likely contains another
set of architectural views as an architecture that specifies the implementation units
for development teams. Different views highlight different system elements and
their relationships and expose different quality attributes. Therefore, the views
that expose the most important quality attribute requirements of the stakeholders
should be part of the architecture documentation.

Additional information of the software architecture documentation may include
background information, a view template, a glossary, etc. For an example of a
software architecture documentation, we refer to [43] that describes the various
views and additional information of the software architecture of the automated
transportation system we discuss in chapter 5.

2.3.4 Evaluating Software Architecture

A software architecture is the foundation of a software system, it represents a
system’s earliest set of design decisions [35]. These early decisions are the most

20 Architecture-Centric Software Development

difficult to get correct, the hardest to change later, and they have the most far-
reaching effects. Software architecture not only structures the system’s software,
it also structures the project in terms of team structure and work schedules. Due
to its large impact on the development of the system, it is important to verify the
architecture as soon as possible. Modifications in early stages of the design are
cheap and easy to carry out. Deferring evaluation might require expensive changes
or even result in a system of inferior quality.

Architectural evaluation is examining a software architecture to determine
whether it satisfies system requirements, in particular the quality attribute re-
quirements. Such evaluation focusses on the most important attributes, i.e. the
attributes that are most important for the system’s stakeholders and those that
have the largest impact on the software architecture. Architectural evaluation typ-
ically takes place when the architecture has been specified, before implementation.
This allows to add missing pieces, to correct inferior decisions, or to detail vaguely
specified parts of the architecture, before the cost of such corrections would be too
high.

The evaluation of software architecture is an active research topic, see e.g. [16,
145]. In our research we have used the Architecture Tradeoff Analysis Method
(ATAM [61]) for evaluating a software architecture. ATAM is developed at the
SEI, it is one of the most mature approaches for software architecture evaluation
currently available. The general goal of ATAM is to determine the trade-offs and
risks with respect to satisfying important quality attribute requirements. ATAM
is an evaluation method that (1) uses stakeholders to determine important quality
attribute requirements; (2) uses the architect to focus on important portions of
the architecture; and (3) uses (or reveals the lack of) architectural approaches
to determine potential problems. There are two groups of people involved in
ATAM: the evaluation team and the stakeholders. The evaluation team conducts
the evaluation and performs the analysis. The stakeholders are the people that
have a particular interest in the software architecture under evaluation, such as
the project manager, the architect, developers, costumers, (representatives of) end
users, etc. An ATAM evaluation produces the following results:

e A prioritized list of quality attribute requirements in the form of a quality
attribute utility tree.

e A mapping of architectural approaches to quality attributes. The analysis of
the architecture exposes how the architecture achieves—or fails to achieve—
the important quality attribute requirements.

e Risks and non-risks. Risks are potentially problematic architectural deci-
sions, non-risks are good architectural decisions.

e Sensitivity points and tradeoff points. A sensitivity point is an architectural
decision that is critical for achieving a particular quality attribute. A tradeoff

2.3 Architectural Design 21

point is an architectural decision that affects more than one attribute, it is
a sensitivity point for more than one attribute.

A crucial document in the ATAM is the quality attribute utility tree, utility tree
for short. This document is a prioritized list of quality attribute goals, formulated
as scenarios. A utility tree expresses what the most important quality goals of the
system are. An example of a utility tree is shown in Fig. 2.2.

(HH) 12 AGVs with an availability of 85%
’ should handle 112 transports per hour
Capacity—‘
(HH) 12 AGVs with an availability of 100%
— Performance *" should handle 140 transports per hour

The amount of communication should
Bandwidth —— (H,M) never exceed 60% of the bandwidth of
the communication channel

The system should scale up to 24 AGVs,
—— (H,M) for similar system requirements, without
changing the software

Number

Utility —— Scalability ——— ¢\ ehicles

If an AGV blocks a path, other AGVs

. (M.M) choose an alternative route (if it exists)
- Flexible
‘— Flexibility Routing

L If an operator disables a node, AGVs
ML) choose an alternative route (if it exists)

Figure 2.2: Sample utility tree

The root node of the tree is wtility, expressing the overall quality of the sys-
tem. High-level quality attributes form the second level of the tree. Each quality
attribute is further refined in the third level. Finally, the leaf nodes of the tree are
the quality attribute scenarios. Each scenario is assigned a ranking that expresses
its priority relatively to the other scenarios, H stands for High, M for Medium, and
L for Low. Prioritizing takes place in two dimensions. The first mark of each tuple
refers to the importance of the scenario to the success of the system, the second
mark refers to the difficulty to achieve the scenario. For example, the scenario
“If an operator disables a node, AGVs choose an alternative route (if it exists)”
has priorities (M,L), meaning that this scenario is of medium importance to the
success of the system and relatively easy to achieve. The utility tree expresses
what the most important qualities of the system are and as such it serves as a
guidance for the evaluators to look for architectural approaches that satisfy the
important scenarios of the system. It is clear that scenarios with priorities (H,H)
and (H,M) are the prime candidates for analysis during the ATAM.

22 Architecture-Centric Software Development

The evaluation of a software architecture with ATAM consists of three phases:

1. Presentations. The first phase consists of three steps: the evaluation leader
starts by giving an overview of the evaluation method; next the project
manager describes the business goals of the project; finally the architect
gives an overview of the software architecture.

2. Investigation and analysis. The second phase also consists of three steps.
First the architect identifies the architectural approaches applied in the soft-
ware architecture. Next the quality attribute utility tree is generated. The
system’s quality attributes are elicited from the stakeholders and specified as
scenarios. The list of scenarios is then prioritized. Finally, the architectural
approaches that address the high-priority scenarios are analyzed, resulting in
a list of risks, non-risks, sensitivity points, and tradeoff points. The analysis
may uncover additional architectural approaches.

3. Reporting the results. In the final phase, the information collected during
the ATAM is presented to the assembled stakeholders.

The flow of the ATAM is summarized in Fig. 2.3. The flow illustrates how the

Business Key Quality

> Drivers ”| Attributes P Utility Tree
Analysis
| Architecture p, Architectural p| Architectural /
Approaches Decisions
y
Risks,
Sensitivities,
Tradeoffs

Figure 2.3: Conceptual flow of the ATAM

ATAM exposes architectural risks that may impact the software architecture and
possibly the achievement of the organizations business goals.

2.4 From Software Architecture to Detailed Design and Implementation 23

2.4 From Software Architecture to Detailed De-
sign and Implementation

A software architecture defines constraints on detailed design and implementa-
tion, it describes how the implementation must be divided into elements and how
these elements must interact with one another to fulfil the system goals. On the
other hand, a software architecture does not define an implementation, many fine-
grained design decisions are left open by the architecture and must be completed
by designers and developers. Examples are specific algorithms, internal data struc-
tures of modules, exception handling, etc.

2.5 Summary

In this chapter, we elaborated on architecture-centric software development and
presented a detailed context in which multiagent systems will be used later in this
dissertation. Starting from the system requirements, we discussed architectural
design with particular attention for the role of a reference architecture. Rather
than being a rigid frame that restricts the architect’s creativity, the reference ar-
chitecture is meant to serve as a valuable guidance for the architect that should be
complemented with additional architectural approaches. We explained how a soft-
ware architecture is documented, and we zoomed in on the evaluation of software
architecture. By constraining detailed design and implementation of the system,
software architecture provides the foundation for achieving systems requirements.

To conclude this chapter we give an overview how each of the following chap-
ters is related to the presented development approach. Chapter 3 explains our
perspective on situated multiagent systems, starting from an historical overview
of situated agent systems. In chapter 4, we present a reference architecture for
situated multiagent systems. Chapter 5 discusses the architectural design of a
complex industrial transportation system with a situated multiagent system. We
illustrate how we have used various mechanisms for adaptivity of situated agents
for the architectural design of this application, and we zoom in on the ATAM eval-
uation of the software architecture. Finally in chapter 7 we reflect on our practical
experience with the approach.

24

Architecture-Centric Software Development

Chapter 3

Advanced Model for
Situated Multiagent Systems

Around 1985, several researchers pointed to fundamental problems with delibera-
tive agent systems [49, 14, 170]. Reasoning on internal symbolic models and action
planning turned out to be insufficient for agents that have to operate in a dynamic
and unpredictable environment. These researchers proposed radically new archi-
tectures for building agents. Whereas deliberative approaches emphasize explicit
knowledge and rational choice, the emphasis of the new architectures is on direct
coupling of perception to action, modularization of behavior, and dynamic inter-
action with the environment. This perspective—which is generally referred to as
situated agent systems—was the start of a new vision on building agent systems.
From these basic principles, many different approaches of situated agent systems
have been developed and successfully applied in practice.

In this chapter, we explain the advanced model for situated multiagent systems
we have developed in our research. First, we give an historical overview of situated
agent systems, sketching the necessary background. Then we explain our model
for situated multiagent systems, we show how this model links up with state-of-
the-art approaches in the domain and contributes to the further development of
the paradigm of situated multiagent systems.

3.1 Historical Overview of Situated Agent Sys-
tems
In this section, we make a tour through the evolution of situated agent systems.

We start in the mid 1980s with the early single agent systems, and gradually evolve
to stigmergic agents systems and situated multiagent systems. We reflect on the

25

26 Advanced Model for Situated Multiagent Systems

architecture of subsequent agent systems' and we pay special attention to the role
of the environment throughout the evolution.

3.1.1 Single Agent Systems

Initially, the research focus of situated agency was on single agent systems. In
this section, we give an overview of the subsequent evolutions of single agent
architectures and we discuss the role of the environment in this evolution.

3.1.1.1 Reactive Robotics

In the mid 1980s, researchers were faced with the problem of how to build au-
tonomous robots that are able to generate robust behavior in the face of uncertain
sensors, an unpredicted environment, and a changing world [51]. Attempts to build
such robots with traditional techniques from artificial intelligence showed deficien-
cies such as brittleness, inflexibility, and no real-time reaction [122]. Besides, these
systems suffered from several theoretical problems, such as the frame problem and
the problem of non—-monotonic reasoning within realistic time constraints [160].
This brought a number of researchers to the conclusion that reasoning on sym-
bolic internal models, and planning the sequence of actions to achieve the goals
is unfeasible for agents with many—often conflicting—goals that have to operate
in complex, dynamic environments. This conclusion led to the development of a
radically new approach to build autonomous agents. The key characteristics of
this approach are described by Brooks in [51]:

o Situatedness. The robots are situated in the world, they do not deal with
abstract descriptions, but with the here and now of the world directly influ-
encing the behavior of the system.

e Embodiment. The robots have bodies and experience the world directly, they
are in direct interaction with their environment.

e Intelligence. Robots are observed to be intelligent. The source of intelligence
is not limited to the agents internal system, it also comes from physical
coupling of the robot with the world.

e Emergence. The intelligence of the system emerges from the system’s interac-
tions with the world and from indirect interactions between its components.

Architectures for these robots emphasize a direct coupling of perception to action
and the dynamic interaction with the environment. The environment is not only
taken into account dynamically, but its characteristics are exploited to serve the

n agent literature, the term “agent architecture” refers to the internal structure of an agent,
in particular its decision making mechanism.

3.1 Historical Overview of Situated Agent Systems 27

functioning of the system. The internal machinery of the robots typically consists
of combinatorial circuits completed with timing circuitry. Each circuit represents
a simple behavior of the agent. These circuits are hard-wired or pre-compiled from
specifications. The resulting structure allows a robot to react in real-time to the
changing conditions of the world in which it is embedded. Representative examples
of approaches for reactive agents are Pengi [14] and Situated Automata [170]. In
Pengi, the penguin’s situated actions are coded in the form of simple rules. To for-
mulate these rules, Pengi does not associate symbols with individual objects in the
world, but uses expressions that describe causal relationships between the agent
and entities in the world. These expressions use so-called indexical-functional rep-
resentations of the environment. An example of a situated action is “if there is an
ice-cube-besides-me then push ice-cube-besides-me”. In Situated Automata, an
agent is specified declaratively in the Gapps language [106]. From this specifica-
tion a runtime program is generated, which satisfies the declarative specification.
This program achieves real-time performance, it acts reactively without doing any
symbol manipulation.

As an illustration of reactive robots, we briefly discuss the Subsumption Archi-
tecture developed by Brooks [49]. The subsumption architecture is organized as
a series of parallel working layers, each layer is responsible for a specific behavior
of the agent. The priority of layers—behaviors—increases from bottom to top.
Higher layers are able to inhibit lower layers, giving priority to more important
behavior. Fig. 3.1 depicts an example of a Subsumption Architecture for a simple
robot that has to collect packets and deliver them at a destination. On its way,
the robot must avoid obstacles in the environment.

> AVOID COLLISIONS
» DELIVER PACKET
» COLLECT PACKET
SENSORS > EXPLORE ACTUATORS
ﬁ sense act g
ENVIRONMENT

Figure 3.1: Subsumption Architecture for a simple robot

28 Advanced Model for Situated Multiagent Systems

A layer in the architecture directly connects perception to action by means of a
finite state machine augmented with timing elements. Each layer collects its own
sensor data that is written in registers. The arrival of specific data, or the expi-
ration of a timer, can trigger a change of state in the interior finite state machine
and possibly produce output commands to actuators. Inhibition and suppression
mechanisms resolve conflicts between actuator commands from different layers. In
the original version of the subsumption architecture, finite state machines could
not share any state [49]. Later this restriction was relaxed, allowing clusters of
finite state machines (i.e. behaviors) to share state [50]. The Subsumption Archi-
tecture has successfully been used in many practical robots.

3.1.1.2 Behavior-Based Agents

In the early 1990s, researchers raised important limitations of the initial reactive
approaches. In [122], Maes points to a number of problems with the wired or
pre-compiled action selection structures of reactive architectures. Although these
approaches demonstrate very good performance, they are typically very specific
solutions, leaving little room for reuse. For complex agents in complex environ-
ments, the architectures are very hard to build. Another important shortcoming
is the lack of explicit goals and goal-handling. The designer must anticipate what
the best action is to take in all occurring situations. However, for complex systems
much of the necessary information will only be available at runtime. Goals may
vary over time and new goals may come into play.

Different approaches that support run-time decision making have been devel-
oped, usually referred to as behavior-based or situated agents. Prominent exam-
ples are Motor Schemas [19], Distributed Architecture for Mobile Navigation [168]
(DAMN), and Free-Flow Architectures [169, 192]. The approach of motor schemas
is based on schema theory that explains a robot’s motor behavior in terms of the
concurrent control of different activities [18]. A schema-based robot consists of a
number of parallel executing motor schemas, each schema providing a behavior.
Schemas can be added or removed at runtime. Each motor schema has as output
an action vector that defines the way the robot should move in response to the
perceived stimuli. The sum of output vectors determines the behavior of the robot.
In DAMN different behaviors generate outputs as a collection of votes. Behavior
arbitration is a winner-takes-all strategy in which the largest number of votes for
an action is selected for execution. Multiple parallel arbiters for different control
functions can be combined, e.g. for speed, turning, etc. A free-flow architecture
consists of a tree of nodes which receive information from internal and external
stimuli in the form of activity. The nodes feed their activity down through the tree
until the activity arrives at the action nodes (i.e. the leaf nodes of the tree) where
a winner-takes-all process decides which action is selected. A free-flow architecture
allows an agent to take into account different preferences simultaneously.

As an illustration of behavior-based agents, we briefly discuss Maes’ Agent Net-

3.1 Historical Overview of Situated Agent Systems 29

work Architecture [122] (ANA). An ANA combines the robot-oriented principles
of reactivity such as decomposition along tasks, de-emphasizing of internal world
models, and emergent functionality, with goal-handling at runtime, and puts this
approach in a broader context of software agent systems. An ANA is an action
selection architecture of an agent. This architecture consists of a set of competence
modules that are connected in a network, together with a mechanism to select a
module for execution. Each competence module has its own specific competence
that represents a particular behavior of the agent. A competence module has a
list of preconditions which have to be true before the competence module becomes
executable. In addition, each competence module has an activity level. When the
activity level of an executable competence module reaches a certain threshold, it
may be selected for execution, resulting in some actions. Fig. 3.2 shows a simple
example of an agent network architecture.

-
state /V
F\A follow_gradient
< to_destination
find_packet —— @

<«

competence module

—> sensor input
KEY ——= goal
—>

state activity links

Figure 3.2: Agent Network Architecture for a simple robot

Competence modules are linked through different types of links. Modules use
these links to activate and inhibit each other, so that after some time the activity
level accumulates in the modules that represent the best actions to take, given
the current situation and goals. The spreading of activity among modules as well
as the input of new activity energy into the network is determined by the current
observations and the goals of the agent. Note that goals may change at runtime.
Through the cumulative effect of forward and backward spreading of activity along
sequences of competence modules, the network exhibits implicit “planning” capa-
bilities. The continuous re-evaluation of environmental input ensures that the
action selection easily adapts with changing situations. However, Maes’ ANA suf-
fers also from a number of limitations, a detailed discussion is given by Tyrrell

30 Advanced Model for Situated Multiagent Systems

in [192]. One problem is the loss of information because the approach assumes
binary sensor data. However, many properties of realistic environments are con-
tinuous. Tyrrell has demonstrated that ANA suffers from an inherent unbalance
of competition among competence modules, resulting in inefficient behavior. An-
other problem with ANA is the lack of compromise actions, i.e. ANA does not
consider preferences of more than one competence module at a time. From our
experiences [65], we learned that it is very difficult to design an agent network
architecture for a non-trivial agent. ANA offers little support for structuring the
behavior of complex agents. Moreover, adding a competence module to an existing
network is almost impossible without affecting the existing structure.

3.1.1.3 Explicit World Models and Hybrid Agent Architectures

From the early start of situated agent systems, there has been an ongoing dis-
cussion about the exploitation of internal world models in agent architectures.
Brooks argued against the need for any kind of world model or cognitive level
at all [49]. Other researchers showed how knowledge may be compiled into non-
symbolic implementations, see e.g. [105]. In [187], Steels states that “autonomous
agents without internal models will always be severely limited”. He proposes to
use analogical instead of symbolic representations. A symbolic representation of
the world is a description extracted from the perceived world in some language,
e.g., a set of sentences expressed in first-order logic. An analogical representation,
on the other hand, is a model of the world; examples are a map, a picture, and
a diagram. Steels demonstrates the efficiency of analogical representations for a
simple robot that has to acquire a map of the environment by wandering around.
The agent emits a search wave, which places a diffuser field on a target when it
finds it. Another argumentation for the necessity of knowledge representation was
given by Arkin in [20]. Arkin states that “despite the assumptions of early work
in reactive control, representational knowledge is important for robot navigation”,
and he demonstrates how a priori and dynamically acquired world knowledge can
be exploited to increase flexibility and efficiency of reactive navigation. Related
to the issue of explicit world models is the position of plans. In [15], Agre and
Chapman elaborate on the use of plans in agents’ decision making. The authors
contrast two views on plans: plans as a resource to the agent versus plans for
actions. In the view of plans as a resource, agents use plans as a resource among
others in continually re-deciding what to do. In the view of plans for action, agents
execute plans to achieve goals, i.e. a plan is a prescription of subsequent actions
to achieve a goal. The analysis of Agre and Chapman laid the foundation for the
work on reactive planning [141, 54].

In [125], Malcolm and Smithers introduced the notion of hybrid architecture.
A hybrid architecture combines a deliberative subsystem with a behavior-based
subsystem. The deliberative subsystem permits representational knowledge to be
used for planning purposes in advance of execution, while the behavior-based sub-

3.1 Historical Overview of Situated Agent Systems 31

system maintains the responsiveness, robustness, and flexibility of purely reactive
systems. Over the years, many hybrid behavior-based architectures have been
developed. Today, the approach is common in the domain of robotics, for an
overview see [21]. A key element in hybrid architectures is the interface between
reactivity and deliberation since it links rapid reaction and long-range planning.
A common approach to balance reactivity with planning is to introduce an explicit
third layer that coordinates among the reactive and deliberative layer. In general
however, coordination of reactivity and deliberation is not yet well understood and
is subject of active research.

3.1.1.4 Reflection

Starting from the initial principles of reactivity, a wide range of agent architectures
have been developed. Three classes of approaches are identified:

1. Reactive robots emphasize the dynamic interaction with the environment.
The internal machinery of the robots directly couples perception to action,
enabling real-time reaction.

2. Behavior-based agents stress the need for dynamic and flexible action selec-
tion, aiming to cope with complex environments. Architectures for behavior-
based agents support runtime arbitration among parallel executing behaviors
and allow goals to vary dynamically over time.

3. Hybrid agents exploit representational knowledge about the environment.
Architectures for hybrid agents integrate cognition (reasoning over internal
representations of the world and planning) with reactivity (real-time reac-
tion to stimuli) aiming to combine the advantages of planning and quick
responsiveness.

These approaches share two properties:

1. The focus is on the architecture of single agents. Architectures differ in the
way they solve the problem of action selection. Architectures do not support
social interaction.

2. The approaches stress the importance of environmental dynamics. However,
the environment itself is considered as the “external world”, i.e. the envi-
ronment is not a part of the models or architectures of the agent system
itself.

3.1.2 From Collective Reactive Behavior to Situated Mul-
tiagent Systems

Since the early 1990s, researchers of situated agency have been investigating sys-
tems in which multiple agents work together to realize the system’s functionality.

32 Advanced Model for Situated Multiagent Systems

In these systems, the agents exploit the environment to share information and
coordinate their behavior. In this section, we take a look at a number of relevant
approaches that have been developed.

3.1.2.1 Collective Reactive Behavior

In [165], Reynolds demonstrated flocking behavior between a set of agents. The
aggregate behavior of the multiagent system emerged from the interaction of multi-
ple agents that each follows a set of simple behavioral rules. Mataric adopted these
techniques to real robots [133], showing how a set of robots produced pack behav-
ior. Each robot was provided with a set of simple behaviors from which it selects
the most suitable behavior according to its current environmental context, i.e. its
current position relative to other robots. In [243], Zeghal demonstrated another
form of reactive coordination. Zeghal used vector fields to control the landing
and movements of a large group of aircrafts in a simulation. In this approach,
each agent is guided by a potential field that it constructs based on attracting and
repulsing forces resulting from goals and obstacles (including other agents) respec-
tively. An advanced example of behavior-based coordination among unmanned
guided vehicles is demonstrated in the DARPA UGV programme?. In this case, a
DAMN arbiter was used to coordinate the vehicle’s behavior given its position in
the formation. Although very attractive, several researchers have pointed to the
complexity of designing collective reactive behavior, see e.g. [196, 21].

3.1.2.2 Stigmergic Agent Systems

In [83], Grassé introduced the term stigmergy to explain nest construction in ter-
mite colonies. The concept indicates that individual entities interact indirectly
through a shared environment: one individual modifies the environment and oth-
ers respond to the modification, and modify it in turn. Deneubourg [69] and
Steels [186] demonstrated how explorer robots can improve the search of target
objects by putting marks in the environment. When a robot finds a source of
target objects, it puts a trail of marks in the environment from the source of
objects toward the robot base, while returning home with an object. This trail
allows other exploring robots to find the source of objects efficiently, similar to
ants that inform each other about sources of food by depositing pheromone trails
in the environment. To ensure that the robots are not mislead when the source
becomes exhausted, the marks must be dynamic elements that vanish over time.
This mechanism of indirect coordination through the environment combines re-
inforcement of the trail (positive feedback by the agent) with truth maintenance
(decay of the trail over time by the environmnent). Stigmergy has been a source
of inspiration for many multiagent system researchers. In [150], Parunak describes
how principles of different natural agent systems (ants, wasps, wolves, etc.) can

2For a detailed discussion see [21].

3.1 Historical Overview of Situated Agent Systems 33

be applied to build self-organizing artificial agent systems. Example applications
of stigmergy are ant colony optimization [70], routing calls through telecommuni-
cation networks [41], supply chain systems [173], manufacturing control [52], and
peer to peer systems [27].

We illustrate the use of marks in the environment with two prominent examples
from literature: first we look at the Synthetic Ecosystem developed by Brueck-
ner [52], after that we briefly discuss the Co-Fields approach proposed by Mamei
and Zambonelli [128].

Synthetic Ecosystem. A synthetic ecosystem enables indirect coordination
among software agents in the same way social ants coordinate; the software en-
vironment emulates the “services” provided by the real world of ants. The part
of the software environment realizing the services is called the pheromone infras-
tructure. The pheromone infrastructure models a discrete spatial dimension. It
comprises a finite set of places and a topological structure linking the places. A
link connecting two places has a downstream and an upstream direction. Each
agent in a synthetic ecosystem is mapped to a place, i.e. the current location of
the agent, which may change over time. The pheromone infrastructure models a
finite set of pheromone types. A pheromone type is a specification of a software
object comprising a strength-slot (real number) and other data-slots. For each
pheromone type, a propagation direction (downstream or upstream) is specified.
The pheromone infrastructure handles a finite set of software pheromones for each
pheromone type. Every data-slot is assigned a value of a finite domain to form
one pheromone (type, direction, propagation, evaporation, etc.). The strength
value (i.e. the value in the strength-slot) is interpreted as a specific amount of the
pheromone. Different pheromones of a synthetic ecosystem may be stored in each
place.

The pheromone infrastructure manipulates the values in the strength-slot of
the pheromones at each place in three different ways:

1. External input (aggregation): Based on a request by an agent, the strength
of the specified pheromone is changed by the specified value.

2. Internal propagation (diffusion): When an agent injects pheromone at a
place, the input event is immediately propagated to the neighbors of that
place in the direction of the pheromone. There the local strength of the
pheromone is increased with the arriving pheromone value reduced by the
propagation parameter. This process is recursively repeated until the re-
maining pheromone value crosses a minimal threshold.

3. Without taking changes caused by external input or propagation into ac-
count, the strength of each pheromone is constantly reduced in its absolute
value (evaporation). The reduction is influenced by the evaporation param-
eter of the pheromone.

34 Advanced Model for Situated Multiagent Systems

The pheromone infrastructure realizes an application-independent support for syn-
thetic ecosystems designed according to a number of design principles, such as
decentralization, locality, parallelism, indirect communication, information shar-
ing, feedback, randomization, and forgetting. In [52, 150], Brueckner and Parunak
describe a set of engineering principles for designing synthetic ecosystems, includ-
ing: agents are things, not functions — keep agents small — decentralize control —
support agent diversity — enable information sharing — support concurrency.

The principles of synthetic ecosystems and the proposed pheromone infras-
tructure are applied to a manufacturing control system [52]. Parunak and his
colleagues have applied digital pheromones in many other practical applications,
for an overview we refer to [9)].

Co-Fields. Computational Fields (Co-Fields) is an approach to model and engi-
neer the coordinated movements of a group of agents such as mobile devices (pos-
sibly carried by users), mobile robots, and sensors of a dynamic sensor network.
In Co-Fields, the movements of the agents are driven by abstract (computational)
force fields. By letting agents follow the shape of the fields, global coordination
and self-organization can emerge.

The Co-Fields model is essentially based on the following three principles:

1. The environment is represented by fields that can be spread by agents or by
the environment itself. These fields convey useful information for the agents
to coordinate their behavior.

2. The coordination among agents is essentially realized by letting the agents
follow the waveform of these fields.

3. Environment dynamics and movements of the agents induce changes in the
surface of the fields, realizing a feedback cycle that influences agents’ move-
ment. This feedback cycle enables the system (agents and environment) to
auto-organize.

A computational field is a distributed data structure characterized by a unique
identifier, a location-dependent numeric value, and a propagation rule. Fields can
be generated by the agents and by the environment, and are propagated through
the space according to the propagation rule. The propagation rule determines
how the field should distribute in the environment to shape of the field surface.
Fields can be static or dynamic. A field is static if its magnitude does not change
over time, while the magnitude of a dynamic field may change. Agents combine
the values of the fields they perceive, the resulting new field is called the agents’
coordination field. Agents follow (deterministically or probabilistically) the shape
of their coordination field. Agents can follow the coordination field downbhill,
uphill, or along one of the equipotential lines of the field. Complex movements are
achieved by dynamically re-shaping the surface of the field.

3.1 Historical Overview of Situated Agent Systems 35

In principle, the approach can be generalized toward coordination fields spread
in abstract spaces to encode coordination among agents that is related to actions
differently from physical movements. In such a case, the agents follow their co-
ordination field, not by moving from one place to another, but by making other
kinds of actions.

The Co-Fields model is applied to a number of experimental applications, in-
cluding a case study in urban traffic management [130] and a video game [129].

3.1.2.3 Situated Multiagent Systems

Stigmergic agent systems have proven their value in practice, yet, a number of
comments are in order:

e Stigmergic agents are considered as “simple” entities. However, there is little
or no attention for the architecture of agents.

e Stigmergic agents are not able to set up explicit collaborations to exploit
contextual opportunities.

e The environment is considered as infrastructure for coordination, typically
supporting one particular form of coordination. Such infrastructures provide
reusable solutions that can be applied over many applications. Yet, choosing
for a particular infrastructure compels an engineer to this approach and this
may restrict flexibility.

Motivated by these considerations, researchers have extended the vision of stig-
mergic agents and developed architectures for a family of agent systems that is
generally referred to as situated multiagent systems.

Multilayered Multi Agent Situated System. In the Multilayered Multi
Agent Situated System [30, 31] (MMASS) agents and the environment are explic-
itly modelled. MMASS introduces the notion of agent type which defines agent
state, perceptual capabilities and a behavior specification. Agent behavior can
be specified with a behavior specification language [29] that defines a number of
basic primitives, such as emit (starts the diffusion of a field), transport (defines
the movement of the agent), and trigger (specifies state change when a particular
condition is sensed in the environment). MMASS models the environment as a
multi-layered structure, where each layer is represented as a connected graph of
sites (a site is a node of the graph in a layer of the environment). Layers may
represent abstractions of a physical environment, but can also represent logical as-
pects, e.g. the organizational structure of a company. Between the layers specific
connections (interfaces) can be defined that are used to specify that information
generated in one layer, may propagate into other layers. In MMASS, agents can
(1) interact through a reaction with agents in adjacent sites (a reaction is a syn-
chronous change of state of the involved agents), (2) emit fields that are diffused in

36 Advanced Model for Situated Multiagent Systems

the environment, (3) perceive other agents, (4) update their state, and (5) move to
adjacent sites. MMASS has been applied in various application areas, an example
is an intelligent automotive system that is discussed in [32].

Influence—Reaction Model. In [76], Ferber and Miiller propose a basic architec-
ture for situated multiagent systems. This architecture builds upon earlier work of
Genesereth and Nilson [80]. Ferber and Miiller distinguish between tropistic and
hysteric agents. Tropistic agents are essentially reactive agents without memory,
whereas hysteric agents may have complex behaviors that use past experiences for
decision making. Central to the model is the way actions are modelled. The ac-
tion model distinguishes between influences and reactions to influences. Influences
are produced by agents and are attempts to modify the course of events in the
world. Reactions, which result in state changes, are produced by the environment
by combining influences of all agents, given the state of the environment and the
laws of the world. This clear distinction between the products of the agents’ be-
havior and the reaction of the environment provides a way to handle simultaneous
activity in the multiagent systems.

As an alternative to the centralized synchronization model of Ferber-Miiller, we
have introduced an action model based on regional synchronization [203, 207, 205].
With regional synchronization, only the influences of agents that can interact with
one another are combined. Regional synchronization scales better, but the decen-
tralized algorithm to determine the sets of interacting agents is quite complex.

In [74], Ferber uses the BRIC formalism (Block-like Representation of Interac-
tive Components) to model situated multiagent systems based on the influence-
reaction model. In BRIC, a multiagent system is modelled as a set of inter-
connected components that can exchange messages via links. BRIC components
encapsulate their own behavior and can be composed hierarchically.

3.1.2.4 Reflection

In multiagent systems, multiple agents work together to realize the system’s func-
tionality. We identified three classes of systems in which the environment has a
central role:

1. Agents with collective reactive behavior follow a set of simple behavioral
rules. Each agent is driven by what it perceives in the environment. The
aggregate behavior of the multiagent system emerges from the local behavior
of agents.

2. In stigmergic agent systems, the environment serves as a medium for coor-
dination. Stigmergic agents coordinate their behavior through the manip-
ulation of marks in the environment. The environment is an active entity
that maintains processes independent of the activity of the agents. Stigmer-
gic coordination combines reinforcement of interesting information (positive

3.1 Historical Overview of Situated Agent Systems 37

feedback by agents) with truth maintenance (decay of information over time
by the environment).

3. Situated multiagent systems emphasize the importance of architecture for
agents and the environment. Agent activity is decoupled from activity in
the environment. Agents’ actions are subject to laws that represent domain
specific constraints.

Important characteristics of these multiagent systems are:

1. Agents and the environment are explicit parts of the system, each with its
specific responsibilities.

2. System functionality emerges from the indirect interactions of agents through
the environment.

Although situated multiagent systems have been applied with success in practice,
many issues remain open for further research. We list a number of important
challenges:

1. To extend architectures for situated agents from mechanisms for action se-
lection to integral architectures that include support for different concerns
of agents, such as perception and communication.

2. To endow situated agents with abilities for explicit social interaction. This
enables situated agents to set up collaborations and play different roles in
such collaborations.

3. To promote the environment to a first-class abstraction® that can be used
creatively in the design of situated multiagent applications.

In addition to these specific demands, a major challenge is to develop a principled
methodology for engineering situated multiagent systems.

Our research links up with state-of-the-art approaches in the domain and con-
tributes to the further development of the paradigm of situated multiagent systems
by tackling these challenges. In particular, we integrate situated multiagent sys-
tems as software architecture in a general software engineering process. Central
to this engineering approach is the reference architecture for situated multiagent
systems. In the following sections, we present a model for situated multiagent
systems that includes the basic functionalities to tackle the challenges mentioned
above. This model provides the foundation of the reference architecture that we
will discuss in the next chapter.

3[8] defines a first-class module as: “a program building block, an independent piece of soft-
ware which [...] provides an abstraction or information hiding mechanism so that a modules
implementation can be changed without requiring any change to other modules.”

38 Advanced Model for Situated Multiagent Systems

3.2 The Packet-World

Before we explain our perspective on situated multiagent systems, we first intro-
duce the Packet-World that we will use as an illustrative case?.

The basic setup of the Packet-World consists of a number of differently colored
packets that are scattered over a rectangular grid. Agents that live in this virtual
world have to collect these packets and bring them to the correspondingly colored
destination. Fig. 3.3(a) shows an example of a Packet-World of size 10x10 with 8

agents (symbolized by the little fellows).

| : 0 x| H
L SIS I 2 47 15 6 |7 LI S 4
2 1 i12345.67 i1234

(a) A Packet-World of 10x10 (b) Local view of agent 8

Figure 3.3: Example of the Packet-World

Colored rectangles symbolize packets that can be manipulated by the agents
and circles symbolize destinations. The battery symbol at the bottom row of the
grid symbolizes a battery charger.

In the Packet-World, agents can interact with the environment in a number
of ways. Agents can make a step to a free neighboring cell. A cell is free if it
contains no object or agent (objects in the basic setup of the Packet-World are
packet, destination, and battery charger). If an agent is not carrying any packet,
it can pick up a packet from one of its neighboring cells. An agent can put down a
packet it carries at one of the free neighboring cells, or of course at the destination
point of that particular packet. Agents can also pass packets to neighboring agents

4The Packet-World is an experimental multiagent system application that is based on an idea
of Huhns and Stephens [98]. We have developed and used the Packet-World quite extensively in
our research as a test bed for investigating, experimenting and evaluating fundamental concepts
and mechanisms of situated multiagent systems [200].

3.3 The Environment as a First-Class Design Abstraction 39

forming a chain. Such a chain enables agents to deliver packets more efficiently,
e.g. in the situation of Fig. 3.3(a), agent 1 can pass a packet to agent 8 that can
deliver the packet directly at the destination. Finally, if there is no sensible action
for an agent to perform, it may wait for a while and do nothing. Besides acting in
the environment, agents can also send messages to each other. In particular agents
can request each other for information about packets or destinations and set up
collaborations. The goal of the agents is to perform their job efficiently, i.e. with
a minimum number of steps, packet manipulations, and message exchanges.

Agents in the Packet-World can access the environment only to a limited extent.
Agents can only manipulate objects in their direct vicinity. The sensing—range
of the world expresses how far, i.e. how many squares, an agent can perceive its
neighborhood. Figure 3.3(b) illustrates the limited view of agent 8, in this example
the sensing-range is 2. Similarly, the communication—range determines the scope
within which agents can communicate with one another.

Performing actions requires energy. Therefore agents are equipped with a bat-
tery. The energy level of the battery is of vital importance to the agents. The
battery can be charged at one of the available battery chargers. Each charger emits
a gradient field, i.e. a force field that is spread in the environment and that can be
sensed by the agents. The field values of all battery chargers are combined into a
single field. To navigate towards a battery charger, the agents follow the gradient
of the field in the direction of decreasing values. In the example of Fig. 3.3 there
is only a single charger. The value of the gradient field is indicated by a small
number in the bottom left corner of each cell. The intensity of the field increases
further away from the charger.

In addition to the basic setup, the Packet-World also supports indirect coor-
dination among agents via markers in the environment. Fig. 3.4 shows examples
where agents coordinate via flags that demarcate areas where all packets have been
collected, and digital pheromones that form paths between a cluster of packets and
their destination (battery charging is omitted in these examples).

3.3 The Environment as a First-Class Design Ab-
straction

Now we put forward our perspective on situated multiagent systems and explain
the advanced model for situated multiagent systems we have developed in our
research [216, 230, 208, 209, 223, 215]. First, we direct our attention to the en-
vironment. We explain that engineers essentially consider the environment as in-
frastructure for agents and we motivate why this perspective does not exploit the
full potential of the environment in multiagent systems. Then, we give a definition
of the environment as a first-class design abstraction and we explain important
functionalities that can be assigned to the environment.

40 Advanced Model for Situated Multiagent Systems

| HEE
e OO0
u ®
|| 3 ¥ ¥ ¥
" fe [¥
t IS
u ¥
m§ ¥ []
[)
] u L JIL I S
F . F LI f
LS e e
o I o O A IO o u [|=i=i=i=
B LI CE
(a) Flag-based coordination (b) Digital pheromone trails

Figure 3.4: Indirect coordination in the Packet-World

3.3.1 Levels of Support Provided by the Environment

From the historical overview presented in the first section of this chapter, we de-
rive three levels of support provided by the environment that agents can use to
achieve their goals.

Basic Level. At the basic level, the environment enables agents to access the
deployment context. With deployment context, we refer to the given hardware
and software and external resources with which the multiagent system interacts
(sensors and actuators, a printer, a network, a database, a web service, etc.). Pro-
viding access to the deployment context to agents is an essential functionality of
the environment in every agent system, it represents the most elementary perspec-
tive on the environment in an agent system. Fig. 3.5 depicts example scenarios in
which agents directly access the deployment context.

In the example, the agent on the left side inserts two values into a table of a
database. The agent in the middle opens a socket on a particular port number to
contact another agent. The two agents on the right side access a shared printer.
From these examples it becomes clear that direct access to the deployment context
compels agents to deal with low-level details of the network, resources, and so
on. Especially in dynamic and unpredictable deployment contexts such as ad hoc
networks the agents’ tasks become arduous.

Abstraction Level. The abstraction level bridges the conceptual gap between the
agent abstraction and low-level details of the deployment context. The abstraction
level provides an appropriate interface to the agents, shielding low-level details of

3.3 The Environment as a First-Class Design Abstraction 41

@ open-socket(portnumber)

INSERT INTO table
VALUES v1,v2

©
Qg

print-stream(out)

o'f 0

@ 'E Environment
Data Base Printer

Agents

close()

Deployment
Context

Figure 3.5: Agents directly access the deployment context

the network, legacy systems, and other resources external to the agent system.
Fig. 3.6 depicts example scenarios of an environment containing an abstraction
level.

@ SendMsg(Agent, Content) Agents

Add(Appointment) Print(docA) Print(docB)

\\l \k W/\V/ —

— Print
Service

Abstraction

Environment

d 5
terena]
Data Base EI EI Printer

Deployment
Context

Figure 3.6: Abstraction level that shields agents from the details of the deployment
context

Agents now access abstractions of the resources they are interested in. The
Agenda repository allows agents to interact with the database at a higher level of
abstraction. In the example, the agent adds an appointment in the Agenda. The
abstraction level takes the burden of transforming the agents commands into SQL
instructions to interact with the actual database. The network abstraction in the
middle of Fig. 3.6 provides a communication infrastructure to agents to send and
receive messages using agent names instead of sockets with ports and IP numbers,

42 Advanced Model for Situated Multiagent Systems

etc. In a similar manner, the Print Service provides an abstraction of the printer
that allows agents to instruct the service to print a document instead of sending
streams of bytes to the output port, etc. Some other examples of functionality
that can be supported by the abstraction level are mobility and fusion of sensor
data.

In dynamic or unpredictable deployment contexts such as ad hoc networks, the
abstraction level—typically supported by appropriate middleware—can shield the
complexity of the deployment context (mobility, nodes that come and go, etc.)
from the agents. An abstraction level of the environment is common in agent
systems and is supported in most agent platforms.

Interaction-Mediation Level. In addition to the abstraction level, an environ-
ment can provide an interaction-mediation level to support mediated interaction
in the environment. The interaction-mediation level offers support: (1) to regu-
late the access to shared resources, and (2) to mediate interaction between agents.
Fig. 3.7 depicts example scenarios of interaction mediation.

©) © 9 g

Turn()

Drop(Pheromone) Agents

Remove(Sign) Drive()

Appointment(Agent,Date)

(@

55 v ® i

:2\ QéQiQ L‘ﬁ

_g

R i s e [PO

40
-0

Figure 3.7: The environment mediates the interaction with resources and among
agents

Deployment
Context

The agent in the middle of the figure interacts with a pheromone infrastructure
that is deployed on top of a network topology. The agents on the right side steer
automated vehicles. The abstraction level provides a map of the layout of the
physical environment. The interaction mediation level adds signs to the map to
regulate the traffic. Some of the signs may be manipulated by agents (e.g., the

3.3 The Environment as a First-Class Design Abstraction 43

agent on the right side removes the “no return” sign). Other signs may be managed
by the environment; e.g., a sign that indicates the cost to drive to a particular
destination may be adapted according to the actual traffic.

With an interaction-mediation level, the environment becomes an active en-
tity in the system. The environment regulates particular activity in the sys-
tem. Typically, the environment maintains activities independent of agent ac-
tivities. Examples of such activities are aggregation, diffusion and evaporation
of digital pheromones [52], maintenance of computational fields in a mobile net-
work [131, 126], and support for tag-based coordination [158]. Support for inter-
action mediation enables agents to exploit the environment to coordinate their
behavior.

Reflection. The three levels of support represent different degrees of functionality
provided by the environment that agents can use to achieve their goals. In general,
multiagent system engineers consider the environment essentially as infrastructure
for coordination of agents. Such infrastructure provides a reusable solution that
can be exploited over many applications. Yet, this perspective does not exploit
the full potential of the environment in multiagent systems.

An infrastructure typically accounts for a specific set of responsibilities in the
system. This hampers flexible assignment of responsibilities among agents and the
environment. For a particular application, all responsibilities that are not man-
aged by the infrastructure remain to be addressed by the agents, often leading to
complex agents. Moreover, infrastructures are typically confined to a particular
kind of coordination approach (marks, pheromones, fields, etc.). However, a solu-
tion may benefit from integrating different kinds of approaches according to the
requirements of the system at hand. Today’s multiagent system infrastructures
are not developed with such kind of integration in mind. Finally, infrastructures
typically focus on one set of responsibilities in the system. Communication infras-
tructures provide support for messages transfer, pheromone infrastructures provide
support for a indirect coordination with digital pheromones, etc. The remaining
functionalities of the environment often remain implicit or are dealt with in an ad-
hoc manner, or even worse, agents are used to provide functionalities and services
that conceptually do not belong to them.

In our research, we put forward the environment as a first-class design ab-
straction in multiagent systems, i.e. the environment is a building block that is
considered explicitly and can be exploited creatively when building multiagent
system applications.

3.3.2 Definition of the Environment as a First-Class Ab-
straction

Before we give our definition of environment, we first give a short overview of
previous definitions of the environment described in literature.

44 Advanced Model for Situated Multiagent Systems

Russell and Norvig [172] define a “generic environment program”. This simple
program gives the agents percepts and receives back their actions. Next, the pro-
gram updates the state of the environment based on the actions of the agents and
possibly other processes in the environment that are not considered as agents. Rus-
sell and Norvig’s environment program illustrates the basic relationship between
agents and their environment.

Rao and Georgefl [163] specify the following characteristics of the environment
that are applicable to a broad class of agent system application domains: (1)
at any instant in time there are potentially many different ways in which the
environment can evolve; (2) at any instant in time there are potentially many
different actions possible that agents can perform; (3) different objectives may
not be simultaneously achievable; (4) the actions that best achieve the various
objectives are dependent on the state of the environment; (5) the environment
can only be sensed locally; (6) the rate at which computations and actions can
be carried out is within reasonable bounds to the rate at which the environment
evolves. Rao and Georgeff describe the typical characteristics of the external world
in which agent systems are deployed and with which the agents interact.

Ferber [74] defines an environment as a space F, in which objects—including
agents—are situated, i.e. at a given moment any object has a position in E. Ob-
jects are related to one another and agents are able to perceive objects and to
manipulate (passive) objects in E. Agents’ actions are subject to the “laws of the
universe” that determine the effects of the actions in the environment. Ferber’s
definition underlines the container function of the environment and emphasizes
the separation of agents’ actions (as attempts to modify the course of events in
the environment) and the reaction to the actions (i.e. the outcome of the actions)
in the environment.

Demazeau [68] considers four essential building blocks for agent systems: agents
(i.e., the processing entities), interactions (i.e., the elements for structuring internal
interactions between entities), organizations (i.e., elements for structuring sets of
entities within the multiagent system), and finally the environment that is defined
as “the domain-dependent elements for structuring external interactions between
entities.” The environment in Demazeau’s perspective emphasizes the structuring
qualities of elements external to the agent system.

Parunak [150] defines an environment as a tuple (State, Process). State is
a set of values that completely define the environment, including the agents and
objects within the environment. Process indicates that the environment itself is
an active entity. It has its own process that can change its state, independently
of the actions of the embedded agents. The primary purpose of Process is to
implement dynamism in the environment, such as maintenance processes of digital
pheromones. Parunak’s definition of environment underlines the active nature of
the environment.

Odell et al. [144] define an environment as follows: “The environment provides

3.3 The Environment as a First-Class Design Abstraction 45

the conditions under which an entity (agent or object) exists”. The authors dis-
tinguish between the physical environment and the communication environment.
The physical environment provides the laws, rules, constraints and policies that
govern and support the physical existence of agents and objects. The commu-
nication environment provides (1) the principles and processes that govern and
support the exchange of ideas, knowledge and information, and (2) the functions
and structures that are commonly employed to exchange communication, such
as roles, groups, and the interaction protocols between roles and groups. Odell’s
definition of environment underlines the different structures of the environment
(physical, communicative, social) and the mediating nature of the environment.

Our Definition. We define the environment as follows [215]:

The environment is a first-class abstraction that provides the surround-
ing conditions for agents to exist and that mediates both the interaction
among agents and the access to resources.

First of all, this definition states that the environment is a first-class abstraction.
This stresses the fact that the environment is a building block in the multiagent
systems that encapsulates its own clear-cut responsibilities, irrespective of the
agents. Second, the environment provides the surrounding conditions for agents to
exist. This implies that the environment is an essential part of a multiagent system.
The environment is first of all the part of the world with which the agents interact,
and in which the effects of the agents will be observed and evaluated. Furthermore,
to build a useful system out of individual agents, agents must be able to interact.
On their own, agents are just individual loci of control. The environment is the glue
that connects agents into a working system. The environment encapsulates and
provides access to external entities and resources, and enables agents to interact.
Third, the environment mediates both the interaction among agents and the access
to resources. This states that the environment can be an active entity with specific
responsibilities in the multiagent system. The environment provides a medium for
sharing information and mediating coordination among agents. As a mediator,
the environment enables interaction and it constrains it.

Recognizing the environment as first-class abstraction promotes the environ-
ment to a design element that is considered explicitly and can be exploited cre-
atively when building multiagent system applications. The environment can be
assigned a custom set of responsibilities. Engineers can use agents as well as the
environment to make a well-considered assignment of responsibilities according to
the application requirements at hand. Allocating responsibilities among agents
and the environment helps to manage the huge complexity of engineering real-
world applications, and improves separation of concerns in multiagent systems.

46 Advanced Model for Situated Multiagent Systems

3.3.3 Functionalities of the Environment

We now discuss a number of core functionalities that can be assigned to the en-
vironment. We illustrate the functionalities with examples of the Packet—World
and other examples from literature. For an elaborated discussion, we refer to [209,
223, 215].

The Environment Structures the Multiagent System. The environment
provides a shared “space” for the agents and resources, which structures the mul-
tiagent system. The agents and resources are dynamically related to each other. It
is the role of the environment to define the rules which these relationships have to
comply to. As such the environment acts as a structuring entity for the multiagent
system. In general, different forms of structuring can be distinguished:

e Physical structure refers to spatial structure, topology, and possibly distri-
bution, see e.g. [52, 30].

o Communication structure refers to infrastructure for message transfer or
indirect communication, e.g., [52, 126].

e Social structure refers to the organizational structure of the environment in
terms of roles, groups, societies, etc., see e.g. [75, 193, 176].

Structuring is a fundamental functionality of the environment. Structures of the
environment may be imposed by constraints of the domain at hand, or they may
be carefully considered design choices. In a distributed environment, physical
and communication structure are part of the deployment context and should be
supported by an appropriate level of abstraction. Social structure is typically
supported at the interaction-mediation level.

The environment of the Packet-World is completely virtual. Agents in the
Packet-World do not interact with resources external to the system. The physical
structure of the Packet—World is a grid. The Packet—World provides an infras-
tructure for message transfer as well as infrastructure for indirect communication
through markers in the environment such as fields, pheromones, and flags. An
example of a social structure in the Packet—World are agents that collaborate in
a chain to pass packets.

The Environment Embeds Resources. An important functionality of the
environment is to embed resources. Resources are typically situated in a physi-
cal structure. The environment should provide support at the abstraction level
shielding low-level details of resources and services to the agents.

Since agents in the Packet—World do not interact with external resources, the
environment only includes virtual resources. Examples are packets, destinations,
charger stations, and marks. Resources in the Packet—World are embedded in the
grid structure of the environment. Some of the resources have a fixed position on

3.3 The Environment as a First-Class Design Abstraction 47

the grid, others have a position that can change over time.

The Environment Can Maintain Dynamics. Besides the activity of the
agents, the environment can have processes on its own, independent of agents. An
example of an environmental activity is a self-managing field in a network. When
the topology of the physical network changes, the environment has to keep the
fields consistent, see e.g. [126]. [175] introduces the notion of a view that offers
an up-to-date application specific context representation to agents in a dynamic
network. The environment may also provide support for maintaining state related
to agents, such as tags that are used for coordination. Maintaining such dynam-
ics is an important functionality of the environment. Depending on the nature
of the dynamics, maintenance of dynamics can be supported at the abstraction
level (e.g. maintenance of fused sensor data) or at the interaction-mediation level
(e.g. maintenance of marks for coordination purposes).

In the Packet—World, the environment supports aggregation and evaporation
of digital pheromones. When an agent drops new pheromone, the environment
increases the strength of the local pheromone accordingly; and the environment
decreases the strength of the pheromones over time.

The Environment is Locally Observable to Agents. Contrary to agents,
the environment should be observable. Agents should be able to inspect the dif-
ferent structures of the environment, as well as resources, and possibly external
state of other agents. Observation of a structure is typically limited to the current
context (spatial context, communication context, and social context) in which the
agent finds itself. In general, agents should be able to inspect the environment
according to their current tasks. In our model for selective perception (see sec-
tion 3.4.2), agents can use foci to direct their attention according to their current
tasks. Agents should be able to observe the environment at the right level of
abstraction. Observability of the deployment context should be supported at the
abstraction level, support for observability of the social context is situated at the
interaction-mediation level.

Agents in the Packet-World are able to observe the various resources on the
grid in their vicinity. The identity of the agents is public in the Packet-World and
as such also represented in the state of the environment.

The Environment is Locally Accessible to Agents. Agents must be able
to access the different structures of the environment, as well as resources, and
possibly external state of other agents. As for observability, accessing a structure
is limited to the current context in which the agent finds itself. Access to spatial
structure refers to support for metrics, mobility, etc. Access to communication
infrastructure refers to support for direct communication (message transfer) and
support for indirect communication (pheromones, etc.). Access to social structures

48 Advanced Model for Situated Multiagent Systems

refers to organizations, group membership, etc. In general, resources can be per-
ceived, modified, generated, and consumed by agents. The extent to which agents
are able to access a particular resource may depend on several factors such as the
nature of the resource, the capabilities of the agent, the actual relationships with
other resources and agents, etc. Agents should be able to access the environment
at an appropriate level of abstraction. Support for access of the social context is
situated at the interaction-mediation level.

Agents in the Packet—World are able to access the resources in their vicinity.
Agents can exchange messages with other agents that are located within commu-
nication range, and they can manipulate marks in the environment on neighboring
cells.

The Environment Can Define Rules for the Multiagent System. The
environment can define different types of rules on all entities in the multiagent
system. Rules may refer to constraints imposed by the domain at hand (e.g. mo-
bility in a network), or refer to laws imposed by the designer (e.g. limitation of
access to neighboring nodes in a network for reasons of performance). Rules may
restrict access to specific resources for particular types of agents, or determine the
outcome of agents’ interactions. Rules in the environment refer to shared access
to resources and constraints on the interaction between agents. As such, support
for rules is situated at the interaction-mediation level.

A simple example of a perception rule in the Packet-World is the sensing range
that demarcates the scope agents can perceive their neighborhood. An example
of a rule related to agents’ actions is the restriction that an agent can only make
a step to a free neighboring cell. Finally, a rule related to communication in
the Packet-World is the rule that drops messages intended for agents outside the
communication range of the sender.

3.4 Advanced Mechanisms of Adaptivity for Sit-
uated Agents

Now we zoom in on situated agents. Existing models of situated agents are typi-
cally restricted to mechanisms for action selection. Other concerns such as percep-
tion and communication are not dealt with, or integrated in the action selection
model in an ad-hoc manner. The general motivation of the model for situated
agents presented in this section is to provide better support for engineering situ-
ated agents. Particular goals are: (1) to provide explicit models for perception and
communication and integrate these models with action selection; (2) to endow situ-
ated agents with abilities for explicit social interaction; (3) to provide mechanisms
that enable agents to flexibly adapt their behavior with changing circumstances
in the environment.

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 49

We start by explaining the state of agents. Then we discuss advanced mech-
anisms that cover different concerns of situated agents. Successively, we explain
selective perception, advanced behavior-based action selection, and protocol-based
communication.

3.4.1 Agent State

Contrary to knowledge-based agents, situated agents do not build up an internal
model of the environment. Instead, they favor to employ the environment itself as
a source of information. Situated agents use knowledge of the world to direct their
decisions, however, this is done “here and now”. A situated agent does not keep
track of hypothetical future state or investigate the implications of state changes
on a plan.

We distinguish between shared state and internal state. Both kinds of state
can be further divided in static state and dynamic state.

e Shared state refers to state that is shared among agents. Examples are state
that refers to elements observed in the environment, and state derived from
data that is exchanged via messages.

— General static state. This type of state refers to the agent’s state of the
system that does not change over time. Examples in the Packet-World
are the grid structure of the environment, the set of possible colors of
packets, and the identities of agents.

— Dynamic state. This type of state relates to state about the agent’s
current context; it dynamically changes over time. Examples in the
Packet—World are locally perceived packets and pheromones, and data
about a temporal agreement for collaboration such as the identities of
the agents with which the agent forms a chain to pass packets.

e Internal state refers to agent’s state that is not shared with other agents. In-
ternal state can be static, or it can dynamically change over time. Examples
of internal static state are the various parameters of a behavior-based action
selection mechanism. An example of internal state that dynamically changes
is state that represents the success rate of recently selected behaviors. An
agent can use such state to adapt its behavior over time, see e.g. [220].

3.4.2 Selective Perception

Perception is the ability of an agent to sense its neighborhood, resulting in a
percept of the environment. A percept describes the sensed environment in the
form of expressions that can be understood by the agent. Agents use percepts to
update their knowledge of the world. Although perception is very common for any
multiagent system, it is often dealt with in an implicit or ad-hoc manner. This is

50 Advanced Model for Situated Multiagent Systems

especially the case for software environments where all aspects of perception must
be modelled explicitly. The lack of attention for perception in multiagent systems
was already raised in the mid nineties. In [123], Maes indicates the problem of the
“narrow-minded view on the relationship between perception and action”, pointing
to the poor support for goal-driven perception. We have developed a model for
selective perception in situated multiagent systems [224, 228]. Selective perception
enables an agent to direct its perception at the relevant aspects of the environment
according to its current task. This facilitates better situation awareness and helps
to keep processing of perceived data under control.

To direct its perception an agent selects a set of foci. Each focus of the set
of selected foci is characterized by a particular perceptibility, but may have other
characteristics too, such as an operating range, a resolution, etc. Focus selection
enables an agent to direct its perception, it allows the agent to sense the environ-
ment only for specific types of information. E.g., an agent i in the Packet—World
that is interested in a “visible” perception of its neighborhood has to request a per-
ception with request (i, sense-objects()), with sense-objects() the selected
focus. As a result the agent will receive a representation of the elements within the
default sensing range. A representation is a data structure that represents some-
thing in the environment. For the sense—objects() focus, the representation
will consists of a data structure that represents the visible objects in the agent’s
sensing range. If the agent is only interested in the elements within a restricted
range, it can add a parameter with its focus, e.g. sense—objects(2) which will
yield a representation of the visible objects within a distance of two squares from
the agent’s position. On the other hand, an agent that is interested in the val-
ues of the fields that can guide it towards a battery charger has to select a focus
sense—fields(). The representation will than consists of a data structure that
contains the field values within the default sensing range.

To interpret a representation, agents use descriptions. A description is a
blueprint that enables an agent to extract a percept from a representation. A
percept consists of data elements that describe the sensed environment in the
form that can be understood by the internal machinery of the agent. Consider for
example a representation that contains a number of packets in a certain area. The
agent that interprets this representation may use one description to interpret the
distinguished packets and another description to interpret the group of packets as
a cluster.

In addition to the selection of foci, selective perception enables an agent to
select a set of filters. Filters allow the agent to select only those data elements of a
percept that match specific selection criteria. Each filter imposes conditions on a
percept that determine whether the data elements of the percept can pass the filter
or not. E.g., an agent in the Packet—World that has selected a sense—objects()
focus to visually perceive its environment and that is only interested in the des-
tination of the yellow packets can select a filter destination(packet(yellow)).

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 51

The resulting percept will then contain a data element with the destination of the
yellow packets (and only this destination)—at least, if this data element was part
of the original percept, otherwise the resulting percept will be empty.

3.4.3 Behavior-Based Action Selection Extended with Roles
and Situated Commitments

Decision making enables an agent to select appropriate actions to realize its tasks.
We use a model for action that is based on Ferber’s influence-reaction model,
described in [76, 74]. We already touched on the influence-reaction model in
section 3.1.2. In essence, this model separates what an agent wants to per-
form from what actually happens. Agents produce influences in the environ-
ment and subsequently the environment reacts to the influences resulting in a
new state of the world. An example of an influence in the Packet—World is
influence(i, step(North)) which is produced by an agent with identity i that
attempts to make a step on the grid in the direction North. Whether this influ-
ence will succeed depends on the agents capabilities (e.g., has the agent enough
energy) as well as on the current situation in the environment (e.g., is the target
cell currently accessible).

To select actions, a situated agent employs a behavior—based action selection
mechanism. We have discussed a number of well-known behavior—based mecha-
nisms for action selection in section 3.1.1. The main advantages of behavior—based
action selection mechanisms are efficiency and flexibility to deal with dynamism
in the environment.

3.4.3.1 Roles and Situated Commitments

As we explained in section 3.1, behavior—based action selection mechanisms are
developed from the viewpoint of individual agents. Yet, in a situated multia-
gent system it is often desirable to endow agents with abilities for explicit social
interaction. Explicit social interaction enables agents to exchange information
directly with one another and set up collaborations. We extended behavior—
based action selection mechanisms with the notions of role and situated com-
mitment [225, 226, 185, 184, 227]. Roles and situated commitments provide the
means for situated agents to set up collaborations.

We regard a role as a coherent part of an agent’s functionality in the context
of an organization. We consider an organization as a group of agents that can
play one or more roles and that work together. Roles provide the building blocks
for social organization of a multiagent system. This perspective on roles is similar
to other approaches in agent research (see e.g. [107, 56, 143, 132]), provided that
collaborations between situated agents are bounded to the locality in which the
agents are situated.

52 Advanced Model for Situated Multiagent Systems

Collaborations are explicitly communicated cooperations [153] reflected in mu-
tual commitments. The attitude of a commitment has been studied extensively,
however, always from the perspective of cognitive agents, see e.g. [63, 119, 71].
These traditional approaches take a psychological viewpoint on commitment, i.e. a
commitment is essentially based on the mutual beliefs and the plans of the involved
agents. We introduce the notion of a situated commitment as a social attitude of
situated agents. Contrary to the traditional approaches on commitment which are
essentially based on the mutually dependent mental states of the involved agents
and a goal-oriented plan, a situated commitment is defined in terms of the roles of
the involved agents and the local context they are placed in. Agreeing on a situated
commitment incites a situated agent to give preference to the actions in the role of
the commitment. We share the sociological viewpoint on commitment proposed
in [182], however, that research focuses on cognitive agents in information—rich
environments.

Agents agree on mutual situated commitments in a collaboration via direct
communication (see section 3.4.4 below). Once the agents have agreed on a col-
laboration, the mutual situated commitments will affect the selection of actions in
favor of the agents’ roles in the collaboration. Whereas traditional approaches of
commitment impose agents to communicate explicitly when the conditions for a
committed cooperation no longer hold, for a situated commitment it is typically
the local context in which the involved agents are placed that regulates the dura-
tion of the commitment. E.g., when agents form a chain in the Packet—World, the
collaboration ends when no more packets are left to pass on, or when one of the
agents leaves its post for maintenance. This approach fits the general principle of
situatedness in situated multiagent systems. Note that an agent can also commit
to itself. For example, if an agent in the Packet-World runs out of energy, it can
commit to itself to resolve this urgent problem. Once committed, the agent will
select actions in the role to recharge its battery: i.e. follow the gradient towards a
battery charger, connect to the charger, and charge. The commitment ends when
the battery is recharged.

3.4.3.2 Free-Flow Trees Extended with Roles and Situated Commit-
ments

We now illustrate how we have extended free-flow trees, a concrete behavior-based
action selection mechanism, with roles and situated commitments [226, 184]. We
start by explaining how a traditional free-flow tree works. Then we show how we
have integrated roles and situated commitments in free-flow trees.

Free-Flow Trees. Free-flow trees were first proposed by Rosenblatt and Payton
in [169]. Tyrrell [192] has demonstrated that hierarchical free-flow architectures
are superior to flat decision structures, especially in complex and dynamic envi-
ronments. The results of Tyrrell’s work are recognized in more recent research,

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 53

for a discussion see [54]. An example of a free-flow tree is shown in Fig. 3.8.

System Node

energy level

energy need

not carry packet not at station

+

carry packet

To Station

near at station

destination @
*
@ Dropping @ Charging

Collect a
near packet
Explore
* Collecting ‘ random
direction

Delivering

see

see packet @EHEHEH@ destination
Picking qaaaaaab gradient
-
@EHHHEEB connected
free disconnected
EddER/ COO SO~
e
LR o T [O
pick moveN moveNE moveE moveSE moveS moveSW moveW moveNW drop connect charge disconnect
. timul increasing positive
KEY O activity node D stimulus 000 O activity level
. multi-directional negative negative
action node) (o]
D @ID) stimulus 00O O activity level

Figure 3.8: Free-flow tree for a Packet-World agent

A free-flow tree is composed of activity nodes (in short nodes) which receive
information from internal and external stimuli in the form of activity. The nodes
feed their activity down through the hierarchy until the activity arrives at the
action nodes (i.e. the leaf nodes of the tree) where a winner-takes-all process
decides which action is selected.

To explain decision making with a free-flow tree, we use the tree for a simple
agent in the Packet-World, shown in Fig. 3.8. The left part of the tree represents
the functionality for the agent to search, collect and deliver packets. On the right,
functionality to maintain the battery is depicted. The System Node feeds its ac-
tivity to the Work node and the Maintain node. The Work node combines the
received activity with the activity from the energy level stimulus. The “4+” symbol
indicates that the received activity is summed up. The negative activity of the
energy level stimulus indicates that little energy remains for the agent. As such

54 Advanced Model for Situated Multiagent Systems

the resulting activity in the Work node is just below zero. The Maintain node on
the other hand combines the activity of the System Node with the positive activity
of the energy need stimulus, resulting in a strong positive activity. This activity is
passed to the ToStation and the Charging nodes. The ToStation node combines
the received activity with the activity level of the not at station stimulus (the “x”
symbol indicates they are multiplied). In a similar way the Charging node com-
bines the received activity with the activity level of the at station stimulus. This
latter is a binary stimulus, i.e. when the agent is at the charge station its value is
positive (true), otherwise it is negative (false). The ToStation node feeds its posi-
tive activity towards the action nodes it is connected with. Each moving direction
receives an amount of activity proportional to the value of the gradient stimulus
for that particular direction. gradient is a multi-directional stimulus. The value of
this stimulus (for each direction) is based on the sensed value of the gradient field
that is transmitted by the charge station. In a similar way, the Charging node
and the child nodes of the Work node (Ezplore, Collect and Deliver) feed their
activity further downwards in the tree to the action nodes. Action nodes that
receive activity from different nodes combine that activity according to a specific
function. The action nodes for the move actions use a function f,, to calculate
the final activity level. A possibility definition of this function is as follows:

Amo’ueD = max [(ANode + AstimulusD) * AfreeD]

Herein is A,ovep the activity collected by a move action, D denotes one of the
eight possible directions, i.e. D € {N, NE, E,SE,S,SW, W, NW}. Apnode denotes
the activity received from a node, the move actions are connected to four nodes:
Node € {Collecting,Explore,Delivering, ToStation}. With each node a particu-
lar stimulus is associated. stimulus € {see packet, random direction, see destina-
tion, gradient} are all multi-directional stimuli with a corresponding value for each
moving direction. Finally, free is a multi-directional binary stimulus that indicates
whether the way to a particular direction is free for the agent to move to or not.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently the
North-East, East, South-West and North-West directions are blocked (see the free
stimulus), leaving the agent four possibilities to move towards the charge station:
via North, South-East, South, or via West. The values of the gradient field guide
the agent to move northwards, see Fig. 3.8.

The main advantages of free-flow architectures are:

e Stimuli can be added to the relevant nodes avoiding the “sensory bottle-
neck” problem [192]. In a hierarchical decision structure, to make correct
initial decisions, the top level has to process most of the sensory information

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 55

relevant to the lower layers. A free-flow architecture does not “shut down”
parts of the decision structure when selecting an action.

e Decisions are made only at the level of the action nodes; as such all infor-
mation available to the agent is taken into account to select actions.

e Since all information is processed in parallel the agent can take different pref-
erences into consideration simultaneously. For example, consider an agent
in the Packet-World that spots two candidate packets to be picked at about
equal distance. A Packet-World agent also has to maintain its battery. If the
agent is only able to take into account one preference at a time it will select
one packet and move to it, or alternatively it will follow the gradient field
towards a battery charger. With a free-flow tree the agent can move towards
one packet while it moves in the direction of a charge station, i.e. if the
agent needs to recharge its battery in the near future, it will move towards
the packet that is nearest to the battery charger.

Extending Free-Flow Trees with Roles and Situated Commitments.
Free-flow trees are developed from the viewpoint of individual agents. To enable
agents to exhibit explicit social behavior, we have extended the free-flow architec-
ture with the abstractions of a role and a situated commitment. A role represents
a coherent part of functionality of an agent in the context of an organization.
Agents are related to one another by the roles they play in the organization. A
role can consist of a number of sub-roles, and sub-roles of sub-sub-roles etc.

A situated commitment defines a relationship between one role (the goal role)
and a non-empty set of other roles (the source roles) of the agent. When a situated
commitment is activated, the behavior of the agent tends to prefer the goal role
of the commitment over the source role(s). Favoring the goal role results in more
consistent behavior of the agent towards the commitment. In a collaboration
agents commit relatively to one another, typically via communication. However,
an agent can also commit to itself, e.g. when it has to fulfill a vital task. A situated
commitment is represented in the free-flow tree by a connector that connects the
source roles of the situated commitment with the goal role. When a situated
commitment is activated, extra activity is injected in the goal role relative to the
activity levels of the source roles. Fig. 3.9 shows a free-flow tree for an agent in
the Packet-World extended with roles and situated commitments.

A role corresponds to a subtree in the hierarchy. In the example, the roles are
demarcated by dashed lines. The root node of a subtree that represents a role
is denoted as the top node of the role. A role is named as its top node. Basic
roles are roles that are not further divided in sub-roles. For the Packet-World
agents, three main roles are distinguished: Individual, Chain, and Maintain. In
the role Individual, the agent performs work, independent of the other agents.
The agent searches for packets and brings them to the destination. The Chain
role is composed of two sub-roles: Head and Tail denoting the two roles of agents

56 Advanced Model for Situated Multiagent Systems

Charging

Individual

¥ \ N\ , \
v S) Jtac N
7 N / < 4 ‘ \\

Search

y | To
Pick pest

|
|
| Station |
|
|
|
|

| Charging
OO
|

| _

free IL\\\é\\\\

connected

disconnected

q 2
§g‘ QN ’ O ‘
N> SN
HiEEN NN L0 O N
move N NE E SE S SW W NwW pick pass drop skip accept connect charge disconnect
O activity node [> situated commitment ‘/—\} role
KEY =
[] action node Q[[[I> multi-directional stimulus [—:} basic role

Figure 3.9: Free-flow tree for a Packet-World agent with roles and situated commit-
ments (system node, combination functions, and stimuli of activity nodes omitted)

in a collaboration to pass packets along a chain®. Finally in the Maintain role,

the agent recharges its battery. All roles of the agent are constantly active and
contribute to the final decision making by feeding subsets of actions with activity.
However, the contribution of each role depends on the activity it has accumulated
from the affecting stimuli of its nodes.

A situated commitment is represented by a connector between roles in the
tree. The connector Charging in Fig. 3.9 denotes the situated commitment of an
agent to itself to recharge its battery. Charging connects the top nodes of the
source roles Individual and Chain with the goal role Maintain. The connectors
HeadOfChain and TailOfChain denote the mutual situated commitments of two
agents that collaborate to pass packets in a chain. These situated commitments
connect the single top node of Individual with the top node of Head and Tail
respectively.

Fig. 3.10 shows the situated commitment Charging together with its goal role
Maintain in detail. Besides a name, each situated commitment is characterized by
an activation condition, a deactivation condition, and a 3-tuple (context, relation

5To allow agents to set up a chain of more than two agents, an additional role Link would be
necessary.

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 57

energy level < to charge

Individual o O energy need
©)

- <{}. {selft. fe>

Chain
Charging

energy level = charged

moveN moveNE moveE moveSE moveS moveSW moveW moveNW connect charge disconnect

@ multi-directional activatin condition

activity node q
O stimulus situated commitment

) increasing X -
KEY D action node OOO positiv e activity deactivation condition

: increasing <c,r.f>: < context, relation set, addition function >
- - © OO negative activity

Figure 3.10: Situated commitment Charging with its goal role Maintain

set, addition function). Activation and deactivation conditions are boolean expres-
sions based on the agent’s internal state. The activation condition for Charging in
Fig. 3.10 is energy level < to charge, i.e. as soon as the energy level of the agent
crosses the threshold to charge, the activation condition becomes true and the
situated commitment is activated.

The relation set contains the identities of the agents involved in the situated
commitment. The context describes contextual properties of the situated com-
mitment such as properties of elements in the environment (e.g., the color of the
packets that are passed in a chain). Since Charging is a commitment of the agent
relative to itself, the relation set is {self}. Charging is not related to any particular
context. For example, for an agent that commits to be HeadOfChain in a collab-
oration (see Fig. 3.9), the relation set is the agent that is TailOfChain, and the
context contains the kind of packets that are transferred between the collaborating

58 Advanced Model for Situated Multiagent Systems

agents.

Finally, the addition function determines—once the commitment is activated—
how the activities of the source roles are combined into a resulting activity that is
injected in the goal role. When the Charging commitment is activated it injects
an additional amount of activity in the Maintain role, determined by the addition
function f.. A possible definition for f. is as follows:

g+ +
AChargmg = AIndi'uidual + ACham

with A%, ;. = ANode iff Anoge > 0, and 0 otherwise

The Maintain role combines the additional activity of the Charging commitment
with the regular activity accumulated from its stimuli. The deactivation condition
of Charging is energy level = charged, i.e. as soon as the accumulated energy level
reaches the charged level the commitment is deactivated. Then Charging no longer
influences the activity level of its goal role.

In general, an agent can be involved in different situated commitments at the
same time. The top node of one role may receive activity from different situ-
ated commitments and may pass activity to different other situated commitments.
Activity received through different situated commitments is combined with the
regular activity received from stimuli into one result.

3.4.4 Protocol-Based Communication

Communication enables agents to exchange information (e.g. agents in the Packet-
World can ask each other for the location of a packet or a destination), or to set up
collaborations (e.g. agents can set up a chain to deliver packets more efficiently).
Message exchange however, is typically associated with cognitive agents, where
the information encoded in the messages is related to mental state (i.e., beliefs,
plans, intentions, etc.). Yet, this generally assumed perspective on communication
does not fit the approach of situated multiagent systems. We have developed a
protocol-based communication model for situated agents that puts the focus of
communication on the relationship between the exchanged messages. A commu-
nication protocol specifies a well-defined sequence of messages. We consider both
binary and n-ary communication protocols. A binary protocol involves two com-
munication peers (one as the initiator), whereas an n-ary protocol involves multiple
communication peers (also with one initiator). Protocol-based communication is
the interaction between agents based on the exchange of messages according to
a specific communication protocol. We use the notion of conversation to refer to
such an ongoing interaction. During the progress of a conversation agents typi-
cally modify their state implied by the communicative interaction. For example,
when an agent agrees to start a collaboration, a situated commitment is activated
which in turn will affect the agent’s action selection according to its role in the

3.4 Advanced Mechanisms of Adaptivity for Situated Agents 59

commitment. The end of a collaboration is typically induced by changes in the
environment, but it may also be communicated explicitly by means of “end of
cooperation” messages.

The information exchanged via a message is encoded according to a well de-
fined communication language. A communication language defines the format of
the messages, i.e. the subsequent fields the message is composed of. We denote
the information decoded in a message message data. Message data describes the
information of a message in a form that can be understood by the agent. The ter-
minology of the modelled domain is defined in an ontology. The ontology defines:
(1) a vocabulary of words that are used to represent concepts in the domain and
(2) a set of relationships that express interconnections between these concepts.

3.4.4.1 Collaboration in a Chain in the Packet—World

As an example, we look at the communication protocol to set up a chain for passing
packets in the Packet-World. A high—level description of the message sequence for
this protocol is shown in the UML sequence diagram of Fig. 3.11.

‘ Collaboration in a Chain/
=
1: [setup chain] request J—
Alternatives
activate > _ ’ activate >
HeadOfChain - 2: [work as tail] accept ~{TailOfChain
2" [no work as tail] reject
3: [tail left] 3: [end work]
terminate terminate
; N
deactivate "
o . deactivate ,;
- M TailofChain
T I

Figure 3.11: UML sequence diagram of the communication protocol to set up a
chain in the Packet—World

If the conditions for an agent hold to enter the role of Head in a chain, it
requests the candidate tail to cooperate. As an example, consider an agent with

60 Advanced Model for Situated Multiagent Systems

identity ¢ that requests an agent with identity j to form a chain for passing gray
packets. The decoded message data of the received message may contain the
following data:

(cid, j, request, {Tail, chain(packet(gray))})

This message data consists of four fields. cid is a unique identifier for the con-
versation. This identifier is assigned by the initiator of the conversation and
is used by the participants to refer unambiguously to the conversation. j is
the identity of the addressee, request is the performative of the message and
{Tail, chain(packet(gray))} is the content of the message. chain(packet(gray))
is an example of an expression that is defined in the agent’s ontology. The ex-
pression connects three concepts of the agent’s vocabulary chain, packet and gray
into a relationship with an obvious semantic.

When the requested agent receives the request, it investigates the proposal.
Depending on the context it answers with accept or reject. The conditions for the
agent to accept the proposal are: (1) it knows the protocol to set up a chain; (2)
the agent has the role Tail; (3) there are gray packets in the agent’s neighborhood
to pass on; and (4) the agent is not yet engaged in a commitment that conflicts
with this new request. If all these conditions hold, the agent accepts the proposal,
otherwise it rejects it. When accepting it, the agent becomes committed to the
situated commitment TailOfChain and composes message data like:

(cid, i, accept, {TailOfChain, packet(gray)})

This message data contains the necessary information to encode the confirmation
message of the collaboration.

After receiving the accept message, the initiating agent activates the situated
commitment HeadOfChain. The cooperation is then settled and continues until
all packets are passed or one of the agents in the chain for some reason leaves its
position. When the collaboration ends, the situated commitments are deactivated.

In case the requested agent rejects the proposal, the conversation terminates
without an agreement. Finally, when the requested agent neglects the request,
e.g. when it urgently leaves to recharge its battery, the initiator detects this and
terminates the conversation.

3.5 Summary

This chapter started with an historical overview of situated agent systems. From
this background, we then explained an advanced model for situated multiagent
systems that we have developed in our research.

Situated agency originates from reactive robotics that emerged in the mid
1980s as an approach to build autonomous robots that are able to act efficiently

3.5 Summary 61

in dynamic environments. The first generation of agent architectures directly cou-
pled perception to action, enabling real-time reaction in the environment. Later,
behavior-based architectures were developed that support runtime arbitration be-
tween parallel executing behaviors allowing the agents to act efficiently in more
complex environments. The main focus of the early agent systems was on the
architecture of agents, in particular on mechanisms for action selection. These
architectures were developed for single agents and as such do not support social
interaction. The environment itself is considered as the external world with which
the agent interacts. With stigmergic agent systems, the environment became the
center of attention. Stigmergic agents are driven by their surrounding environ-
ment. Internals of the agents are considered minimal. The environment serves as
infrastructure for coordination. Recent research on situated multiagent systems
places architecture for agents and the environment in the forefront. Agents and the
environment are explicit parts of the system, each with its specific responsibilities.

Our research links up with state-of-the-art approaches in the domain and con-
tributes to the further development of the paradigm of situated multiagent sys-
tems.

We explained our perspective of the role of the environment as a first—class
abstraction in multiagent systems, we gave a definition of the environment, and
we discussed important functionalities that can be assigned to the environment in
multiagent systems. Functionalities include: (1) the environment structures the
multiagent system; (2) the environment embeds resources; (3) the environment
can maintain dynamics that happen independently of agents; (4) the environment
is locally observable to agents; (5) the environment is locally accessible to agents;
and (6) the environment can define rules for the multiagent system.

We presented an advanced model for situated agents that (1) integrates decision
making with selective perception and protocol-based communication; (2) endows
situated agents with abilities for explicit social interaction by means of roles and
situated commitments.

The perspective on situated multiagent systems described in this chapter pro-
vides the foundation for the reference architecture we describe in the next chapter.

62

Advanced Model for Situated Multiagent Systems

Chapter 4

A Reference Architecture for
Situated Multiagent Systems

A reference architecture embodies a set of architectural best practices gathered
from the design and development of a family of applications with similar charac-
teristics and system requirements. A reference architecture provides an asset base
architects can draw from when developing software architectures for new systems
that share the common base of the reference architecture. Applying the reference
architecture to develop new software architectures will yield valuable input that
can be used to update and refine the reference architecture. As such, a reference
architecture provides a means for large-scale reuse of architectural design.

In this chapter, we give an overview of the reference architecture for situated
multiagent systems we have developed in our research [206, 228, 227, 214, 210, 213].
This reference architecture integrates the agent and environment functionalities we
have discussed in the previous chapter and maps them onto an abstract system de-
composition, i.e. software elements and relationships between them. This abstract
system composition provides a blueprint for architectural design of the family of
self-managing applications we target in this research.

We start with an introductory section that explains the reference architecture
rationale and sketches the background of the architecture. Next, we present the
reference architecture in two parts. First, we give an integrated model for situated
multiagent systems that synthesizes the agent and environment functionalities
that are covered by the reference architecture. Then we present the reference
architecture itself. The architecture documentation consists of four views that
describe the reference architecture from different perspectives. To conclude, we
refer to a framework that we have developed that demonstrates the feasibility of
the reference architecture, and we end the chapter with a brief summary.

63

64 A Reference Architecture for Situated Multiagent Systems

4.1 Rationale and Background

In this section, we explain the reference architecture rationale. We summarize
the main characteristics and requirements of the target application domain of the
reference architecture and give a brief overview of the development process of the
architecture. Finally, we explain how the reference architecture documentation is
organized.

4.1.1 Reference Architecture Rationale

In chapter 3, we presented our perspective on situated multiagent systems. We
explained the role of the environment in multiagent systems and we discussed
important functionalities that can be assigned to the environment. We also pre-
sented advanced mechanisms of adaptivity for situated agents, including selective
perception, advanced behavior-based action-selection mechanisms with roles and
situated commitments, and protocol-based communication. The various agent and
environment functionalities provide a basis for developing self-managing situated
multiagent systems. However, designing a software architecture for a practical
application based on these functionalities is a complex matter.

The general goal of the reference architecture is to support the architectural
design of self-managing applications with situated multiagent systems. Concrete
motivations for the reference architecture are:

e Integration of mechanisms. The mechanisms of adaptivity for developing
self-managing applications are described separately. However, to build a
concrete application these mechanisms have to work together. The reference
architecture integrates the different mechanisms. It defines how the function-
alities of the various mechanisms are allocated to software elements of agents
and the environment and how these elements interact with one another.

e Blueprint for architectural design. The reference architecture generalizes
common functions and structures from various experimental applications we
have studied and built. This generalized architecture provides a reusable
design artifact, it facilitates deriving new software architectures for systems
that share the common base more reliably and cost effectively. On the one
hand, the reference architecture defines constraints that incarnate the com-
mon base. On the other hand, the architecture defines variation mechanisms
that provide the necessary variability to instantiate software architectures
for new systems.

o Reification of knowledge and expertise. The reference architecture embodies
the knowledge and expertise we have acquired during our research. It con-
scientiously documents the know-how obtained from this research. As such,

4.1 Rationale and Background 65

the reference architecture offers a vehicle to study and learn the advanced
perspective on situated multiagent systems we have developed.

4.1.2 Characteristics and Requirements of the Target Ap-
plication Domain of the Reference Architecture

The reference architecture for situated multiagent systems supports the architec-
tural design of a family of software systems with the following main characteristics
and requirements:

e Stakeholders of the systems have various—often conflicting—demands on the
quality of the software. Important quality requirements are flexibility (adapt
to variable operating conditions) and openness (cope with parts that come
and go during execution).

e The software systems operate in highly dynamic and changing operating con-
ditions, such as dynamically changing workloads and variations in availability
of resources and services. An important requirement of the software systems
is to manage the dynamic and changing operating conditions autonomously.

e Global control is hard to achieve. Activity in the systems is inherently local-
ized, i.e. global access to resources is difficult to achieve or even infeasible.
The software systems are required to deal with the inherent locality of ac-
tivity.

Example domains are mobile and ad-hoc networks, automated transportation sys-
tems, and robotics.

The reference architecture abstracts from the concrete deployment of the mul-
tiagent system application, which highly depends on the particular system re-
quirements. By abstracting from the distribution of the system functionality, the
reference architecture is also valuable for non-distributed applications. In chap-
ter 5, we discuss the design of a concrete software architecture for an automated
transportation system and show how distribution is integrated with the function-
ality provided by the reference architecture for this industrial application.

4.1.3 Development Process of the Reference Architecture

The reference architecture for situated multiagent systems is the result of an iter-
ative research process of exploration and validation. During our research, we have
studied and built various experimental applications that share the above specified
characteristics in different degrees. We extensively used the Packet—World as a
study case for investigation and experimentation. [201, 203, 207, 59] investigate
agents’ actions in the Packet—World. [200, 137] study various forms of stigmergic
coordination. [219, 220, 82] focus on the adaptation of agent behavior over time.

66 A Reference Architecture for Situated Multiagent Systems

[202, 184, 92] yield valuable insights on the modelling of state of agents and the
environment, selective perception, and protocol-based communication. Another
application we have used in our research is a prototypical peer-to-peer file sharing
system [224, 94]. This application applies a pheromone—based approach for the
coordination of agents that move around in a dynamic network searching for files.
[198, 44, 179, 178] study a field-based approach for task assignment to automatic
guided vehicles that have to operate in a dynamic warehouse environment. Finally,
[225, 226, 65, 92] study several experimental robotic applications. The particu-
lar focus of these robotic applications is on the integration of roles and situated
commitments in behavior-based action selection mechanisms.

Besides these experimental applications, the development of the reference ar-
chitecture is considerably based on experiences with an industrial logistic trans-
portation system for warehouses [221, 222, 211, 7, 42].

Driven by the study and development of these applications, we incrementally
developed various new mechanisms for situated multiagent systems as we pre-
sented in the previous chapter. In the course of building the various applications,
we derived common functions and structures that provided architectural building
blocks for the reference architecture. As such, the reference architecture integrates
the different agent and environment functionalities we discussed in the previous
chapter and maps these functionalities onto software elements and relationships
between the elements. The software elements make up a system decomposition
that cooperatively implement the functionalities. This system decomposition—the
reference architecture—provides a blueprint for instantiating target systems that
share the common base of the reference architecture.

4.1.4 Organization of the Reference Architecture Documen-
tation

The reference architecture documentation starts with an introductory part that
describes an integrated model for situated multiagent systems. This model synthe-
sizes the agent and environment functionalities that are covered by the reference
architecture.

The second part of the documentation describes the various architectural views
of the reference architecture. The documentation includes a module decomposi-
tion view and three component and connector views: shared data, collaborating
components, and communicating processes. Each view is organized as a set of
view packets [60]. A view packet is a small, relatively self-contained bundle of
information of the reference architecture, or a part of the architecture. The docu-
mentation of a view starts with a brief explanation of the goal of the view and a
general description of the view elements and relationships between the elements.
Then the view packets of the view are presented. Each view packet consists of
a primary presentation and additional supporting information. The primary pre-

4.2 Integrated Model for Situated Multiagent Systems 67

sentation shows the elements and their relationships in the view packet. For the
module decomposition view, the primary presentations are textual in the form of
tables. The primary presentations of other views are graphical with a legend that
explain the meaning of the symbols.

The supporting information explains the architectural elements in the view
packet. Each view packet gives a description of the architectural elements with
their specific properties. A detailed formal specification of the various architectural
elements is available in Appendix A.

In addition to the explanation of the architectural elements, the supporting
information describes variation mechanisms for the view packet and explains the
architecture rationale of the view packet. Variation mechanisms describe how the
view packet can be applied to build a software architecture for a concrete system.
The architecture rationale explains the motivation for the design choices that were
made for the view packet.

4.2 Integrated Model for Situated Multiagent Sys-
tems

In this section, we present an integrated model for situated multiagent systems
that synthesizes the environment and agent functionalities covered by the refer-
ence architecture. This model integrates the various mechanisms of adaptivity
for situated multiagent systems we presented in chapter 3. For clarity, we have
divided the model in two parts: environment and situated agent. We discuss both
parts in turn.

4.2.1 Model of the Environment

The environment model consists of a set of modules with flows between the mod-
ules [215, 216, 223, 209, 230]. The modules represent the core functionalities of
the environment. Fig. 4.1 shows the environment model.

The model consists of two main modules, the deployment context and the ap-
plication environment. With the term deployment context, we refer to the given
hardware and software and external resources with which the multiagent system
interacts (sensors and actuators, a printer, a network, a database, a web service,
etc.). With the term application environment, we refer to the part of the environ-
ment that has to be designed for an application, i.e. the functionality on top of
the deployment context. As an illustration, the environment in the Packet-World
only consists of the application environment. Agents in the Packet-World do not
interact with resources external to the system. The deployment context as well
as the modules of the application environment that interact with the deployment
context are absent in the Packet-World. The application environment enables the

68 A Reference Architecture for Situated Multiagent Systems

Agent
set of foci A representation A Mmessage influence
f Application Environment
state state
Representation
Generator state
[«— p-laws c-laws a-laws
i ! |
A 4 . v A A
state Staty C icati
Lo e ommunication }
. Dynamics [« Maintenance Service Interaction
observation
A 'y Y
observed state
depl.context state state message influence
i state l
y
Oberservation & Synchronization & Translation
Data Processing Data Processing
4 A A
low-level
resource data resource data interactions
A,
Deployment Context
KEY |:| Functional Module > DataFlow ———- ﬁg:rr;ta-gwronment

Figure 4.1: Environment model

agents to perceive objects in their vicinity, to pick up and drop off packets, to
exchange messages, to move to free neighboring cells, etc. Another example is a
situated multiagent system applied in a peer-to-peer file sharing system. Such ap-
plication is deployed on top of a deployment context that consists of a network of
nodes with files and possibly other resources. The application environment enables
agents to access the external resources, shielding low-level details. Additionally,
the application environment may provide a coordination infrastructure on top of
the deployment context, which enables agents to coordinate their behavior. E.g.,
the application environment can offer a pheromone infrastructure to agents that
they can use to dynamically form paths to locations of interest.

Our focus is on the application environment, i.e. the part of the environment

4.2 Integrated Model for Situated Multiagent Systems 69

that has to be designed for an application. The model of the application envi-
ronment covers the different functionalities of the environment discussed in the
chapter 3. The decomposition is considerably determined by the way agents in-
teract with the environment. An agent can sense the environment with a set of
foci to obtain a representation of its vicinity, an agent can invoke an influence in
the environment attempting to modify the state of affairs in the environment, and
it can exchange messages with other agents. Whereas influences are concerned
with direct manipulation of the state of affairs in the environment, exchanging
messages are not. Communicative interaction occurs in a sequential manner and
concerns the coordination of actions among agents. Communicative interaction
enables agents to resolve conflicts, to request each other for services, to establish
a future cooperation, etc. Considering perception, action and communication as
distinct ways to access the environment is shared by many multiagent system re-
searchers, see e.g. [74, 144, 240]. We now explain the different modules of the
application environment.

State Maintenance has a central role in the application environment; this mod-
ule provides functionality to the other modules to access and update the state of
the application environment. The state of the application environment typically
includes an abstraction of the deployment context and possibly additional state.
Examples of state related to the deployment context are a representation of the
local topology of a network, and data derived from a set of sensors. Examples of
additional state are the representation of digital pheromones that are deployed on
top of a network, and virtual marks situated on a map of the physical environ-
ment. The environment state may also include agent-specific data, such as agents’
identities and positions, and tags used for coordination purposes. The state of
the application environment in the Packet-World includes a representation of the
grid, packets, destinations, charger stations, fields, etc. The identity of the agents
is public in the Packet-World and as such also represented in the state of the ap-
plication environment.

Representation Generator provides the functionality to agents for perceiving
the environment selectively. The main functions of the representation generator
are perception restriction, state collection, and representation generation. To sense
the environment, an agent invokes a perception request with a set of foci. Agents’
perception is subject to perception laws (p-laws). Perception restriction applies
the perception laws to the set of foci, restricting what the agent is able to per-
ceive. For example, for reasons of efficiency a designer can introduce limits on
agents’ perception in order to restrain the amount of information that has to be
processed. Perception laws can be defined relatively to the actual state of the ap-
plication environment, enabling the perception generator to adapt the restrictions
on perception according to changing circumstances. A simple example of a per-

70 A Reference Architecture for Situated Multiagent Systems

ception law in the Packet-World is the sensing-range that demarcates the scope
agents can perceive their neighborhood. State collection collects the observed state
from the application environment, possibly completed with state derived from the
observation of the deployment context. Representation generation converts the
observed state into a representation that is returned to the requesting agent. An
example of a representation in the Packet-World is a data structure that describes
the types and values of the digital pheromones in an agent’s vicinity.

Observation & Data Processing provides the required functionality to observe
the deployment context. The main functions of observation & data processing are
data retrieving and data processing. When agents request to sense resources in
the deployment context, the representation generator uses the observation & data
processing module to retrieve the requested data. Data obtained from the ob-
servation of resources in the deployment context is passed to the representation
generator that produces representations for the requesting agents. Rather than
delivering raw data retrieved from recourses in the deployment context, the obser-
vation module can provide additional functions to accommodate the sensors used
in real-world applications. Data processing can include sorting of data, sensor
calibration, data correction, data interpolation, etc.

Interaction deals with agents’ actions in the environment. To model actions,
we use the influence-reaction model introduced by Ferber [74]. This model distin-
guishes between influences, which are produced by the agents and which attempt
to modify the course of events in the environment, and reactions which are pro-
duced by the environment and which result in state changes of the environment.
The core functions of the interaction module are collector, operation restriction,
and reactor. The collector collects the influences invoked by the agents. Agents’
influences can be divided in two classes: influences that attempt to modify the
state of the application environment, and influences that attempt to modify the
state of the deployment context. An example of the former is an agent that drops
a digital pheromone in the environment. An example of the latter is an agent
that writes data in an external data base. Agents’ influences are subject to ac-
tion laws (a-laws). Action laws put restrictions on the influences invoked by the
agents. Operation restriction applies the set of action laws to the agents’ influ-
ences. Simple examples of action laws in the Packet-World are a law that imposes
the restriction that an agent can only pick a packet from a neighboring cell, and a
law that imposes the restriction that an agent can only move to a free cell on the
grid next to the agent. Reactor effectively applies the influences invoked by the
agents. For influences that are related to the application environment, the reactor
calculates the reaction of the influences resulting in an update of the state of the
application environment. Influences related to the deployment context are passed
to the Translation module that converts the high-level influences of agents into

4.2 Integrated Model for Situated Multiagent Systems 71

low-level actions in the deployment context.

Communication Service handles the exchange of messages in the agent sys-
tem. The main functions of the communication service are mailing and message
delivering. Mailing regulates the exchange of messages between agents according
to the current state of the application environment and a set of applicable laws.
Communication laws (c-laws) impose constraints on the exchange of messages.
An example in the Packet-World is a law that drops messages directed to agents
outside the communication-range of the sender. In addition, mailing can enforce
application—specific regulations on the message stream. For example, mailing can
give preferential treatment to high-priority messages. Mailing passes the mes-
sages to the translation module that converts the high-level message descriptions
(in an agent communication language—ACL) into low-level communication prim-
itives of the deployment context. Translation converts incoming messages from
the deployment context into high-level messages descriptions and passes them to
message delivering that delivers the messages to the appropriate agents.

Synchronization & Data Processing monitors application-specific parts of
the deployment context and keeps the corresponding representation in the state
of the application environment up-to-date. An example is the topology of a dy-
namic network which changes are reflected in a network abstraction maintained in
the state of the application environment. The synchronization module typically
pre—processes the raw data derived from the deployment context before it passes
the data to the state maintenance module, examples are sorting and integration
of observed data.

Dynamics maintains activities in the application environment that happen in-
dependently of the agents and the deployment context. A typical example is the
maintenance of a digital pheromone. In the Packet—World, the environment sup-
ports aggregation of digital pheromones (when an agent drops new pheromone
the strength of the local pheromone is increased accordingly, reinforcing interest-
ing information) and evaporation (the environment decreases the strength of the
pheromones over time, representing truth maintenance).

4.2.2 Model of the Agent

We now direct our attention to the functionalities of agents. The agent model
consists of four modules with flows between the modules [206, 228, 227]. Fig. 4.2
shows the model. The modules represent the core functionalities of a situated
agent.

The four modules provide the required agent functionalities for the mechanisms
of adaptivity we have discussed in chapter 3, including selective perception, action
selection with roles and situated commitments, and protocol-based communica-

72 A Reference Architecture for Situated Multiagent Systems

focus & filter selector

i current
knowledge
percept .
. Knowledge [¢ ¥ Decision
Perception : R
> Integration |¢ Making
A
current
knowledge

focus & filter selector

Communication

Agent

representation
set of foci . message influence
Environment

i —> _ _ _ _ Agent-Environment
KEY |:| Functional Module Data Flow e

Figure 4.2: Agent model

tion. We explain the four modules in turn.

Knowledge Integration provides the functionality to access and update the
agent’s current knowledge!. The Perception module receives perception requests
from the Decision Making and Communication modules to update the agent’s
knowledge about the environment. Decision making and communication use the
agent’s current knowledge to make appropriate decisions. Moreover, these mod-
ules employ the current knowledge as a means for coordination. For instance,
during the progress of a collaboration the communication module modifies the
agent’s current knowledge implied by the communicative interaction. When a
collaboration is established the communication module activates a situated com-
mitment that will affect the agent’s action selection in the decision making module.
This continues until the situated commitment is deactivated and the collaboration
ends. Two cases can be distinguished: the situated commitment can be deacti-
vated due to changes perceived in the environment, or the end of the commitment

IWe use current knowledge as a synonym for the agent’s actual state; see chapter 3, sec-
tion 3.4.1.

4.2 Integrated Model for Situated Multiagent Systems 73

can explicitly be communicated between the collaborating agents. Another exam-
ple of coordination between decision making and communication is an agent that
requests another agent for information that is necessary to complete a task. A
simple example is an agent in the Packet-World that has to deliver a packet which
destination is outside its perceptual scope. This agent can obtain the location of
the destination by requesting it from another agent. The communication module
writes the location in the agent’s current knowledge which in turn will be used by
the decision making module to move the agent efficiently towards the destination.

Perception provides the functionality to an agent for selective perception. Selec-
tive perception consists of three basic functions: sensing, interpreting and filtering.
Sensing enables the agent to sense the environment with a given set of foci. Foci al-
low the agent to sense the environment for specific types of information. Examples
of foci in the Packet-World are a focus to observe objects (packets, destinations,
etc.) and a focus to sense gradient fields. Sensing results in a representation. A
representation is a data structure that represents elements in the environment. An
example of a representation in the Packet-World is a data structure that describes
the sensed objects in an agent’s vicinity. Interpreting maps a representation to
a percept. The resulting percept describes the sensed environment in the form
of knowledge that can be understood by the decision making and communication
modules. For example, for a representation that contains a number of packets in
a certain area, interpretation may derive a percept with the particular locations
of the distinguished packets as well as the location of the group of packets as a
cluster. Filtering uses a given set of filters to select only those data items of a
percept that match the selection criteria specified by the filters. An example in
the Packet-World is a filter that selects the destinations for a particular color of
packets. The filtered percept is used by the knowledge integration module to up-
date the agent’s current knowledge. While a focus enables an agent to observe
the environment for a particular type of information, a filter enables the agent to
direct its attention within the sensed information.

Decision Making provides the functionality to an agent for selecting and invok-
ing influences in the environment. Decision making consists of two basic functions:
influence selection and execution. To select appropriate influences, a situated agent
uses a behavior-based action selection mechanism extended with roles and situated
commitments. Execution provides the functionality to invoke selected influences
in the environment.

Communication provides the functionality to an agent for exchanging messages
with other agents according to well-defined communication protocols. Commu-
nication consists of three basic functions: message decoding, communicating and
message encoding. Message decoding stores incoming messages in a buffer and

74 A Reference Architecture for Situated Multiagent Systems

decodes the buffered messages one by one. Message decoding extracts the infor-
mation from a message according to a well defined agent communication language
(ACL). A communication language defines the format of the messages, i.e. the sub-
sequent fields the message is composed of. We denote the information extracted
from a message as decoded message data. Decoded message data describes the
information of a message in a form that can be understood by the agent. The
communicating function provides a dual functionality: (1) it interprets decoded
message data derived from incoming messages and reacts appropriately; (2) it ini-
tiates and continues a conversation when the necessary conditions hold. To per-
form these tasks, communicating uses a repository of communication protocols,
the agent’s current knowledge, and an ontology. The ontology defines a shared
vocabulary of words that agents use to represent domain concepts and relation-
ships between the concepts. Message encoding enables the agent to encode newly
composed message data into messages and passes them to the message delivering
system of the environment. To deal with possible delays, this module also provides
a buffer.

This concludes the overview of the integrated model for situated multiagent sys-
tems. In the next section, we present the reference architecture for situated multi-
agent systems that maps the functionalities covered by the integrated model onto
a system decomposition consisting of software elements and relationships between
the elements.

4.3 Module Decomposition View

The module decomposition view shows how the situated multiagent system is
decomposed into manageable software units. The elements of the module decom-
position view are modules. A module is an implementation unit of software that
provides a coherent unit of functionality. The relationship between the modules
is is—part-of that defines a part/whole relationship between a submodule and the
aggregate module. Modules are recursively refined conveying more details in each
decomposition step.

The basic criteria for module decomposition is the achievement of quality at-
tributes. For example, changeable parts of a system are encapsulated in separate
modules, supporting modifiability. Another example is the separation of function-
ality of a system that has higher performance requirements from other functional-
ity. Such a decomposition allows to apply different tactics to achieve the required
performance throughout the various parts of the system. However, other criteria
can be drivers for a decomposition of modules as well. For example, in a reference
architecture, a distinction is made between common modules that are used in all
systems derived from the reference architecture, and variable modules that differ
across systems. This decomposition results in a clear organization of the architec-

4.3 Module Decomposition View 75

ture, supporting efficient design and implementation of systems with the reference
architecture.

Modules in the module decomposition view include a description of the in-
terfaces of the module that documents how the module is used in combination
with other modules. The interface description distinguishes between provided and
required interfaces. A provided interface specifies what functionality the module
offers to other modules. A required interface specifies what functionality the mod-
ule needs from other modules; it defines constrains of a module in terms of the
services a module requires to provide its functionality.

The reference architecture provides three view packets of the module decompo-
sition view. We start with the top-level decomposition of the situated multiagent
system. Next, we show the primary decomposition of an agent. We conclude with
the primary decomposition of the application environment.

4.3.1 Module Decomposition View Packet 1:
Situated Multiagent System

4.3.1.1 Primary Presentation

System Subsystem

Situated Multiagent System Agent

Application Environment

4.3.1.2 Elements and their Properties

A Situated Multiagent System is decomposed in two subsystems: Agent and Ap-
plication Environment. The subsystems cover the functionality of the modules
with the same name in the integrated model for situated multiagent systems, dis-
cussed in sections 4.2.1 and 4.2.2.

Agent is an autonomous problem solving entity in the system. An agent en-
capsulates its state and controls its behavior. The responsibility of an agent is
to achieve its design objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they can perceive and in
which they can act and interact with one another. Agents are able to adapt their
behavior according to the changing circumstances in the environment. A situated
agent is a cooperative entity. The overall application goals result from interaction
among agents, rather than from sophisticated capabilities of individual agents.

Application Environment is the medium that enables agents to share informa-
tion and to coordinate their behavior. The core responsibilities of the application
environment are:

76 A Reference Architecture for Situated Multiagent Systems

e To provide access to external entities and resources.

e To enable agents to perceive and manipulate their neighborhood, and to
interact with one another.

e To mediate the activities of agents. As a mediator, the environment not only
enables perception, action and interaction, it also constrains them.

The application environment is the part of the environment that has to be designed
for a concrete multiagent system application. External entities and resources with
which the multiagent system interacts are part of the deployment context. The
internal structure of the deployment context and its functioning are not considered
in the reference architecture.

4.3.1.3 Interface Descriptions

Fig. 4.3 gives an overview of the interfaces of the agent subsystem, the application
environment subsystem, and the deployment context.

,,,,,) Influence
Agent 4C, ——

Perceive Send Receive

I
I
I
I
gg |
I
I
I
i I
T Receive iﬁ Influence

Sense af
Application Environment

J\\Observe Transmit(L Deliver J\\ Act
| |

|

af

Perceive Send

%4444444
4O<“>7

v v
<fObserve Transmit Cf TDeliver

Deployment Context (External)

—O Provided Interface
KEY |:| Subsystem

-——> Dependency 4(Required Interface

Figure 4.3: Interfaces of agent, application environment, and deployment context

4.3 Module Decomposition View 7

The Sense interface enables an agent to sense the environment, Send enables an
agent to send messages to other agents, and Influence enables an agent to invoke
influences in the environment. These interfaces are provided by the application
environment.

The application environment requires the interface Perceive to pass on repre-
sentations (resulting from sensing the environment) to the agent, and the interface
Receive to deliver messages. Furthermore, the application environment requires
the interface Observe from the deployment context to observe particular resources
(based on perception requests of agents), Transmit to send messages, and Act to
modify the state of external resources (based on influences invoked by agents).

Finally, the deployment context requires the interface Deliver from the appli-
cation environment to deliver the incoming messages to the agents.

4.3.1.4 Variation Mechanisms

There are three variation mechanisms for this view packet:

M1 Definition of Agent Types. A concrete multiagent system application typi-
cally consists of agents of different agent types. Agents of the same agent
type have the same capabilities and are assigned the same kind of application
goals. Each agent type has specific architecture structures. Variations on
internal structures for different agent types are discussed in subsequent view
packets and views, see sections 4.3.2, 4.4.1, 4.5, and 4.6.

M2 Definition of the Domain Ontology. The ontology defines the terminology
for the application domain. Defining an ontology includes the specification
of the various domain concepts and the relationships between the concepts.
The domain ontology serves as a basis for the definition of the knowledge of
the agents and the state of the application environment, see the variation
mechanisms SD1 and SD2 of the component and connector shared data view
in section 4.4.

M3 Definition of the Interaction Primitives of the Deployment Context. To en-
able the multiagent system to interact with the deployment context, the
various interaction primitives with the deployment context have to be con-
cretized according to the application at hand. We distinguish between three
types of interaction primitives.

(1) Observation primitives enable to observe resources of the deployment
context. An observation primitive indicates which resource is observed
and what type of information should be observed.

(2) Action primitives enable to access resources of the deployment context.
An action primitive indicates the target resource and the type of action.

78 A Reference Architecture for Situated Multiagent Systems

(3) Communication primitives enable to transmit low-level formatted mes-
sages via the deployment context. A low-level formatted message is a
data structure that represents a message exchanged between a sender
and one or more addressees and that can be transmitted via the de-
ployment context.

4.3.1.5 Design Rationale

The main principles that underly the decomposition of a situated multiagent sys-
tem are:

e Decentralized control. In a situated multiagent system, control is divided
among the agents situated in the application environment. Decentralized
control is essential to cope with the inherent locality of activity, which is
a characteristic of the target applications of the reference architecture, see
section 4.1.2.

e Self-management. In a situated multiagent system self-management is essen-
tially based on the ability of agents to adapt their behavior. Self-management
enables a system to manage the dynamic and changing operating conditions
autonomously, which is an important requirement of the target applications
of the reference architecture, see section 4.1.2.

However, the decentralized architecture of a situated multiagent system implies a
number of tradeoffs and limitations.

e Decentralized control typically requires more communication. The perfor-
mance of the system may be affected by the communication links between
agents.

e There is a trade-off between the performance of the system and its flexibility
to handle disturbances. A system that is designed to cope with many distur-
bances generally needs redundancy, usually to the detriment of performance,
and vice versa.

e Agents’ decision making is based on local information only, which may lead
to suboptimal system behavior.

These tradeoffs and limitations should be kept in mind throughout the design and
development of a situated multiagent system. Special attention should be payed
to communication which could impose a major bottleneck.

Distribution. The reference architecture abstracts from the concrete deployment
of the multiagent system application, which is highly application dependent. For
a distributed application, the deployment context consists of multiple processors
deployed on different nodes that are connected through a network. Depending on

4.3 Module Decomposition View 79

the specific application requirements, distribution can take different forms. For
some applications, the same instance of the application environment subsystem is
deployed on each node. For other applications, specific instances are instantiated
on different nodes, e.g., when different types of agents are deployed on differ-
ent nodes. Some functionalities provided by the application environment may be
limited to the local context (e.g., observation of the deployment context may be
limited to resources of the local deployment context); other functionalities may be
integrated (e.g., neighboring nodes may share state). Integration of functionality
among nodes typically requires additional support. Such support may be pro-
vided (partially or complete) by appropriate middleware. Examples are support
for message transfer in a distributed setting (e.g. [38]), support for a distributed
pheromone infrastructure (e.g. [52]), and support for mobility (e.g. [116]). If the
required support is not available, it has to be developed and integrated with the
rest of the application logic.

Distribution is an important concern in many application domains. Introducing
distribution in the reference architecture would result in a more specific architec-
ture that is tailored toward such applications. The proposed reference architecture,
however, abstracts from distribution. As such, the reference architecture is also
valuable for non-distributed applications, such as simulations. In chapter 5, we
discuss an automated transportation system and show how distribution can be
integrated with the functionality provided by the reference architecture when de-
signing a concrete software architecture for a distributed application.

Other Concerns. We touch on a number of other concerns that are not covered
by the reference architecture.

Crosscutting Concerns. Concerns such as security, monitoring, and logging usu-
ally crosscut several architecture modules. Crosscutting concerns in multiagent
systems are hardly explored and are open research problems. An example of early
research in this direction is [79]. That work applies an aspect-oriented software
engineering approach, aiming to integrate crosscutting concerns in an application
in a non-invasive manner. As most current research on aspect-oriented software
development, the approach of [79] is mainly directed at the identification and
specification of aspects at the programming level. Recently, the relationship be-
tween aspects and software architecture became subject of active research, see
e.g. [24, 191, 64].

Human-Software Interaction. The reference architecture does not explicitly han-
dle human-software interaction. Depending on the application domain, the role of
humans in multiagent systems can be very diverse. In some applications humans
can play the role of agents and interact directly—or via an intermediate wrapper—
with the application environment. In other applications, humans can be part of
the deployment context with which the multiagent system application interacts.

80 A Reference Architecture for Situated Multiagent Systems

4.3.2 Module Decomposition View Packet 2:

Agent
4.3.2.1 Primary Presentation
Subsystem Module
Agent Perception

Decision Making

Communication

4.3.2.2 Elements of the View

The Agent subsystem is decomposed in three modules: Perception, Decision Mak-
ing and Communication. The modules cover the functionality of the modules with
the same name in the integrated model for situated agent discussed in section 4.2.2.

Perception is responsible for collecting runtime information from the environ-
ment (application environment and deployment context). The perception module
supports selective perception [224, 228]. Selective perception enables an agent to
direct its perception according to its current tasks. To direct its perception agents
select a set of foci and filters. Foci allow the agent to sense the environment only
for specific types of information. Sensing results in a representation of the sensed
environment. A representation is a data structure that represents elements or re-
sources in the environment. The perception module maps this representation to
a percept, i.e. a description of the sensed environment in a form of data elements
that can be used to update the agent’s current knowledge. The selected set of
filters further reduces the percept according to the criteria specified by the filters.

Decision Making is responsible for action selection. The action model of the
reference architecture is based on the influence-reaction model introduced in [76].
This action model distinguishes between influences that are produced by agents
and are attempts to modify the course of events in the environment, and reac-
tions, which result in state changes in the environment. The responsibility of the
decision making module is to select influences to realize the agent’s tasks, and to
invoke the influences in the environment [206].

To enable situated agents to set up collaborations, behavior-based action se-
lection mechanisms are extended with the notions of role and situated commit-
ment [225, 226, 185, 184, 227]. A role represents a coherent part of an agent’s
functionality in the context of an organization. A situated commitment is an en-

4.3 Module Decomposition View 81

gagement of an agent to give preference to the actions of a particular role in the
commitment. Agents typically commit relative to one another in a collaboration,
but an agent can also commit to itself, e.g. when a vital task must be completed.
Roles and commitments have a well-known name that is part of the domain on-
tology and that is shared among the agents in the system. Sharing these names
enable agents to set up collaborations via message exchange. We explain the co-
ordination among decision making and communication in the design rationale of
this view packet.

Communication is responsible for communicative interactions with other agents.
Message exchange enables agents to share information and to set up collaborations.
The communication module processes incoming messages, and produces outgoing
messages according to well-defined communication protocols [227]. A communica-
tion protocol specifies a set of possible sequences of messages. We use the notion of
a conversation to refer to an ongoing communicative interaction. A conversation
is initiated by the initial message of a communication protocol. At each stage in
the conversation there is a limited set of possible messages that can be exchanged.
Terminal states determine when the conversation comes to an end.

The information exchanged via a message is encoded according to a shared
communication language. The communication language defines the format of the
messages, i.e. the subsequent fields the message is composed of. A message includes
a field with a unique identifier of the ongoing conversation to which the message
belong, fields with the identity of the sender and the identities of the addressees
of the message, a field with the performative? of the message, and a field with the
content of the message. Communicative interactions among agents are based on
an ontology that defines a shared vocabulary of words that agents use in messages.
The ontology enables agents to refer unambiguously to concepts and relationships
between concepts in the domain when exchanging messages. The ontology used
for communication is typically a part of the integral ontology of the application
domain, see section 4.3.1.

4.3.2.3 Interface Descriptions

The interface descriptions specify how the modules of an agent are used with one
another, see Fig. 4.4. The interfacing with the data repositories is discussed in
section 4.4.1.

The provided Request interface of the perception module enables decision mak-
ing and communication to request a perception of the environment. To sense the
environment according to their current needs, decision making and communica-
tion pass on a focus and filter selector to the perception module. Such a selector
specifies a set of foci and filters that the perception module uses to sense the

2A performative is a word that incites an addressee to perform a particular action [25]. Ex-
amples of performatives are request, propose, and accept.

82 A Reference Architecture for Situated Multiagent Systems

Sense Sense
j Request Request Influence Influence
. Decision
Perception ——(O<——)7 Making —C—»[]—C
A
I
Perceive Perceive ‘
Request
Communication
Send Receive
i Agent
Send Receive
L] Port
E Subsystem -——> Dependency
KEY —0 Provided Interface

—» Delegates
|| Module 4(Required Interface g

Figure 4.4: Interfaces of the agent modules

environment selectively.

The provided interfaces of agent, Perceive and Receive, delegate for process-
ing to the provided Perceive interface of the perception module and the provided
Receive interface of the communication module respectively. The ports decouple
the internals of the agent subsystem from external elements.

The perception module’s required Sense interface is delegated to the agent’s
required Sense interface. Similarly, the Send interface of the communication mod-
ule and the Influence interface of the decision making module are delegated to
the required interfaces of agent with the same name.

4.3.2.4 Variation Mechanisms

This view packet provides the following variation mechanisms:

M4 Omission of the Communication module. For agents that do not communi-
cate via message exchange, the communication module can be omitted. An
example is an ant-like agent system in which the agents communicate via
the manipulation of marks in the environment.

4.3 Module Decomposition View 83

M5

M6

M7

M8

M9

M10

Definition of Foci and Focus Selectors. Foci enable agents to sense the envi-
ronment selectively. The definition of the foci in the agent system includes
the specification of the kind of data each focus targets, together with the
scoping properties of each focus. The definition of focus selectors includes
the specification of the various combinations of foci that can be used to sense
the environment.

Definition of Representations. Sensing the environment results in representa-
tions. Representations are defined by means of data structures that represent
elements and resources in the environment. The definition of representations
must comply to the ontology defined for the domain, see variation mechanism
M2 in section 4.3.1.4.

Definition of Filters and Filter Selectors. Filters can be used by agents
to filter perceived data. The definition of the filters in the agent system
includes the specification of the kind of data each filter aims to filter and the
specific properties of each filter. The definition of filter selectors includes the
specification of the various combinations of filters that can be used to filter
percepts.

Definition of Influences. Influences enable agents to modify the state of
affairs in the environment. The definition of an influence includes the speci-
fication of an operation that is provided by the application environment and
that can be invoked by the agents.

Definition of Roles and Situated Commitments. Each role in the agent sys-
tem is defined by a unique name and a description of the semantics of the
role in terms of the influences that can be selected in that role as well as
the relationship of the role to other roles in the agent system. Each situ-
ated commitment in the agent system is defined by a unique name and a
description of the semantics of the commitment in terms of roles defined in
the agent system. Further details of the specification of roles and situated
commitments are discussed in subsequent view packets.

Definition of the Communication Language and the Ontology. The commu-
nication language defines the format of messages. The definition of the com-
munication language includes the specification of identities for agents and
conversations, the specification of the various performatives of the language,
and the format of the content of messages. The definition of the ontology
for communication includes the specification of the vocabulary of words that
represent the domain concepts used in messages and the relationships be-
tween the concepts. The ontology for communication is typically a part of
the integral domain ontology, see variation mechanism M2 in section 4.3.1.4.

The definition of protocols is discussed in the collaborating component view, see
section 4.5.

84 A Reference Architecture for Situated Multiagent Systems

4.3.2.5 Design Rationale

Each module in the decomposition encapsulates a particular functionality of the
agent. By minimizing the overlap of functionality among modules, the architect
can focus on one particular aspect of the agent’s functionality. Allocating different
functionalities of an agent to separate modules results in a clear design. It helps
to accommodate change and to update one module without affecting the others,
and it supports reusability.

Perception on Command. Selective perception enables an agent to focus its at-
tention to the relevant aspects in the environment according to its current tasks.
When selecting actions and communicating messages with other agents, decision
making and communication typically request perceptions to update the agent’s
knowledge about the environment. By selecting an appropriate set of foci and
filters, the agent directs its attention to the current aspects of its interest, and
adapts it attention when the operating conditions change.

Coordination between Decision Making and Communication. The overall behavior
of the agent is the result of the coordination of two modules: decision making and
communication. Decision making is responsible for selecting suitable influences to
act in the environment. Communication is responsible for the communicative in-
teractions with other agents. However, the two modules do not act independently
of one another, on the contrary. Decision making and communication coordinate
to complete the agent’s tasks more efficiently. For example, agents can send each
other messages with requests for information that enable them to act more pur-
posefully. Decision making and communication also coordinate during the progress
of a collaboration. Collaborations are typically established via message exchange.
Once a collaboration is achieved, the communication module activates a situated
commitment. This commitment will affect the agent’s decision making towards ac-
tions in the agent’s role in the collaboration. This continues until the commitment
is deactivated and the collaboration ends.

Ensuring that both decision making and communication behave in a coordi-
nated way requires a careful design. On the other hand, the separation of func-
tionality for coordination (via communication) from the functionality to perform
actions to complete tasks has several advantages, as listed above (clear design,
improved modifiability and reusability). Two particular advantages of separating
communication from performing actions are: (1) it allows both functions to act
in parallel, and (2) it allows both functions to act at a different pace. In many
applications, sending messages and executing actions happen at different tempo.
A typical example is robotics, but it applies to any application in which the time
required for performing actions in the environment differs significantly from the
time to communicate messages. Separation of communication from performing
actions enables agents to reconsider the coordination of their behavior while they
perform actions, improving adaptability and efficiency.

4.3 Module Decomposition View 85

4.3.3 Module Decomposition View Packet 3:
Application Environment

4.3.3.1 Primary Presentation

Subsystem Module

Application Environment Representation Generator

Observation & Data Processing

Interaction

Communication Service

Translation

Synchronization & Data Processing

Dynamics

4.3.3.2 Elements and their Properties

The Application Environment subsystem is decomposed in seven modules. The
modules cover the functionality of the modules with the same name in the inte-
grated model for application environment, discussed in section 4.2.1. We discuss
the responsibilities of each of the modules in turn.

The Representation Generator provides the functionality to agents for perceiv-
ing the environment. When an agent senses the environment, the representation
generator uses the current state of the application environment and possibly state
collected from the deployment context to produce a representation for the agent.
Agents’ perception is subject to perception laws that provide a means to constrain
perception. A perception law defines restrictions on what an agent can sense from
the environment with a set of foci.

Observation & Data Processing provides the functionality to observe the de-
ployment context. The observation & data processing module translates observa-
tion requests into observation primitives that can be used to collect the requested
data from the deployment context. Data collected from resources in the deploy-
ment context is returned to the requester, i.e. the representation generator. Rather
than delivering raw data retrieved from the resources in the deployment context,
the observation & data processing module can provide additional functions to pre-
process data, examples are sorting and integration of sensor data.

86 A Reference Architecture for Situated Multiagent Systems

Interaction is responsible to deal with agents’ influences in the environment.
Agents’ influences can be divided in two classes: influences that attempt to mod-
ify state of the application environment and influences that attempt to modify
the state of resources of the deployment context. Agents influences are subject
to action laws that represent domain specific constraints on agents’ influences.
For influences that relate to the application environment, the interaction module
calculates the reaction of the influences resulting in an update of the state of the
application environment. Influences related to the deployment context are passed
to the translation module that converts the influences invoked by the agents into
low-level action primitives in the deployment context.

The Communication Service is responsible for collecting messages; it provides
the necessary infrastructure to buffer messages, and to deliver messages to the ap-
propriate agents. The communication service regulates the exchange of messages
between agents according a set of applicable communication laws. Communication
laws impose constraints on the message stream or enforce domain—specific rules
to the exchange of messages. To actually transmit the messages, the communi-
cation service makes use of a (distributed) message transfer system provided by
the deployment context. The communication service uses the translation module
to convert the high-level message descriptions into low-level communication prim-
itives of the deployment context.

Translation bridges the gap between influence and message descriptions used by
agents and the corresponding action and communication primitives of the deploy-
ment context. Influences and messages used by agents are typically described at
a higher-level of abstraction. For example, a FIPA ACL message [77] consists of
a header with the message performative (inform, request, propose, etc.), followed
by the subject of this performative, i.e. the content of the message that is de-
scribed in a content language that is based on a shared ontology. Such message
descriptions enable a designer to express the communicative interactions between
agents independently of the applied communication technology. However, to ac-
tually transmit such messages, they have to be translated into low-level primitives
of a communication infrastructure provided by the deployment context.

Translation provides a dual functionality: (1) it translates influences into low-
level action primitives with the deployment context; and (2) it translates ACL
messages into low-level formatted messages (that can be transmitted via the de-
ployment context) and vice versa.

Synchronization & Data Processing monitors domain-specific parts of the
deployment context and keeps the corresponding representation in the state of
the application environment up-to-date. The synchronization & data processing
module converts the resource data observed from the deployment context into a
format that can be used to update the state of the application environment. Such
conversion typically includes a processing or integration of collected resource data.

4.3 Module Decomposition View 87

Dynamics is responsible for maintaining processes in the application environment
that happen independent of agents and the deployment context. The dynamics
module directly accesses the state of the application environment and maintains
this state according to its application specific definition (see the shared data view
in section 4.4.2).

4.3.3.3 Interface Descriptions

The interface descriptions specify how the modules of the application environment
are used with one another, see Fig. 4.5. The interfacing with data repositories of
the application environment is discussed in section 4.4.2.

Perceive Receive Send Influence

!

Perceive Receive Send Influence

Sense

Application Environment

Sense

?
I

Perception
Generator

Communication
Service

rJ\Collect </£ Generate DeliverMsg é fJ\ Translate (J\Translate
[‘ ‘ N -

—~
~ —

| | ~ ~
DeliverMsg
Collect Generate Translate

Observation & Synchronization &
Data Processing Data Processing

(J\\ Observe Observe (L Transmit (L Deliver /L Act

Observe Transmit Deliver Act

Dynamics Interaction

Translation

[Port - -
Subsystem T ependency
KEY m Y —O Provided Interface
—» Delegat
l:l etz — Required Interface Rl

Figure 4.5: Interfaces of the application environment modules

The Sense interface of the application environment delegates perception re-
quests to the Sense interface of the perception generator. To observe resources

88 A Reference Architecture for Situated Multiagent Systems

in the deployment context, the perception generator’s required interface Collect
depends on the Collect interface that is provided by the observation & data pro-
cessing module. The required interface Observe of observation & data processing
is delegated to Observe interface of the application environment. The data that
results from the observation of resources in the deployment context is processed by
the observation & data processing module. The Generate interface of observation
& data processing uses the perception generator’s provided interface Generate to
generate a representation for the requesting agent based on the processed data.
The Perceive interface of the perception generator delegates the delivering of the
perception result (i.e. a representation of the sensed elements) to the Perceive
interface of the application environment that makes the representation available
to the agent.

The only interface required by the synchronization & data processing module
for its functioning (i.e. synchronize the state of the application environment with
particular resources in the deployment context) is Observe. The processing of this
interface is delegated to the Observe interface of the application environment.

The Send interface of the application environment enables agents to send mes-
sages to other agents. The application environment delegates this interface to the
Send interface of the communication service. To convert messages into a low-level
format for transmission via the deployment context, the communication service’s
required interface Translate depends on the interface Translate provided by
the translation module. The Transmit interface of the translation module dele-
gates the transmission of messages to the Transmit interface of the application
environment. The application environment provides the Deliver interface to de-
liver incoming messages. The Deliver interface of the application environment
delegates incoming messages to the Deliver interface of the translation module.
Translation converts the messages into an appropriate format for agents and uses
the DeliverMsg interface of the communication service to deliver the messages.
The Receive interface of the communication service delegates the delivering of
messages to the Receive interface of the application environment that passes on
the messages to the addressees.

The provided interface Influence of the application environment enables agents
to invoke influences in the environment. For influences that attempt to modify the
state of resources in the deployment context, the interaction module’s required in-
terface Translate depends on the interface Translate provided by the translation
module. This latter interface provides the functionality to convert influences into
low-level action primitives of the deployment context®. The Act interface of the
translation module delegates the actions to external resources to the Act interface
of the application environment that invokes the actions in the deployment context.

Notice that the dynamics module does not provide or require any function-

3 Actually, the application environment employs an internal representation of influences, we
explain the details in the collaborating components view in section 4.5.2.

4.3 Module Decomposition View 89

ality of the other modules of the application environment. The interfacing of
dynamics with the state repository of the application environment is discussed in
section 4.4.2.

4.3.3.4 Variation Mechanisms
This view packet provides the following variation mechanisms:

M11 Omission of Observation, Synchronization, and Translation. For applica-
tions that do not interact with external resources, the observation, synchro-
nization, and translation modules can be omitted. For such applications, the
environment is entirely virtual and as such only consists of the application
environment.

M12 Omission of Communication Service. For agent systems in which agents do
not communicate via message exchange, the communication module can be
omitted, see also variation mechanism M4 in section 4.3.2.

M13 Omission of Dynamics. For multiagent system applications with an appli-
cation environment that does not have to maintain dynamics independent
of agents, the dynamics module can be omitted.

M14 Definition of Observations. Observations enable the multiagent system to
collect data from resources in the deployment context. The definition of an
observation includes the specification of the kind of data to be observed in the
deployment context together with additional properties of the observation.

The definition of the laws for perception, interaction, and communication is dis-
cussed in the collaborating component view, see section 4.5.

4.3.3.5 Design Rationale

The decomposition of the application environment can be considered in two di-
mensions: horizontally, i.e. a decomposition based on the distinct ways agents
can access the environment; and vertically, i.e. a decomposition based on the dis-
tinction between the high-level interactions between agents and the application
environment, and the low-level interactions between the application environment
and the deployment context. The decomposition is schematically shown in Fig. 4.6.

The horizontal decomposition of the application environment consists of three
columns that basically correspond to the various ways agents can access the envi-
ronment: perception, communication, and action. An agent can sense the envi-
ronment to obtain a representation of its vicinity, it can exchange messages with
other agents, and an agent can invoke an influence in the environment attempting
to modify the state of affairs in the environment. Besides influences invoked by

90 A Reference Architecture for Situated Multiagent Systems

Perception Communication Action

N]
I

I
\ Interaction | Agent -
| Perception Communication | Application Environment
' Generator Service | Interaction
} Dynamics | SRE
N IS B ¥
‘- [

Observation & o .
Data Processing Application Environment -

\
I
i |
I
| Translation Translation } Deployment Context
| | Synchronization & | Interaction
|| Data Processing |
\

Figure 4.6: Decomposition application environment

agents, we also consider activities that happen independent of agents and that
modify the state of the application environment as part of the action column.

The vertical decomposition of the application environment consists of two rows.
The top row deals with the access of agents to the application environment and
includes representation generator, communication service, and interaction and dy-
namics. The specification of activities and concepts in the top row is the same
as those used by the agents. The top row defines the various laws that constrain
the activity of agents in the environment. The bottom row deals with the inter-
action of the application environment with the deployment context and consists
of observation and synchronization with data processing, and translation. The
functionality related to the low-level interactions of the application environment
includes: (1) support for the conversion of high-level activity related to agents into
low-level interactions related to the deployment context and vice versa, and (2)
support for pre-processing of resource data to transfer the data into a higher-level
representation useful to agents.

The two-dimensional decomposition of the application environment yields a
flexible modularization that can be tailored to a broad family of application do-
mains. For instance, for applications that do not interact with an external de-
ployment context, the bottom layer of the vertical decomposition can be omitted.
For applications in which agents interact via marks in the environment but do not
communicate via message exchange, the column in the horizontal decomposition
that corresponds to message transfer (communication and communication service)
can be omitted.

Each module of the application environment is located in a particular column

4.4 Component and Connector Shared Data View 91

and row and is assigned a particular functionality (the translation module spans
two cells, proving the functionality for the translation of influences and messages.).
Minimizing the overlap of functionality among modules, helps the architect to focus
on one particular aspect of the functionality of the application environment. It
supports reuse, and it further helps to accommodate change and to update one
module without affecting the others.

4.4 Component and Connector Shared Data View

The shared data view shows how the situated multiagent system is structured as a
set of data accessors that read and write data in various shared data repositories.
The elements of the shared data view are data accessors, repositories, and the con-
nectors between the two. Data accessors are runtime components that perform
calculations that require data from one or more data repositories. Data reposito-
ries mediate the interactions among data accessors. A shared data repository can
provide a trigger mechanism to signal data consumers of the arrival of interest-
ing data. Besides reading and writing data, a repository may provide additional
support, such as support for concurrency and persistency. The relationship of
the shared data view is attachment that determines which data accessors are con-
nected to which data repositories [60]. Data accessors are attached to connectors
that are attached to a data store.

The reference architecture provides two view packets of the shared data view.
First, we zoom in on the shared data view packet of agent, then we discuss the view
packet of the application environment. The data accessors in this view are runtime
instances of modules we have introduced in the module decomposition view. We
use the same names for the runtime components and the modules (components’
names are proceeded by a colon).

4.4.1 C & C Shared Data View Packet 1:
Agent

4.4.1.1 Primary Presentation

The primary presentation is shown in Fig. 4.7.

4.4.1.2 Elements and their Properties

The data accessors of the Agent view packet are Perception, Decision Making and
Communication. These data accessors are runtime instances of the correspond-
ing modules described in section 4.3.2. The data accessors share the Current
Knowledge repository. This repository provides the functionality of the Knowl-
edge Integration module of the agent model, discussed in section 4.2.2.

92 A Reference Architecture for Situated Multiagent Systems

:Communication :Decision Making
‘ ‘
Read-Write
O Update
:Current } :Perception
Knowledge

:Agent

@ Data Repository —() Provided Interface
Y
|:| Component)7 Required Interface

KE

Figure 4.7: Shared data view of an agent

The Current Knowledge repository contains data that is shared among the
data accessors. Data stored in the current knowledge repository refers to state
perceived in the environment, to state related to the agent’s roles and situated
commitments, and possibly other internal state that is shared among the data
accessors. The communication and decision making components can read and
write data from the repository. The perception component maintains the agent’s
knowledge of the surrounding environment. To update the agent’s knowledge of
the environment, both the communication and decision making components can
trigger the perception component to sense the environment, see the module view
of agent in section 4.3.2.

4.4.1.3 Interface Descriptions

Fig. 4.7 shows the interconnections between the current knowledge repository and
the internal components of the agent. These interconnections are called assembly
connectors [13]. An assembly connector ties one component’s provided interface
with one or more components’ required interfaces, and is drawn as a lollipop and
socket symbols next to each other. Unless stated otherwise, we assume that the
provided and required interfaces per assembly connector share the same name.
The current knowledge repository exposes two interfaces. The provided inter-
face Update enables the perception component to update the agents knowledge ac-
cording to the information derived from sensing the environment. The Read-Write

4.4 Component and Connector Shared Data View 93

interface enables the communication and decision making component to access and
modify the agent’s current knowledge.

4.4.1.4 Variation Mechanisms

This view packet provides one variation mechanism:

SD1 Definition of Current Knowledge. Definition of current knowledge includes
the definition of the state of the agent and the specification of the knowl-
edge repository. The definition of the state of the agent has to comply to
the ontology that is defined for the multiagent system application, see vari-
ation mechanism M2 in section 4.3.1.4. The specification of the knowledge
repository includes various aspects such as the specification of a policy for
concurrency, specification of possible event mechanisms to signal data con-
sumers, support for persistency of data, and support for transactions. The
concrete interpretation of these aspects depends on the specific requirements
of the application at hand.

4.4.1.5 Design Rationale

The shared data style decouples the various components of an agent. Low cou-
pling improves modifiability (changes in one element do not affect other elements
or the changes have only a local effect) and reuse (elements are not dependent
on too many other elements). Low coupled elements usually have clear and sepa-
rate responsibilities, which makes the elements better to understand in isolation.
Decoupled elements do not require detailed knowledge about the internal struc-
tures and operations of the other elements. Due to the concurrent access of the
repository, the shared data style requires special efforts to synchronize data access.

Both communication and decision making delegate perception requests to the
perception component. The perception component updates the agent knowledge
with the information derived from perceiving the environment. The current knowl-
edge repository makes the up-to-date information available for the communication
and decision making component. By sharing the knowledge, both components can
use the most actual data to make decisions.

The current knowledge repository enables the communication and decision
making components to share data and to communicate indirectly. This approach
allows both components to act in parallel and at a different pace, improving effi-
ciency and adaptability (see also the design rationale of the module decomposition
view of agent in section 4.3.2.5).

An alternative for the shared data style is a design where each component
encapsulates its own state and provides interfaces through which other elements get
access to particular information. However, since a lot of state is shared between the
components of an agent (examples are the state that is derived from perceiving the

94 A Reference Architecture for Situated Multiagent Systems

environment and the state of situated commitments), such a design would increase
dependencies among the components or imply the duplication of state in different
components. Furthermore, such duplicated state must be kept synchronized among
the components.

4.4.2 C & C Shared Data View Packet 2:
Application Environment

4.4.2.1 Primary Presentation

The primary presentation is depicted in Fig. 4.8.

4.4.2.2 Elements and their Properties

The Application Environment consists of various data accessors that are attached
to two repositories: State and Laws. The data accessors are runtime instances
of the corresponding modules introduced in section 4.3.3. The State repository
provides the functionality of the State Maintenance module of the environment
model, discussed in section 4.2.1. The Laws repository encapsulates the various
laws (perception laws, communication laws, and action laws) of the environment
model.

The State repository contains data that is shared between the components of the
application environment. Data stored in the state repository typically includes an
abstraction of the deployment context together with additional state related to the
application environment. Examples of state related to the deployment context are
a representation of the local topology of a network, and data derived from a set of
sensors. Examples of additional state are the representation of digital pheromones
that are deployed on top of a network, and virtual marks situated on the map
of the physical environment. The state repository may also include agent-specific
data, such as the agents’ identities, the positions of the agents, and tags used for
coordination purposes.

To perform their functionalities, interaction, dynamics, synchronization & data
processing, and observation & data processing can read and write state of the ap-
plication environment. The representation generator, the communication service,
and the translation components only need to read state of the state repository to
perform their functionalities.

The Laws repository contains the various laws that are defined for the applica-
tion at hand. The laws repository is divided in three sub-repositories, one with
the perception laws, one with the action laws, and one with communication laws.
Each of these sub-repositories is attached to the component responsible for the
corresponding functionality.

4.4 Component and Connector Shared Data View 95

:Application

. Read-AL
Environment

Read-CL

:Interaction ‘Representation :Communication
Generator Service
Read-Write
S
[
:Dynamics —{(O—— State L) Read
~
:Synchronization :Oberservation . .
& Data Processing & Data Processing ‘Translation

@ Data Repository —O Provided Interface]—((} >C%

|:| Component — Required Interface Equivalent configurations

KEY

Figure 4.8: Shared data view of the application environment

4.4.2.3 Interface Descriptions

Fig. 4.8 shows the interconnections between the state repositories and the internal
components of the application environment.

The state repository exposes two interfaces. The provided interface Read en-
ables attached components to read state of the repository. The Read-Write in-
terface enables the attached components to access and modify the application
environment’s state.

The laws repository exposes three interfaces to read the various types of laws:

96 A Reference Architecture for Situated Multiagent Systems

Read-AL, Read-PL, and Read-CL. These provided interfaces enable the attached
components to consult the respective types of laws.

4.4.2.4 Variation Mechanisms
This view packet provides one variation mechanism:

SD2 Definition of State. The definition of state includes the definition of the
actual state of the application environment and the specification of the state
repository. The state definition has to comply to the ontology that is defined
for the application domain, see variation mechanism M2 in section 4.3.1.4.
The specification of the state repository includes various aspects such as
the specification of a policy for concurrency, specification of possible event
mechanisms to signal data consumers, support for persistency of data, and
support for transactions. As for the definition of the current knowledge
repository of an agent, the concrete interpretation of these aspects depends
on the specific requirements of the application domain at hand.

The variation mechanisms for the various laws of the application environment is
discussed in the collaboration components view, see section 4.5.

4.4.2.5 Design Rationale

The motivations for applying the shared data style in the design of the application
environment are similar as for the design of an agent. The shared data style results
in low coupling between the various elements, improving modifiability and reuse.

The state repository enables the various components of the application envi-
ronment to share state and to communicate indirectly. This avoids duplication of
data and allows different components to act in parallel.

The laws repository encapsulates the various laws as first—class elements in the
agent system. This approach avoids that laws are scattered over different compo-
nents of the system. On the other hand, explicitly modelling laws may induce a
important computational overhead. If performance is a high-ranked quality, laws
may be hard coded in the various applicable modules.

4.5 Component & Connector Collaborating Com-
ponents View

The collaborating components view shows the multiagent system as a set of inter-
acting runtime components that use a set of shared data repositories to realize the
required system functionalities. We have introduced the collaborating components
view to explain how collaborating components realize various functionalities in the
multiagent system. The elements of the collaborating components view are:

4.5 Component & Connector Collaborating Components View 97

o Runtime components. Runtime components achieve a part of the system
functionality. Runtime components are instances of modules described in
the module decomposition view.

e Data repositories. Data repositories enable multiple runtime components
to share data. Data repositories correspond to the shared data repositories
described in the component and connector shared data view.

o Component—repository connectors. Component—repository connectors con-
nect runtime components which data repositories. These connectors de-
termine which runtime components are able to read and write data in the
various data repositories of the system.

o (Component—component connectors. Collaborating components require func-
tionality from one another and provide functionality to one another. Com-
ponent—component connectors enable runtime components to request each
other to perform a particular functionality.

The collaborating components view is an excellent vehicle to learn the runtime
behavior of a situated multiagent system. The view shows the data flows between
runtime components and the interaction with data stores, and it specifies the
functionalities of the various components in terms of incoming and outgoing data
flows. Each view packet in this view zooms in on one coherent part of system
functionality. A view packet shows how a number of components collaborate to
realize that particular functionality in the system.

The reference architecture provides three view packets of the collaborating
components view. We start with the view packet that describes the collaborating
components of perception, i.e. the perception component and the representation
generator. Next, we discuss the view packet that describes the collaborating com-
ponents of interaction, i.e. decision making and interaction. Finally, we discuss
the view packet of communication that describes the collaboration between the
communication component and communication service.

4.5.1 C&C Collaborating Components View Packet 1:
Perception and Representation Generator

4.5.1.1 Primary Presentation

The primary presentation is shown in Fig. 4.9.

4.5.1.2 Elements and their Properties

This view packet shows how a number of collaborating components realize the
functionality for perception. The elements in this view packet are the components
of perception and representation generator and local repositories. To explain the

98 A Reference Architecture for Situated Multiagent Systems

focus
selector
— filter
:Perception selector
Read
— :Filter
m Selection
O Read
ea selected filters Update
v I (Current
Knowledge
percept 9e)
:Sensing :Interpreting » Filtering ’C{]—Cof
A
selected foci (gRead (State) representation
0
N . .
AT :Representation
\
,/ } \\} :Representation Generator
v \f } Generation
I
:Perception } 1
Restriction | observed state
| appl. env.
I
I
I
:State Collection
| perception scope
p4
by
Read-PL (Laws) v observation O Seedistate
depl. context
@ U Port —» Delegates
Repositol
KEY v —CO Privided Interface —» Data Flow
|:| Runtime Component) Required Interface _ __ Agent-Environment
Interface

Figure 4.9: Collaborating components of perception and representation generator

collaboration between the various components, we follow the logical thread of
successive activities that take place from the moment an agent takes the initiative
to sense the environment until the percept is available to update the agent’s current
knowledge.

Sensing takes a focus selector and the set of foci of the agent, and selects
the corresponding foci to produce a perception request. PerceptionRestriction

4.5 Component & Connector Collaborating Components View 99

takes the set of foci of a perception request, the current state of the application
environment, and generates according to the set of perception laws, a perception
scope. A perception scope delineates the scope of perception for the perception
request according to the constraints imposed by the perception laws. For example,
for request (i, sense-objects()) which is a perception request of an agent in
the Packet—World with identity i that senses the visible objects in its vicinity, a
possible perception scope is visibleObjects(agent(i),position(3,6),5). In
this particular example, the number 5 refers to the default sensing range for visible
perception of five cells.

StateCollection collects the observable state for the perception scope, given
the current state of the environment. In particular, state collection selects the
subset of state elements of the application environment for the given percep-
tion scope (observed state appl. env.), and produces—if applicable—an obser-
vation to collect data from the deployment context within the scope of perception.
RepresentationGeneration takes the observed state of the application environ-
ment together with the state observed from the deployment context (observed
state depl. context) and produces a representation.

Interpreting uses the agent’s set of descriptions to interpret the given rep-
resentation. Interpreting results in a percept for the agent. FilterSelection
selects a subset of filters from the agent’s set of filters according to the given fil-
ter selector. Filtering filters the percept of the agent according to the set of
selected filters. Finally, the filtered percept is used to update the agent’s current
knowledge.

4.5.1.3 Variation Mechanisms

This view packet provides two variation mechanisms:

CC1 Definition of Descriptions. Descriptions enable an agent to interpret repre-
sentations derived from the observation of the environment. A description
can be defined as a template that specifies a particular pattern of a repre-
sentation. Interpreting a representation than comes down to searching for
matches between the description template and the examined representation.
Each match yields data of a percept that is used to update the agent’s state,
possibly after some preceding filtering.

CC2 Definition of Perception Laws. Perception laws impose application specific
constraints on agents’ perception of the environment. Every perception law
defines restrictions on what can be sensed from the current state of the
environment for a particular focus. The constraints imposed by a perception
law can be defined relative to the actual state of the environment. For
example, restrictions on the observation of local nodes in a network can be
defined as a function of the actual traffic on the network.

100 A Reference Architecture for Situated Multiagent Systems

4.5.1.4 Design Rationale

The integrated set of components of perception and representation generator pro-
vide the functionality for selective perception in the situated multiagent system.
The overall functionality results from the collaboration of the various components.
In this collaboration, each component provides a clear-cut functionality, while the
coupling between the component is kept low. Concepts such as foci, descriptions,
filters, and laws are first-class in the reference architecture. This helps to improve
modifiability an reusability.

Selective perception allows an agent to adapt its perception according to its
current tasks. The reference architecture supports adaptation of perception laws
according the changing circumstances in the environment. Both these properties
contribute to the flexibility of the system.

4.5.2 C&C Collaborating Components View Packet 2:
Decision Making and Interaction

4.5.2.1 Primary Presentation

The primary presentation is shown in Fig. 4.10.

4.5.2.2 Elements and their Properties

This view packet shows the collaborating components that realize the functionality
for action. The elements in this view packet are the components of decision making
and interaction and two local repositories. For the discussion of the collaborating
components, we follow the successive activities that take place from the moment
an agent initiates decision making until the effects of the selected influence are
completed.

D-KnowledgeUpdate enables the agent to update its current knowledge of the
environment. D-KnowledgeUpdate takes the agent current knowledge and the set
of current stimuli and produces a focus and filter selector. We distinguish between
two types of stimuli: external and internal stimuli. An external stimulus refers to
a factor in the environment that drives the agent’s decision making (an example
is a gradient field that guides an agent towards a particular location). An internal
stimulus is an internal factor that affects an agent’s decision making (an example
is the agent’s available energy to act in the environment). The focus and filter
selector is passed to the perception module that senses the environment to produce
a new percept and update the agent’s knowledge.

ActionSelection takes the current stimuli and the knowledge of the agent to
select an operator and update the set of current stimuli. An operator is an internal
representation used by the agent to represent the selected action. Decision making
converts the operator into an influence that is invoked in the environment, see the
discussion of Fzecution below.

4.5 Component & Connector Collaborating Components View

101

focus & filter :Decision Making
selector «
:D-Knowledge
Update Read-Write
’ p j\
/
Read-Write / O m
(Current)/
Knowledge) /
4O>—Dé — ——)—{ :Action Selection operator
\ 3
N
N
N .
N :Execution
influence
A
Select (> Add
’—(Or— :Collector
Read-Write
:Operation g (St;ote)
Restriction 4< 7777777777777777777 ;[
e
-
-
\— -
‘Reactor —(~
operation
|
| .
:Interaction
h
operation in
v

@ Repository

KEY

? Read-AL (Laws)

U Port

depl. context

—» Delegates

—O Privided Interface —» Data Flow

|:| Runtime Component) Required Interface — —- Agent-Environment
Interface

Figure 4.10: Collaborating components of decision making and interaction

To select suitable operators, the action selection component encapsulates a
behavior-based action selection mechanism. In general, a behavior—based action
selection mechanism consists of a set of behavior modules. Each behavior module
is a relatively simple computation module that tightly couples sensing to action.
An arbitration or mediation scheme controls which behavior-producing module has
control and selects the next action of the agent. To enable situated agents to set
up collaborations, behavior-based action selection mechanisms are extended with
the notions of role and situated commitment. Behavior modules that represent
a coherent part of an agent’s functionality in the context of an organization are
denoted as a role. A role is defined as a 5-tuple:

102 A Reference Architecture for Situated Multiagent Systems

R : (name, stimuli, operators, select)

Roles have a well-known name that is shared among agents in the system. The

function select maps the set of stimuli to a set of {operator, pref-factor) tuples,

one for each operator of the set of operators that can be selected by the role.

A pref-factor determines the relative preference for selecting the accompanying

operator. The (operator, pref~factor) tuples are used by the arbitration schema

to determine which role has control and which operator is selected for execution.
A situated commitment is defined as a 7-tuple:

C : (name,rel-set, context, act—con, deact—con, status, rolemap)

As for roles, situated commitments have a well-known name. Explicitly naming
roles and commitments enables agents to set up collaborations, reflected in mu-
tual commitments. The relations set rel—set contains the identity of the related
agent(s) in the situated commitment. The context describes contextual properties
of the situated commitment such as descriptions of objects in the local environ-
ment. act—con and deact—con are the activation and deactivation conditions that
determine the status of the situated commitment. When the activation condition
becomes true, the situated commitment is activated. The behavior of the agent
will than be biased according to the specification of the rolemap. The rolemap
specifies the relative weight of the preference factors of the operators of different
roles. In its simplest form, the rolemap narrows the agent’s action selection to
operators in one particular role. An advanced example is a rolemap that biases
the operator selection towards the operators of one role relative to the preference
factors of operators of a number of other roles of the agent. As soon as the deac-
tivation condition becomes true, the situated commitment is deactivated and will
no longer affect the behavior of the agent.

Execution takes the selected operator and the current knowledge of the agent
and produces an influence that is invoked in the environment. Execution decou-
ples the agent’s internal representation of activity in the environment from the
influences that are available to the agent to access and modify the state of the
environment.

The Collector collects influences invoked by the agents, and adds the influ-
ences to the set of pending influences in the agent system. OperationRestriction
selects an influence from the set of pending influences and converts the influence
into an operation. An operation is a representation of the selected influence inter-
nal to the application environment. For example, for influence (i, step(North))
which is an influence produced by an agent in the Packet—World with identity i
that attempts to make a step on the grid in the direction North, a possible op-
eration is move (agent (i) ,position(3,6),destination(2,6)). The selection of
influences is based on an influence selection policy that specifies the ordering of
influences, taking into account the current state of the environment. OperationRe-
striction applies the set of action laws to the selected operation, given the current

4.5 Component & Connector Collaborating Components View 103

state of the environment. The action laws impose restrictions on the kind of
manipulations agents can perform in the environment.

The Reactor applies the operation to the current state of the application envi-
ronment and produces an operation to act in the deployment context if applicable.
The execution of the operation modifies the state of the application environment
and produces an operation in the deployment context that is passed to the trans-
lation module.

4.5.2.3 Variation Mechanisms

There are three variation mechanisms for this view packet:

CC3 Specification of the Action Selection Mechanism. Situated agents use a
behavior-based action selection mechanism. For the chosen action selec-
tion mechanism the operators and the various stimuli have to be specified.
Furthermore, the definition of the agent’s roles and situated commitments
have to be completed, see also variation mechanisms M9 in section 4.3.2.4.
For each role, the select function has to be defined (see the definition of a
role above). For each situated commitment, the relation set, the activation
and deactivation conditions, and the rolemap have to be defined (see the
definition of situated commitment above). Finally, the roles and situated
commitments have to be integrated with the arbitration mechanism of the
selected behavior-based action selection mechanism. An example specifica-
tion of a behavior-based action selection mechanism that integrates roles
and situated commitments in a free-flow tree is discussed in chapter 3, see
section 3.4.3.2.

CC4 Definition of the Influence Selection Policy. An influence selection policy
imposes an application specific ordering on the execution of pending influ-
ences. Simple policies are first-in-first-out and random selection. Advanced
forms of influence ordering can be defined based on a combination of crite-
ria, such as the types of influences, the types of agents that have invoked the
influences, and even the identities/priorities of the invoking agents.

CC5 Definition of Operations. The application environment uses operations as
internal representations for the influences invoked by the agents. Opera-
tions can represent influences that target the manipulation of the state of
the application environment, or influences that target the manipulation of
elements in the deployment context. The concrete definition of operations is
closely related to the definition of the state of the application environment,
see variation mechanism SD2 in section 4.4.2.4.

CC6 Definition of Action Laws. Action laws impose application specific con-
straints on agents’ influences in the environment. An action law defines

104 A Reference Architecture for Situated Multiagent Systems

restrictions on what kinds of manipulations agents can perform in the envi-
ronment for a particular influence. The constraints imposed by an action law
can be defined relative to the actual state of the environment. For example,
when an agent injects a tuple in network, the distribution of the tuple can
be restricted based on the actual cost for the tuple to propagate along the
various links of the network.

4.5.2.4 Design Rationale

The collaborating components of decision making and interaction provide the func-
tionality for action execution in the agent system. In this collaboration, each
component provides a clear-cut functionality, while the coupling between the com-
ponents is kept low. This helps to improve modifiability and reusability.

Behavior—based action selection enables agents to behave according to the situ-
ation in the environment, and change their behavior with changing circumstances.
The notions of a role and situated commitment enable agents to set up collabora-
tions. The duration of a situated commitment can be regulated based on conditions
in the local context in which the collaborating agents are placed. This approach
fits the general principle of situatedness and improves flexibility and openness. An
agent adapts its behavior when the conditions in the environment change or when
agents enter or leave its scope of interaction.

Action laws and the influence selection policy provide a means to regulate the
actions of the agents in the system. Both action laws and the influence selec-
tion policy can be defined in terms of the actual conditions in the environment,
contributing to the flexibility of the system.

4.5.3 C&C Collaborating Components View Packet 3:
Communication and Communication Service

4.5.3.1 Primary Presentation

The primary presentation is shown in Fig. 4.11.

4.5.3.2 Elements and their Properties

This view packet shows how a number of collaborating components realize the func-
tionality for communication. The elements in this view packet are the components
of communication and communication service, and local repositories. Similarly as
in the previous view packets of the collaboration components view, we discuss the
collaboration between the components by following the successive activities that
take place from the moment an agent takes the initiative to send a message until
the addressees have received the message and can react to it.

We start with Communicating that handles the agent’s communicative interac-
tions. The communicating component processes incoming messages, and produces

4.5 Component & Connector Collaborating Components View

105

(5 Read focus & filter
i (Current Knowledge) selector
[—
| Tt —a
| [S— |
Conversations \‘/
Read-Write C-Knowledge
’—CH Update
Communication
Language | o Communication
decoded Communicating encoded Language
message data J\ message data i
Message O Read Message
Decoding " Encoding
?
Add-Remove Add-Remove
Message Communication Message
Receiving Sending
A
message
message
- Communication
ge Service Message
Delivering KL Buffering Out
|
|
- } S
w | Buffer Out
|
Add-Remove } Add-Remove
|
Message ‘ -
b =)—— Mailing
Buffering In | i
Y ! s |
-
#A .
[
72 &)
v Read-CL
message Read (State) message (Laws)
@ R " O Port —» Delegates
epository .
KEY —CO Privided Interface —» Data Flow
|:| Runtime Component D Required Interface ——- Agent-Environment
Interface

Figure 4.11: Collaborating components of communication and communication ser-

vice

outgoing messages according to well-defined communication protocols. Commu-
nicative interactions can modify the agent’s state possibly affecting the agent’s

106 A Reference Architecture for Situated Multiagent Systems

selection of influences; a typical example is the activation and deactivation of situ-
ated commitments. A communication protocol consists of a series of protocol steps.
A protocol step is a tuple (condition, effect). Condition is a boolean expression
that determines whether the step is applicable. Expressions can take into account
the agent’s current knowledge, the actual set of conversations that contains the
agent’s history of ongoing interactions, the set of available protocols, and possibly
the decoded message data of a received message. We distinguish between three
types of protocol steps: conversation initiation, conversation continuation, and
conversation termination. A conversation initiation step starts a new conversation
according to a particular protocol. An agent initiates a conversation based on its
current knowledge, possibly taking into account the decoded message data of a
message received from another agent that started the interaction. A conversation
continuation performs a step in an ongoing conversation. A conversation continu-
ation may deal with a received message without directly responding to it, it may
immediately react with a reply message, or it may pick up a conversation after
a break. Finally, a conversation termination concludes an ongoing conversation.
The termination of a conversation can be induced by changing circumstances in
the environment or it can directly result from a preceding step of the conversation.

C-KnowledgeUpdate enables the agent to update its current knowledge ac-
cording to its ongoing conversations. The knowledge update component takes the
agent current knowledge and the set of conversations and produces a focus and
filter selector that is passed to the perception module that senses the environment
to produce a new percept and update the agent’s knowledge.

MessageEncoding encodes newly composed message data into messages and
puts the messages in the outbox buffer of the agent. Message encoding is based
on the communication language that is shared among the agents in the system.
MessageSending selects a message from the set of pending messages in the outbox
buffer and passes it to the communication service.

MessageBufferingQOut collects messages sent by agents and puts them in the
output buffer of the communication service. Mailing selects a message from the
output buffer given a message selection policy, and applies the set of communi-
cation laws to the selected message taking into account the current state of the
environment. To determine the order in which messages are sent, the selection
policy takes into account the current state of the environment. Mailing passes the
messages to the translation component that handles the conversion of the messages
for transmission.

MessageBufferingIn collects incoming messages and puts them in the input
buffer of the environment. MessageDelivering delivers the messages of the input
buffer to the appropriate agents.

MessageReceiving accepts messages and puts them in the agent’s inbox. Fi-

nally, MessageDecoding selects a message from the agent’s inbox and decodes the
message according to the given communication language. The decoded message

4.5 Component & Connector Collaborating Components View 107

data of the selected message is passed to the communicating component that will
process it.

4.5.3.3 Variation Mechanisms

There are three variation mechanisms in this view packet.

cCr

CC8

CCY

Definition of Communication Protocols. The definition of a concrete commu-
nication protocol includes the specification of (1) the conditions for the agent
to initiate the protocol, (2) the conditions to continue the interaction in the
various stages of the protocol, (3) the conditions to terminate the interac-
tion. For each situation, the protocol has to define the concrete actions that
have to be executed. Actions include the processing of received messages,
the composition of new messages, and the update of the current knowledge.
An important aspect of this latter is the activation/deactivation of situated
commitments. State charts [87, 13] are one possible approach to specify a
communication protocol; an interesting example is discussed in [67].

Definition of the Message Selection Policy. A message selection policy im-
poses an application specific ordering on the transmission of pending mes-
sages from the output buffer of the application environment. A simple policy
is first-in-first-out. Advanced forms of ordering can be defined based on a
combination of criteria, such as ordering based on the type of messages and
the type of agents that have sent the messages. In addition, the policy can
take into account runtime information such as the current load of the network
to select messages.

In principle, a selection policy has to be defined for the input buffer of the
communication service as well. However, since the message stream between
agents is already regulated by the message selection policy of the output
buffer, a simple static selection policy such as first-in-first-out can be used
for selecting messages from the input buffer. Usually, a simple policy is used
for the selection of messages from the agent’s inbox and outbox buffers as
well. Although this might cause suboptimal behavior in particular situations,
in general it avoids complex and time-consuming analysis of the collections
of buffered messages.

Definition of Communication Laws. Communication laws impose applica-
tion specific constraints on agents’ communicative interactions in the en-
vironment. A communication law defines restrictions on the delivering of
messages. The constraints imposed by a communication law can be defined
relative to the actual state of the environment. For example, the delivering
of a broadcast message in a network can be restricted to addressees that are
located within a particular physical area around the sender.

108 A Reference Architecture for Situated Multiagent Systems

4.5.3.4 Design Rationale

The collaborating components of communication and communication service pro-
vide the functionality for message exchange in the agent system. Direct commu-
nication allows situated agents to exchange information and set up collaborations.
Coordination through message exchange is complementary to mediated coordi-
nation via marks in the environment (e.g. pheromone-based coordination). The
various components in the collaboration are assigned clear-cut responsibilities and
coupling amongst components is kept low.

Communication defined in terms of protocols puts the focus of communication
on the relationship between messages. In each step of a communicative interac-
tion, conditions determine the agent’s behavior in the conversation. Conditions
not only depend on the status of the ongoing conversations and the content of
received messages, but also on the actual conditions in the environment reflected
in the agent’s current knowledge and in particular on the status of the agent’s
commitments. This contributes to the flexibility of the agent’s behavior.

The communication service only provides basic functionality for message ex-
change. Direct communication in a situated multiagent system should comply to
the principle of locality, i.e. communication should serve as a means for agents to
exchange information and set up collaborations with agents in their (logical) neigh-
borhood. If necessary, the communication service can be provided with additional
services, such as a yellow—page service to enable agents to find particular service
providers. But, since such services are uncommon for situated agent systems, they
are not included in the reference architecture.

The message selection policy and communication laws provide mechanisms to
regulate the message stream in the agent system. Both policies and laws are
imposed according the changing conditions in the environment, contributing to
the flexibility of the system.

4.6 Component and Connector Communicating
Processes View

The communicating processes view shows the multiagent system as a set of concur-
rently executing units and their interactions. The elements of the communicating
processes view are concurrent units, repositories, and connectors. Concurrent units
are an abstraction for more concrete software elements such as task, process, and
thread. Connectors enable data exchange between concurrent units and control
of concurrent units such as start, stop, synchronization, etc. The relationship in
this view is attachment that indicates which connectors are connected to which
concurrent units and repositories [60].

The communicating processes view explains which portions of the system op-
erate in parallel and is therefore an important artefact to understand how the

4.6 Component and Connector Communicating Processes View 109

system works and to analyze the performance of the system. Furthermore, the
view is important to decide which components should be assigned to which pro-
cesses. Actually, we present the communicating processes view as a number of
core components and overlay them with a set of concurrently executing units and
their interactions.

The reference architecture provides one view packet of the component and con-
nector communicating view. This view packet shows the main processes involved
in perception, interaction, and communication in the situated multiagent system.

4.6.1 C & C Communicating Processes View Packet 1:
Perception, Interaction, and Communication

4.6.1.1 Primary Presentation

The primary presentation is shown in Fig. 4.12.

4.6.1.2 Elements and their Properties

This view packet shows the main processes and repositories of agent and the
application environment. We make a distinction between active processes that
run autonomously, and reactive processes that are triggered by other processes to
perform a particular task.

The discussion of the elements in this view packet is divided in four parts. Suc-
cessively, we zoom in on the communicating processes of perception, interaction,
and communication, and the independent processes of the application environ-
ment.

Perception. The Perception Process of agent is a reactive process that can
be activated by the Decision Making Process and the Communication Process.
Once activated, the perception process requests the Representation Generator
Process to generate a representation. The representation generator process col-
lects the required state from the State repository of the application environment,
and optionally it requests the Observation Process to collect additional data
from the deployment context. State collection is subject to the perception laws.
The observation process returns the observed data to the representation generator
process as soon as it becomes available. Subsequently, the representation genera-
tor integrates the perceived state and generates a representation that is returned
to the perception process of the agent. The perception process converts the rep-
resentation to a percept that it uses to update the agent’s Current Knowledge.
Finally, the requesting process can read the updated state of the agent. The
current knowledge repository can provide a notification mechanism to inform the
decision making and communication process when a state update is completed.

Interaction. The Decision Making Process is an active process of agent that

110 A Reference Architecture for Situated Multiagent Systems
- read/write
knowledge
update Current
Knowledge read/write
activate knowledge
Perception -
= Process |
[0] !
g) activate
A Decision Making A |
Process .
receive message
generate return .
. " read/write send message
represenation representation . .
invoke influence knowledge
v read/write
o state read/write
read state read/write
Representation state

Interaction
Process

Communication

Generator .
Service Process

Process

invoke
operation

send
observe receive

message

maintain
dymanics

observed

data

Application Environment

state [Appl.Env-DC
Translation
Process

DC-Appl.Env
Translation
Process

Observation
Process

Ongoing
Activity

Synchronization
Process

f low-level deliver
observe context monitor context interaction low-level message
Deployment Context
q Active Reactive
*—o
KEY @ Data Repository O Process Process Exposed Interfface —» Message

Figure 4.12: Communicating processes view for perception, interaction, and com-
munication

selects and invokes influences in the environment. The Interaction Process col-
lects the concurrently invoked influences and converts them into operations. The
execution of operations is subject to the action laws of the system. Operations
that attempt to modify state of the application environment are executed by the

4.6 Component and Connector Communicating Processes View 111

interaction process, operations that attempt to modify state of the deployment
context are forwarded to the Appl.Env-DC Translation Process. This transla-
tion process converts the operations into low—level interactions in the deployment
context.

Communication. The Communication Process is an active process that han-
dles the communicative interactions of the agent. Newly composed messages are
passed to the Communication Service Process that applies the communication
laws and subsequently passes the messages to the Appl.Env-DC Translation
Process. This latter process converts the messages into low—level interactions with
the deployment context. Furthermore, the DC-Appl.Env Translation Process
collects low—level messages from the deployment context, converts the messages
into a format understandable for the agents, and forward the messages to the com-
munication service process. The communication process delivers the messages to
the communication process of the appropriate agent.

Independent Processes in the Application Environment. The Synchroni-
zation Processes are active processes that monitor application specific parts of
the deployment context and keep the corresponding state of the application en-
vironment up-to-date. Ongoing Activities are active processes that maintain
application specific dynamics in the application environment.

4.6.1.3 Variation Mechanisms

There are two variation mechanisms in this view packet.

CP1 Definition of State Synchronization with the Deployment Context. The parts
of the deployment context for which a representation has to be maintained
in the application environment have to be defined. The deployment context
may provide a notification mechanism to inform synchronization processes
about changes, or the processes may poll the deployment context according
to specific time schemes.

CP2 Definition of Ongoing Activities. For each ongoing activity in the applica-
tion environment an active process has to be defined. Processes of ongoing
activities may run independently, or they may monitor and react to partic-
ular events in the application environment. Examples of the former are a
clock, and the evaporation of digital pheromones. Examples of the latter
are a timer that is triggered by a particular event, and the diffusion of new
pheromone that is dropped by an agent.

4.6.1.4 Design Rationale

Agents are provided with two active processes, one for decision making and one for
communication. This approach allows these processes to run in parallel, improving

112 A Reference Architecture for Situated Multiagent Systems

efficiency. Communication among the processes happens indirectly via the current
knowledge repository. The perception process is reactive, the agent only senses the
environment when required for decision making and communicative interaction.
As such, the perception process is only activated when necessary.

The application environment is provided with separate processes to collect and
process perception requests, handle influences, and provide message transfer. The
observation process is reactive, it collects data from the deployment context when
requested by the representation generator. The translation processes are also
reactive, they provide their services on command of other processes. Finally, syn-
chronization processes and ongoing activities are active processes that act largely
independent of other processes in the system. Synchronization processes moni-
tor particular dynamics in the deployment context and keep the corresponding
representations up-to-date in the state of the application environment. Ongoing
activities represent dynamics in the application environment that happen inde-
pendent of agents and the deployment context. These processes are responsible to
maintain the state the application environment according to the ongoing dynamics.

Active processes represent loci of continuous activity in the system. By letting
active processes run in parallel, different activities in the system can be handled
concurrently, improving efficiency. Reactive processes, on the other hand, are only
activated and occupy resources when necessary.

4.7 A Framework that Implements the Reference
Architecture

To demonstrate the feasibility of the reference architecture, we have developed
an object-oriented framework that implements the main modules of the reference
architecture for situated multiagent systems. Appendix B gives an overview of the
framework and illustrates how the framework is specialized for the Packet-World
and an experimental robot application.

The framework shows a concrete design of the reference architecture. It sup-
ports the development of situated agent systems with a software environment as
well as systems with a physical environment. Support is provided for selective
perception, protocol-based communication, behavior-based decision making, and
dynamics that happen independent of agents’ activities. Interaction in the envi-
ronment is extended with support for simultaneous actions. Simultaneous actions
are actions that happen together and that can have a combined effect in the ap-
plication environment [203, 207, 205]. An example of simultaneous actions in the
Packet—World are two agents that push the same packet in different directions. As
a result, the packet moves according to the resultant of the two actions. Similar
to the reference architecture, the framework offers support for laws that enable
the designer to put constraints on the various kinds of activities of agents in the

4.8 Summary 113

environment. The framework provides no support for distribution of a software
environment and interaction with the deployment context.

Developing the framework was a valuable experience. It has improved our
general understanding of important aspects of situated multiagent systems such
as the state of the application environment, the knowledge representation of agents,
and threading. We also learned that deriving a concrete design from the reference
architecture is not self-evident, it requires a lot of effort and expertise of the
designer.

4.8 Summary

In this chapter, we presented a reference architecture for situated multiagent sys-
tems. The general goal of the reference architecture is to support the architectural
design of self-managing applications. Concrete contributions are: (1) the reference
architecture defines how various mechanisms of adaptivity for situated multiagent
systems are integrated in one architecture; (2) the reference architecture provides a
blueprint for architectural design, it facilitates deriving new software architectures
for systems that share its common base; and (3) the reference architecture reifies
the knowledge and expertise we have acquired in our research, it offers a vehicle
to study and learn the advanced perspective on situated multiagent systems we
have developed in our research.

We started the chapter with a summary of the main functionalities of a situated
multiagent system. Then we presented the reference architecture for situated mul-
tiagent systems. The reference architecture maps the functionalities of a situated
multiagent system onto a system decomposition, i.e. software elements and rela-
tionships among the elements. We presented the reference architecture by means
of four views that describe the architecture from different perspectives. Views are
presented as a number of view packets. A view packet focusses on a particular
part of the reference architecture. We gave a primary presentation of each view
packet and we explained the properties of the architectural elements. Appendix A
provides a detailed formal specification of the various architectural elements. Be-
sides, each view packet is provided with a number of variation mechanisms and
a design rationale. Variation mechanisms describe how the view packet can be
applied to build concrete software architectures. The design rationale explains the
underlying design choices of the view packet and the quality attributes associated
with the various view packets. To demonstrate the feasibility of the reference ar-
chitecture, we referred to a framework that implements the main modules of the
architecture and that is instantiated for the Packet-World and an experimental
robot application.

The reference architecture serves as a blueprint for developing concrete software
architectures. It integrates a set of architectural patterns architects can draw from
during architectural design. However, the reference architecture is not a ready-

114 A Reference Architecture for Situated Multiagent Systems

made cookbook for architectural design. It offers a set of reusable architectural
solutions to build software architectures for concrete applications. Yet, applying
the reference architecture does not relieve the architect from difficult architectural
issues, including the selection of supplementary architectural approaches to deal
with specific system requirements. We consider the reference architecture as a
guidance for architectural design that offers a reusable set of architectural assets
for building software architectures for concrete applications. Yet, this set is not
complete and needs to be complemented with additional architectural approaches.

Chapter 5

Architectural Design of an
AGYV Transportation System

Automatic Guided Vehicles (AGVs) are fully automated, custom made vehicles
that are able to transport goods in a logistic or production environment. AGV
systems can be used for distributing manufactured products to storage locations
or as an inter-process system between various production machines. An AGV
system receives transport requests from a warehouse managing system or machine
operating software, and instructs AGVs to execute the transports. AGVs are
provided with control software connected to sensors and actuators to move safely
through the warehouse environment. While moving, the vehicles follow specific
paths in the warehouse by means of a navigation system which uses stationary
beacons in the work area (e.g., laser reflectors on walls or magnet strips in the
floor). To enable the AGV software to communicate with software systems on
other machines, the mobile vehicles are equipped with infrastructure for wireless
communication.

AGYV transportation systems have to deal with dynamic and changing operat-
ing conditions. The stream of transports that enter the transportation system is
typically irregular and unpredictable, AGVs can leave and re-enter the system for
maintenance, production machines may have variable waiting times, etc. All kinds
of disturbances can occur, particular areas in the warehouse may temporarily be
closed for maintenance services, supply of goods can be delayed, loads can block
paths, AGVs can fail, etc. Despite these challenging operating conditions, the
system is expected to operate efficiently and robustly.

Traditionally, AGVs in a factory are directly controlled by a central server.
AGVs have little autonomy: the server plans the schedule for the system as a
whole, dispatches commands to the AGVs and continually polls their status. This
centralized approach has successfully been deployed in numerous practical instal-

115

116 Architectural Design of an AGV Transportation System

lations. The centralized server architecture has two main benefits. Since the server
is a central configuration point, the control software can easily be customized to
the needs of a particular project. This allows for specific per-project optimizations.
A second benefit is that the system behavior is deterministic and predictable.

In a joint R&D project (Egemin Modular Control Concept project, EMC? [7]),
the DistriNet research group and Egemin have developed an innovative version of
the AGVs control system. Egemin is a Belgian manufacturer of automated logistic
service systems for warehouses. Egemin builds AGVs, and deploys and maintains
complete installations of multiple AGVs (and other logistic machines) for their
clients, see Fig. 5.1. The goal of the project was to investigate the feasibility of

11000
11000

ARAANNEN

=
-
-
1. —
-
_—
L
-
- -
-_— -
_— —
-
- —
—E —
= —
-

(ereadd
LEneL
W

1A

Figure 5.1: An AGV at work in a cheese factory

a decentralized control system to cope with new and future system requirements
such as flexibility and openness. Therefore, we have applied a situated multiagent
system architecture. Instead of having one computer system that is in charge of
numerous complex tasks such as task assignment, routing, collision avoidance, and
deadlock avoidance, in the new architecture the AGVs are provided with a con-
siderable amount of autonomy. This opens perspectives to improve flexibility and
openness of the system: the AGVs can adapt themselves to the current situation
in their vicinity, order assignment is dynamic, the system can deal autonomously
with AGVs leaving and re-entering the system.

The AGV transportation system provided a challenging application to inves-
tigate the feasibility of applying situated multiagent systems in practice. It al-
lowed us to apply the various mechanisms for adaptability of situated agents in a
complex industrial setting. As such, the design and implementation of the AGV
transportation system have considerable contributed to the development of the

5.1 AGV Transportation System 117

reference architecture for situated multiagent systems. In this chapter, we give
an overview of the software architecture of the decentralized AGV control system.
Starting from system requirements, we discuss the architectural design of the ap-
plication that is based on the architectural-centric software development approach
described in chapter 2, and we explain how the software architecture of the AGV
control system relates to the reference architecture. We zoom in on the evaluation
of the software architecture and we discuss test results collected from simulations
and an implemented demonstration system.

5.1 AGYV Transportation System

In this section, we introduce the AGV application. We give an overview of the func-
tionalities of the system, and we discuss the main quality requirements. System
requirements are kept fairly general, independent of any particular AGV system.
In section 5.6, we zoom in on specific functionalities and quality scenario’s for a
concrete AGV transportation application.

5.1.1 Main Functionalities

The main functionality the system has to perform is handling transports, i.e. mov-
ing loads from one place to another. Transports are generated by client systems,
typically a business management program, but they can also be generated by ma-
chine software or service operators. A transport is composed out of multiple jobs:
a job is a basic task that can be assigned to an AGV. For example, picking up a
load is a pick job, dropping it is a drop job and moving over a specific distance is
a move job. A transport typically starts with a pick job, followed by a series of
move jobs and ends with a drop job.

In order to execute transports, the main functionalities the system has to per-
form are:

1. Transport assignment: transports are generated by client systems and have
to be assigned to AGVs that can execute them.

2. Routing: AGVs must route efficiently through the layout of the warehouse
when executing their transports.

3. Gathering traffic information: although the layout of the system is static,
the best route for the AGVs in general is dynamic, and depends on the
actual traffic conditions and forecasts in the system. Taking into account
traffic dynamics enables the system to route AGVs efficiently through the
warehouse.

118 Architectural Design of an AGV Transportation System

4. Collision avoidance: obviously, AGVs must not collide. AGVs can not cross
the same intersection at the same moment, however, safety measures are also
necessary when AGVs pass each other on closely located paths.

5. Deadlock avoidance: since AGVs are relatively constrained in their move-
ments (they cannot divert from their path), the system must ensure that
AGVs do not find themselves in a deadlock situation.

To perform transport tasks, AGVs are equipped with a battery as energy source.
AGVs have to charge their battery at the available charging stations. Depending
on the application characteristics, a vehicle recharges when its available energy
goes down a certain level, or the vehicle follows a pre-defined battery charge plan,
or the vehicle can perform opportunity charging, i.e. the vehicle charges when it
has no work to do. Finally, when an AGYV is idle it can park at a free park location.

5.1.2 Quality Requirements

Stakeholders of an AGV transportation system have various quality requirements.
Performance is a major quality requirement, customers expect that transports are
handled efficiently by the transportation system. Configurability is important, it
allows installations to be easily tailored to client-specific demands. Obviously, an
automated system is expected to be robust, intervention of service operators is
time consuming and costly.

Besides these “traditional” qualities, evolution of the market puts forward new
quality requirements. Customers request for self-managing systems, i.e. systems
that are able to adapt their behavior with changing circumstances autonomously.
Self-management with respect to system dynamics translates to two specific quality
goals: flexibility and openness.

Flexibility refers to the system’s ability to exploit opportunities and anticipate
possible difficulties. In the traditional centralized approach, the assignment of
transports, the routing of AGVs and the control of traffic are planned by the
central server. The current planning algorithm applied by Egemin is based on
predefined schedules. Schedules are rules associated with AGVs and particular
locations in the layout, e.g. “if an AGV has dropped a load on location z, than
that AGV has to move to node y to wait for a transport assignment”. A plan can be
changed, however only under exceptional conditions. E.g., when an AGV becomes
defective on the way to a load, the transport can be re-assigned to another AGV.
A flexible control system allows an AGV that is assigned a transport and moves
toward the load, to switch tasks along the way if a more interesting transport pops
up. Flexibility also enables AGVs to anticipate possible difficulties. For example,
when the amount of traffic is high in a certain area, AGVs should avoid that area;
or when the energy level of an AGV decreases, the AGV should anticipate this
and prefer a zone near to a charge station. Another desired property is that AGVs

5.2 Overview of the Software Architecture of the Transportation System 119

should be able to cope with particular situations, e.g., when a truck with loads
arrives at the factory, the system should be able to reorganize itself smoothly.

Openness of an AGV transportation system refers to the system’s ability to
deal autonomously with AGVs leaving and (re-)entering the system. Examples
are an AGV that temporarily leaves the system for maintenance, and an AGV
that re-enters the system after its battery is recharged. In some cases, customers
expect to be able to intervene manually during execution of the system, e.g., to
force an AGV to perform a particular job.

In summary, flexibility and openness are high-ranking quality requirements for
today AGV transportation systems. One possibility to tackle these new quality
requirements would be to adapt the central planning approach aiming to improve
the flexibility and openness of the system. In the EMC? project however, we
investigated the feasibility to apply a new decentralized architecture to cope with
the new quality requirements.

5.2 Overview of the Software Architecture of the
Transportation System

In this section, we give a high-level overview of the software architecture of the
AGYV application and we motivate the main architectural decisions. First we ex-
plain the architectural design process. Then we show how the AGV application
software is integrated with external systems, and how the application software is
structured and deployed on hardware. The documentation of the software archi-
tecture with the main view packets is explained in the next section.

5.2.1 Architectural Design

The general motivation to apply a situated multiagent system to the AGV trans-
portation system was the importance of the required qualities flexibility and open-
ness. During architectural design, we applied the various mechanisms for adaptiv-
ity for situated multiagent systems to develop the software architecture of the AGV
transportation system. The insights derived from the design, the development, and
the evaluation of the AGV transportation system considerably contributed to the
development of the reference architecture.

For the architectural design, we used the architectural-centric software devel-
opment approach described in chapter 2. Roughly spoken, the design process
consisted of the following steps. First, we have mapped the system functionality
onto the basic decomposition of a situated multiagent system: agents and the en-
vironment. The system consists of two types of agents, AGV agents and transport
agents, that represent autonomous entities in the application. The environment
consists of the deployment context extended with an application environment that

120 Architectural Design of an AGV Transportation System

enables the agents to access resources, to exchange information, and to coordinate
their behavior. Then, we have iteratively decomposed the agents and the applica-
tion environment. In each decomposition step, we selected an architectural element
of the software architecture and we determined the architectural drivers (i.e. the
target functional and quality attribute requirements for that element). The order
in which we have refined the architectural elements was essentially based on the
incremental development of the application. We started with the functionality
for one AGV to drive, then followed collision avoidance, next order assignment,
deadlock avoidance, etc. For each decomposition, we have selected a suitable ar-
chitectural pattern to refine the architectural element. Where applicable, we have
used the specification of the mechanisms for adaptivity to decompose architectural
elements. The decomposition ended when a suitable level of detail was reached to
allow the developers to build the software.

The software architecture of the AGV transportation system includes func-
tionality for selective perception, behavior-based action selection with roles and
situated commitments, and protocol-based communication. The insights derived
from applying these mechanisms in this complex application have substantially
contributed to the development of the reference architecture. An important contri-
bution for the reference architecture is related to the interaction of the application
environment with the deployment context. In particular, the design of the AGV
transportation system greatly improved our insights on support for dynamics in
the application environment, the synchronization of state with the deployment
context, and the translation of messages and influences between the application
environment and the deployment context.

An important issue of the AGV application was the physical deployment of
the situated multiagent system. The reference architecture abstracts from the
concrete deployment of the situated multiagent system. The architectural design
of the AGV application shows how distribution can be integrated with the func-
tionality that is provided by the reference architecture. By developing appropriate
middleware, we were able to separate quite well the concern of distribution and
mobility from the rest of the application logic.

5.2.2 Overview of the AGV Transportation System Soft-
ware

The AGV transportation system provides the control software to handle transports
in a warehouse with AGVs. Fig. 5.2 shows a general overview of the software of
the AGV transportation system. The software consists of three layers. AGV
application is the application-specific software that accepts transport requests and
instructs AGVs to handle the transports. In the traditional systems deployed by
Egemin, the AGV application software consists of a central server that instructs
AGVs to perform the transport requests. In the decentralized architecture, the

5.2 Overview of the Software Architecture of the Transportation System 121

AGV Application

.NET

I T

X -——>Y X is allowed to use Y

KEY

Figure 5.2: Software layers of the AGV transportation system

AGYV application software consists of a situated multiagent system that handles
the transport requests of the clients. The AGV application makes use of E’pial.
E’pia is a general purpose framework developed by Egemin that provides support
for persistency, security, logging, etc. The AGV application and E’pia make use
of the .NET framework [166] that provides basic support for 10, serialization,
remoting, threading, etc.

Fig. 5.3 shows the context diagram of the AGV transportation system that
indicates how the system interacts with external entities. Transports are requested
by client systems, i.e. a warehouse management system (WMS) and a service
operator. The AGV transportation system commands AGV machines to execute
the transports, it monitors the status of the AGV machines, and it informs the
client about the progress of the transport. The transportation system can interact
with external machines and possibly command these machines to perform actions,
e.g., opening a door. Besides functionality to handle transports, the software of
the transportation system provides a public interface for a monitor to observe the
status of the transportation system. The monitor is an external software system
that provides a graphical user interface that allows a user to follow the activity in
the transportation system. The monitor shows the actual transports in the system
and the AGVs moving on the layout, and it allows a user to inspect the status of
transports and AGVs.

I1E’pia® is an acronym for Egemin Platform for Integrated Automation.

122 Architectural Design of an AGV Transportation System

System status T Transport status WMS
Vv
<4

Transport request

Command

Transport request
, <4—— | Transportation AGV start/stop
4’ '\
T—a Operator
Machine Status
Transport status
Actuator command L T AGV status
Sensor data

AGV

C) External entity
KEY System

X—P» Y Data flow from X to Y

Figure 5.3: Context diagram of the AGV transportation system

5.2.3 Situated Multiagent System for the AGV Transporta-
tion System

The primary building blocks of a situated multiagent system are agents and the
environment. We first introduce the two types of agents that are used in the AGV
transportation system. Then, we explain the structure of the environment and we
show how agents use the environment to coordinate their behavior.

5.2.3.1 AGYV Agents and Transport Agents

We have introduced two types of agents: AGV agents and transport agents [222,
221]. The choice to let each AGV be controlled by an AGV agent is obvious.
Transports have to be handled in negotiation with different AGVs, therefore we
have introduced transport agents. An AGV agent is responsible to control its
associated AGV vehicle; a transport agent represents a transport in the system
and is responsible to ensure that the transport request is handled. Both types
of agents share a common architectural structure, that corresponds to the agent
architecture as defined in the reference architecture (section 4.3.2), yet, they have
different internal structures that provide the agents with different capabilities.

5.2 Overview of the Software Architecture of the Transportation System 123

AGV Agent. Each AGV in the system is controlled by an AGV agent. The AGV
agent is responsible for obtaining and handling transports, and ensuring that the
AGV gets maintenance on time. As such, an AGV becomes an autonomous entity
that can take advantage of opportunities that occur in its vicinity, and that can
enter/exit the system without interrupting the rest of the system.

Transport Agent. Each transport in the system is represented by a transport agent.
A transport agent is responsible for assigning the transport to an AGV and re-
porting the status and completion of the transport to the client that has requested
the transport. Transport agents are autonomous entities that interact with AGV
agents to find suitable AGVs to execute the transports. Transport agents reside
at a transport base, i.e. a dedicated computer located in the warehouse. Fig. 5.4
gives a schematic overview of an AGV transportation system.

=D Acv _
KEY (O Transport Location Path with Crossroad o] AGYV Driving Area

Figure 5.4: Schematic overview of an AGV transportation system

Situated agents provide a means to cope with the quality goals flexibility and
openness. Particular motivations are: (1) situated agents act locally, this enables
agents to better exploit opportunities and adjust their behavior with changing
circumstances in the environment—this is an important property for flexibility;
(2) situated agents are autonomous entities that interact with one another in their

124 Architectural Design of an AGV Transportation System

vicinity; agents can enter and exit each others area of interaction at any time—this
is an important property for openness.

5.2.3.2 Virtual Environment

To achieve the system functionality, AGV agents and transport agents have to
coordinate. Agents have to coordinate for routing, for transport assignment, for
collision avoidance, etc. One approach is to provide an infrastructure for communi-
cation that enables the agents to exchange messages to coordinate their behavior.
Such approach however, would put the full complexity of coordination in the agents
and result in complex architectures of the agents, in particular for the AGV agents.
We have chosen for a solution that enables the agents to exploit the environment
to coordinate their behavior [218, 215]. This approach separates responsibilities
in the system and helps to manage the complexity.

The AGVs are situated in a physical environment, however, this environment is
very constrained: AGVs cannot manipulate the environment, except by picking up
and dropping loads. This restricts how agents can exploit their environment. We
introduced a virtual environment that offers a medium for AGV agents and trans-
port agents to exchange information and to coordinate their behavior. Besides, the
virtual environment serves as a suitable abstraction that shields the agents from
low-level issues, such as the communication of messages and the physical control
of an AGV vehicle. Fig. 5.5 shows a high-level model of an AGV transportation
system.

AGV agent AGV agent Transport Agents

| |
| |
| . : Virtual . f Local Virtual |
} Local Virtual Environment Environment Local Virtual Environment Environment }
| |
Object Places . Object Places . ObjectPlaces
Middleware E'nsor Middleware E'nsor Middleware
Wireless
Ethernet
AGV e AGV {—>| Transport Base

Figure 5.5: High-level model of an AGV transportation system

Since the only physical communication infrastructure available in the system
is a wireless network, the virtual environment is necessarily distributed over the

5.2 Overview of the Software Architecture of the Transportation System 125

AGVs and the transport base. In effect, each AGV and the transport base main-
tain a local virtual environment, which is a local manifestation of the virtual
environment. The states of the local virtual environments are synchronized op-
portunistically, as the need arises. In the AGV transportation system, there is
not a single software entity that corresponds to the application environment as
defined in the reference architecture (section 4.3.3). Instead, the instances of the
local virtual environment deployed on the nodes in the AGV system correspond
to the application environment. The instances are tailored to the type of agents
deployed on the nodes. For example, the local virtual environment on the AGVs
provides a high-level interface that enables the AGV agent to read out the status
of the AGV and send commands to the vehicle. Obviously, this functionality is
not available in the local virtual environment on the transport base.

State Synchronization with ObjectPlaces. The states of local virtual environments
on neighboring nodes are synchronized with each other. This synchronization is
supported by the ObjectPlaces middleware [174, 176, 177]. ObjectPlaces supports
the coordination of nodes in a mobile network by means of two abstractions: view
and role. A view is an up to date collection of data gathered from neighbor-
ing network nodes. ObjectPlaces supports information exchange among nodes by
building and maintaining views based on a declarative specification. For example,
a view is used to collect the candidate AGVs that are within a range of interest
for a transport agent (we discuss transport assignment in detail in section 5.4).
The second abstraction, role, is a component that encapsulates the behaviour of a
node in an interaction protocol. ObjectPlaces enables protocol-based interaction
between nodes in a mobile network. As an example, local virtual environments
use an interaction protocol for collision avoidance of AGVs (a detailed explanation
follows in section 5.5). We have drawn the line with the deployment context be-
tween the local virtual environment and the ObjectPlaces middleware. In practice,
a substantial part of the ObjectPlaces middleware was developed in the course of
the EMC? project. However, a detailed discussion of ObjectPlaces is outside the
scope of this dissertation.

Low-level control of AGVs with E’nsor. AGVs are equipped with low-level control
software that is called E’nsor?. We fully reused the control software in the project.
As such, E’nsor is also part of the deployment context. E’nsor provides an interface
to command the AGV machine and to monitor its state. E’nsor is equiped with
a map of the factory floor. This map divides the physical layout of the warehouse
into logical elements: segments and nodes. Each segment and node is identified
by a unique identifier. A segment typically corresponds to a physical part of a
path of three to five meters. E’'nsor is able to steer the AGV per segment of the
warehouse layout, and the AGV can stop on every node, e.g., to change direction.
E’nsor understands basic actions such as Move (segment) that instructs E'nsor to

2E'nsor® is an acronym for Egemin Navigation System On Robot.

126 Architectural Design of an AGV Transportation System

drive the AGV over the given segment, Pick (segment) and Drop(segment) that
instructs E’'nsor to drive the AGV over the given segment and to pick/drop the
load at the end of it, and Charge(segment) that instructs E’nsor to drive the
AGV over a given segment to a battery charge station and start charging batteries
there®. The physical execution of these actions, such as staying on track on a
segment, turning, and the manipulation of loads are handled by E’'nsor. Reading
out specific sensor data, such as the current position and the battery level is also
provided by E’nsor. The local virtual environment uses E’nsor to regularly poll
the vehicle’s current status and adjust its own state appropriately. For example,
if the AGV’s position has changed, the representation of the AGV position in the
local virtual environment is updated.

5.2.3.3 Coordination Through the Virtual Environment

The local virtual environment offers high-level primitives to agents to act in the
environment, perceive the environment, and communicate with other agents. This
enables agents to share information and coordinate their behavior. We illustrate
with examples how agents exploit the virtual environment as a medium for coor-
dination.

Routing. The local virtual environment has a static layout of the paths through
the warehouse. To allow an AGV agent to find its way through the warehouse
efficiently, the local virtual environment provides signs on this map that the agent
can use to move to a given destination. These signs can be compared to traffic
signs by the road that provide directions to drivers. At each node in the map, a
sign in the local virtual environment represents the cost to a given destination for
each outgoing segment. The cost of the path is the sum of the costs of the segments
in the path. The cost per segment is based on the average time it takes for an
AGV to drive over the segment. The agent perceives the signs in its environment
and uses them to determine which segment it will take next.

Transport assignment. Due to the highly dynamic nature of transport creation,
the assignment of transports to AGVs is complex. To cope with the continuously
changing circumstances in the environment a field-based approach is used to as-
sign transports to AGVs. In this approach, transport agents emit fields into the
local virtual environment that attract idle AGVs. To avoid multiple AGVs driving
to the same transport, AGV agents emit repulsive fields. AGV agents combine
received fields and follow the gradient of the combined field that guide the AGVs
towards pick locations of transports. The AGV agents continuously reconsider
the situation of the local virtual environment and transport assignment is delayed
until the load is finally picked—which benefits the flexibility of the system.

3 Actually, the instructions provided by the E’nsor interface are coded in a low-level digital
format. The translation of actions to E’nsor instructions is handled by the local virtual environ-
ment.

5.3 Documentation of the Software Architecture 127

Collision avoidance. AGV agents avoid collisions by coordinating with other
agents through the local virtual environment. AGV agents mark the path they are
going to drive in their environment using hulls. The hull of an AGV is the phys-
ical area the AGV occupies. A series of hulls describe the physical area an AGV
occupies along a certain path. If the area is not marked by other hulls (the AGV’s
own hulls do not intersect with others), the AGV can move along and actually
drive over the reserved path. In case of a conflict, the involved local virtual envi-
ronments use the priorities of the transported loads and the vehicles to determine
which AGV can move on. AGV agents monitor the local virtual environment and
only instruct the AGV to move on when they are allowed. Afterwards, the AGV
agents remove the markings in the environment.

These examples show that the local virtual environment serves as a flexible
coordination medium: agents coordinate by putting marks in the environment,
and observing marks from other agents. We discuss field-based task assignment
and collision avoidance in detail in sections 5.4 and 5.5 respectively.

5.3 Documentation of the Software Architecture

We now give an overview of the software architecture documentation of the AGV
transportation system. In this section, we discuss the main high-level view pack-
ages of the software architecture. In the next sections, we zoom in on two particular
functionalities of the architecture: collision avoidance and transport assignment.
The design of collision avoidance shows how the environment is creatively exploited
in the AGV application, the design of transport assignment demonstrates how in-
teracting agents provide a means for enhancing flexibility in the system. For the
complete documentation of the software architecture of the AGV transportation
system we refer to [43].

5.3.1 Deployment View of the AGV Transportation System

Fig. 5.6 gives a general overview of the AGV transportation system and shows how
the system software is allocated to computer hardware. The application software
consists of two types of subsystems with different responsibilities in the transporta-
tion system: transport base system and AGV control system. The relationship of
the deployment view is allocated-to [60]. Software elements are allocated to hard-
ware elements, e.g., a transport base system is allocated to a transport base.

5.3.1.1 Elements and their Properties

The transport base system provides the software to manage transports in the
AGYV transportation system. The transport base system handles the communica-
tion with the warehouse management system. It receives transport requests and

128 Architectural Design of an AGV Transportation System

Monitor, Machine Warehouse
Management

AGV Control /

System
Transport
& Base System
Operator
& a
AGV Control
System AGV Control
AGV Control System AGV Control
System System
D Transport Base ——— Wired Network
External System
KEY & AGV 4~ Connection
O Access Point — — — Wireless Ethernet

Figure 5.6: Deployment view of the AGV transportation system

assigns the transports to suitable AGVs, and it reports the status and comple-
tion of the transports to the warehouse management system. The transport base
system executes on a transport base, i.e. a stationary computer. The transport
base system provides a public interface that allows an external monitor system to
observe the status of the AGV transportation system.

The AGYV control system provides the control software to command an AGV
machine to handle transports and to perform maintenance activities. Each AGV
control system is deployed on a computer that is installed on a mobile AGV. AGV
control systems provide a public interface that allows a monitor to observe the
status of the AGVs, and let a service operator take over the control of the vehicle
when necessary.

Communication network. All the subsystems can communicate via a wireless
network. The warehouse management system interacts with the AGV transporta-
tion system via the wired network. To debug and monitor the system, AGVs and
the transport base can be accessed remotely via an external monitor system.

5.3.1.2 Rationale

The main motivation for the top level decomposition of the transportation system
is the separation of functionality for transport assignment (ensuring that the work

5.3 Documentation of the Software Architecture 129

is done) from functionality for executing transports (doing the work). By provid-
ing each AGV vehicle with an AGV control system, AGVs become autonomous
entities that can exploit opportunities that occur in their vicinity, and that can en-
ter/exit the system without interrupting the rest of the system. Endowing AGVs
with autonomy is a key property for flexibility and openness in the system.

The separation of functionality for transport assignment and executing transports
also supports incremental development. In the initial stage of the project, we
developed a basic version of the AGV control system that provided support for
performing transports and avoiding collisions. For test purposes, we manually
assigned transports to AGVs. In the next phase, when we extended the func-
tionalities of AGVs and integrated automated transport assignment, the top level
decomposition served as a means to assign the work to development teams.

5.3.2 Module Decomposition of the AGV Control System

Fig. 5.7 shows the primary presentation of the module uses view of the AGV
control system.

AGV Agent

Local Virtual Environment

ObjectPlaces Middleware
& E'nsor

|:| Module

X ——>Y Xuses Y

KEY

Figure 5.7: Module uses view of the AGV control system

The relation in the module uses view is uses. An element uses another element
if the correctness of the first element depends on the correct implementation of
the second element [60].

The basic structure of the AGV control system corresponds to the primary

130 Architectural Design of an AGV Transportation System

decomposition of a situated multiagent system in the reference architecture, see
Fig. 4.3 in section 4.3.1. The AGV agent is situated in the local virtual environment
that corresponds to the application environment. The ObjectPlaces middleware
and E’'nsor are part of the deployment context.

5.3.2.1 Elements and their Properties

AGV Agent. An AGV agent is responsible for controlling an AGV vehicle. The
main functionalities of an AGV agent are: (1) obtaining transport tasks; (2) han-
dling jobs and reporting the completion of jobs; (3) avoiding collisions; (4) avoiding
deadlock; (5) maintaining the AGV machine (charging battery, calibrating etc.);
(6) parking when the AGV is idle.

Local Virtual Environment. Since the physical environment of AGVs is very
restricted, it offers little opportunities for agents to use the environment. The local
virtual environment offers a medium that the AGV agent can use to exchange in-
formation and coordinate its behavior with other agents. The local virtual environ-
ment also shields the AGV agent from low-level issues, such as the communication
of messages to remote agents and the physical control of the AGV.

Particular responsibilities of the local virtual environment are: (1) representing
and maintaining relevant state of the physical environment and the AGV vehicle;
(2) representing additional state for coordination purposes; (3) enabling the ma-
nipulation of state; (4) synchronization of state with neighboring local virtual
environments; (5) providing support to signal state changes; (6) translating the
actions of the AGV agent to actuator commands of the AGV vihicle; (7) translat-
ing and dispatching messages from and to other agents.

ObjectPlaces Middleware & E’nsor. The ObjectPlaces middleware enables
communication with software systems on other nodes, providing a means to syn-
chronize the state of the local virtual environment with the state of local virtual
environments on neighboring nodes. E’'nsor is the low-level control software of the
AGYV vehicle. The E’nsor software provides an interface to command the AGV ve-
hicle and to read out its status. The E’nsor interface defines instructions to move
the vehicle over a particular distance and possibly execute an action at the end of
the trajectory such as picking up a load. The physical execution of the commands
is managed by E'nsor. As such, the AGV agent can control the movement and
actions of the AGV at a fairly high-level of abstraction.

5.3.2.2 Design Rationale

The layered decomposition of the AGV control system separates responsibilities.
The AGV agent is a self-managing entity that is able to flexibly adjust its behavior
with changing circumstances in the environment. The local virtual environment

5.3 Documentation of the Software Architecture 131

provides an abstraction that allows agents to interact and coordinate their be-
havior in a way that is not possible in the physical environment. Separation of
responsibilities helps to manage complexity. An alternative for indirect coordina-
tion through the local virtual environment is an approach where the functionality
to control an AGV vehicle is assigned to an AGV agent only, and where AGV
agents coordinate through message exchange. Such a design however, would put
the full complexity of coordination in the AGV agent, resulting in a more complex
architecture.

An instance of the local virtual environment module is deployed on each node
in the AGV system. As such the local virtual environment has to maintain its state
with the state of other local virtual environments. Since AGV agents only interact
with other agents situated in their vicinity, state has only to be synchronized be-
tween neighboring local virtual environments. The ObjectPlaces middleware takes
the burden of mobility. In particular, by defining appropriate views, ObjectPlaces
maintains the sets of nodes of interest for the application logic. For example, to
avoid collisions, a view is defined that keeps track of all the vehicles within col-
lision range (we discuss collision avoidance in detail in section 5.5). Whenever a
vehicle enters or leaves this range, the ObjectPlaces middleware will notify the
local virtual environment about the change.

5.3.3 Module Decomposition of the Transport Base System

Fig. 5.8 shows the primary presentation of the module uses view package of the
transport base system.

5.3.3.1 Elements and their Properties

The transport base manager has a dual responsibility. First, it is responsi-
ble for the communication with client systems, it accepts transport requests and
reports the status of transports to clients. Second, it is responsible for creating
transport agents, i.e., for each new transport request, the transport base manager
creates a new transport agent. Each transport has a priority that depends on the
kind of transport. The priority of a transport typically increases with the pending
time since its creation.

A transport agent represents a transport in the system and is responsible for:
(1) assigning the transport to an AGV; (2) maintaining the state of the transport;
and (3) reporting state changes of the transport to clients via the transport base
manager. Physically, a transport agent is deployed on the transport base. Logi-
cally, however, the transport agent is located at a particular location in the virtual
environment. For example, in section 5.4, we will discuss a field-based approach
for transport assignment in which a transport agent emits a field in the environ-
ment from the location of the load of the transport to attract idle AGVs.

132 Architectural Design of an AGV Transportation System

Transport Agent

Transport Base Local Virtual Environment

Manager
\
[
ObjectPlaces
Middleware
KEY

X —-——>>Y XusesY

Figure 5.8: Module uses view of the transport base system

Local Virtual Environment and ObjectPlaces Middleware. The local vir-
tual environment of the transport base system enables transport agents to coor-
dinate with AGV agents to find suitable AGVs to execute the transports. Each
transport agent has a limited view on the local virtual environment, i.e. each trans-
port agent can only interact with the AGV agents within a particular range from
its position. Yet, the range of interaction may dynamically change. In section 5.4,
we explain how the range of interaction of a transport agent dynamically extends
when the agent does not find a suitable AGV to execute the transport. Limiting
the scope of interaction is important to keep the processing of data under control.

Contrary to the AGV agents, the transport agents in the system share one lo-
cal virtual environment. Still, the state of the local virtual environment has to be
synchronized with the state of local virtual environments of AGV control systems,
e.g., to maintain the positions of the AGVs in the local virtual environment of the
transport base and the locations of new transports in the local virtual environ-
ments of AGVs. Since transport agents can access the local virtual environment
concurrently, support for concurrent access is needed.

Particular responsibilities of the local virtual environment are: (1) represent-
ing relevant state of the physical environment; (2) representing additional state
for coordination purposes; (3) synchronization of state with other local virtual
environments (in particular, maintaining the position of the AGVs in the system);
(4) providing support to signal state changes; (5) providing support for concur-
rent access; (6) translating and dispatching messages from and to AGV agents.

5.3 Documentation of the Software Architecture 133

Obviously, the responsibilities of the local virtual environment on AGVs that are
related to the AGV vehicle (representing state of the AGV, translating actuator
commands, etc.) are not applicable for the local virtual environment of the trans-
port base system. The responsibilities of the ObjectPlaces middleware are similar
as for the AGV control system, see section 5.3.2.

5.3.3.2 Design Rationale

The transport base is in charge of handling the transports requested by its as-
sociated clients. The transport base manager serves as an intermediary between
the clients and the AGV transportation system. Apart from the transport base
manager, the software architecture of the transport base is similar to the archi-
tecture of the AGV control system. Transport agents are situated in the local
virtual environment that enables the agents to find suitable AGVs to perform the
transport orders. The ObjectPlaces middleware that is part of the deployment
context enables communication with the software systems on other nodes. The
motivations for the decomposition of the transport base system are the same as
for the AGV control system, see section 5.3.2.

5.3.4 Collaborating Components View of the AGV Agent

We now zoom in on the software architecture of agents. We focus on the AGV
agent. Fig. 5.9 shows a collaborating components view of the AGV agent.

The general structure of the AGV agent corresponds to the structure of an
agent in the reference architecture, see Fig. 4.4 in section 4.3.2. The current
knowledge repository corresponds to the knowledge repository of an agent in the
reference architecture, see Fig. 4.7 in section 4.4.1. The various components and
the repository are further refined according to the specific functionalities of an
AGV agent.

5.3.4.1 Elements and their Properties

The Current Knowledge repository contains state that the agent uses for deci-
sion making and communication. Current knowledge consists of static state and
dynamic state. An example of static state is the value of LockAheadDistance
(this parameter determines the length of the path AGVs have to reserve when
they move on to avoid collisions; we elaborate on path locking in section 5.5).
Examples of dynamic state are state collected from the observation of the envi-
ronment such as the positions of neighboring AGVs, state of commitments related
to collaborations with other agents, and runtime state related to the agent itself
such as the battery status of the AGV. The current knowledge repository provides
support for synchronized access. It offers a shared interface to the communication
and decision making components that can concurrently read and write state. The

134 Architectural Design of an AGV Transportation System

AGV agent Action
f Controller
Communication S v

Job Operator ‘
LockAhead @ Selection Selection
I Distance
Communicating i
\ working transport Operator
commitmen! Generation [+

\ '
Decoder Encoder Current Knowledge fﬁéﬂﬂ; |
1 v
* Deadlock
Avoidance «
Decision
Receiving Sending > Perception < Making ¢
4 Execution
i |
\ v .
message message request / percept influence
Local Virtual Environment
e—+e Exposed Inteface
Repositol
KEY goftware . p ry o Shared Inteface
omponen

O State Item <« Interaction

Figure 5.9: Collaborating components view of the AGV agent

perception component is connected to a separate interface to update the agents
dynamic state according to the representations derived from observing the local
virtual environment.

Perception enables the AGV agent to sense the local virtual environment ac-
cording to the perception requests of communication and decision making, and
to update the agent’s current knowledge accordingly. AGV agents use different
foci to sense the state of the local virtual environment that represents state in the
physical environment (e.g., the positions of neighboring AGVs) and state that re-
lates to virtual representations (e.g., fields that are used for transport assignment,
see section 5.4).

5.3 Documentation of the Software Architecture 135

The Communication component handles the agents communicative interactions
with other agents. The main functionality of communication in the AGV trans-
portation is handling messages to assign transports. The communicating com-
ponent encapsulates the behavior of the communication component, including the
protocols and the communication language used by the AGV agent. The protocols
are specified as state charts, we discuss an example of a communication protocol
in section 5.4.

The Decision Making component handles the agent’s actions. In the reference
architecture, action selection of a situated agent is based on a behavior-based
action selection mechanism extended with roles and situated commitments (see
section 4.5.2). Due to the complexity of decision making of the AGV agent, we
have modelled the decision making component as a hybrid architecture that com-
bines a blackboard pattern with sequential processing. This architecture combines
complex interpretation of data with decision making at subsequent levels of ab-
straction. The current knowledge repository serves as blackboard, while the action
controller coordinates the selection of a suitable operator. After job selection, the
operator selection component selects an operator at a fairly high level (move, pick,
drop, etc.). The operator selection component is designed as a free-flow tree ex-
tended with the notions of role and situated commitment. The main roles of
the AGV agent are work, charge, and park. The main situated commitments
are working commitment and charging commitment. A general explanation of a
free-flow tree that is similar to the tree of the AGV agent is given in chapter 3,
see section 3.4.3.2. The operator generation component transforms the selected
operator into a concrete operator (e.g., move(segment x)). Collision avoidance
and deadlock avoidance are responsible to lock the trajectory associated with the
selected operator. As soon as the trajectory is locked, the selected operator is
passed to the execution component that converts the operator to an influence that
is invoked in the local virtual environment. If during the subsequent phases of
decision making the selected operator can not be executed, feedback is sent to the
action controller that will inform the appropriate component to revise its deci-
sion. For example, if the operator generation component has selected an operator
move (segment x) and the collision avoidance module detects that there is a long
waiting time for this segment, it informs the action controller that in turn instructs
the action generation component to consider an alternative route.

5.3.4.2 Design Rationale

The current knowledge repository enables the data accessors to share state and to
communicate indirectly. Communication and decision making act in parallel, each
component in its own pace, supporting flexibility. Communication in the AGV
application happens at a much higher pace than action selection. This difference
in execution speed is exploited to continuously reconsider transport assignment in

136 Architectural Design of an AGV Transportation System

the period between an AGV starts moving towards a load and the moment when
the AGV picks the load (a detailed explanation follows in section 5.4).

Since the representation of the internal state of AGV agents and the observable
state of the local virtual environment are similar (examples are the status of the
battery and the positions of AGVs), we were able to use the same data types to
represent both types of state. As such, no descriptions were needed to interpret
representations resulting from sensing the local virtual environment. This resulted
in a simple design of the perception module.

For an efficient design of the communication module, we have defined a specific
communication language and an ontology that is tailored to the needs of the AGV
transportation system. Since only a limited set of performatives were needed,
and inter-operability was not an issue in the project, reusing an existing standard
library (such as provided by e.g., Jade [38]) would have caused too much overhead.

In the initial phase of the project, we used a free-flow tree for decision making.
However, with the integration of collision avoidance and deadlock avoidance, it
became clear that the complexity of the tree was no longer manageable. Therefore
we decided to apply an architecture that allows incremental decision making. At
the top level, a free-flow tree is still used to select an operator at a high-level of
abstraction; this preserves the advantage of adaptive action selection with a free-
flow tree. At the following levels, the selected operator is further refined taking
into account collision avoidance and deadlock avoidance. Each component in the
chain is able to send feedback to the action controller to revise the decision. This
feedback loop further helps to improve flexible decision making.

5.3.5 Collaborating Components View of the Local Virtual
Environment

We now zoom in on the software architecture of the local virtual environment.
We focus on the local virtual environment of the AGVs. Fig. 5.10 shows the
collaborating components view of the local virtual environment.

The general structure of the local virtual environment is related to the struc-
ture of the application environment in the reference architecture as follows. The
state repository corresponds to the state repository in the reference architecture,
see Fig. 4.8 in section 4.4.2. The state elements are specific to the local vir-
tual environment of an AGV control system. The perception manager provides
the functionality for selective perception of the environment, similar to the rep-
resentation generator in the reference architecture, see section 4.3.3. Contrary
to the representation generator, the perception manager interacts only with the
state repository; the functionality of the observation & data processing module in
the reference architecture is absent in the local virtual environment. The action
manager integrates the functionality of the interaction module of the application
environment and the translation of influences in the deployment context. The

5.3 Documentation of the Software Architecture 137

AGV Agent
A Mmessage request / percept a influence
4 v
Perception Manager
Local
Virtual

Environment

Communication Action
Manager Manager
State
Synchronization
Y Y ‘
Low-level y E'nsor data v E'nsor i
communication ObjectPlaces interaction instructions
ObjectPlaces Middleware & E'nsor
Software © State ltem e FExposed Interface
Component
KEY P e~ Shared Interface
8 Repository 1 i Map Overlay > Interaction
<«

Figure 5.10: Collaborating components view of the local virtual environment of

AGVs

communication manager integrates the functionality of the communication service
of the application environment and the bidirectional translation of messages with
the deployment context. Finally, the laws for perception, action, and communica-
tion, are not explicitly modelled in the local virtual environment, but integrated
in the applicable components.

138 Architectural Design of an AGV Transportation System

5.3.5.1 Elements and their Properties

State. Since the virtual environment is necessarily distributed over the AGVs
and the transport base, each local virtual environment is responsible to keep its
state synchronized with other local virtual environments. The state of the local
virtual environment is divided into three categories:

1. Static state: this is state that does not change over time. Examples are the
layout of the factory floor, which is needed for the AGV agent to navigate,
and (AGVid, IPnumber) tuples used for communication. Static state must
never be exchanged between local virtual environments since it is common
knowledge and never changes.

2. Observable state: this is state that can be changed in one local virtual
environment, while other local virtual environments can only observe the
state. An AGV obtains this kind of state from its sensors directly. An
example is an AGV’s position. Local virtual environments are able to observe
another AGV’s position, but only the local virtual environment on the AGV
itself is able to read it from its sensor, and change the representation of the
position in the local virtual environment. No conflict arises between two
local virtual environments concerning the update of observable state.

3. Shared state: this is state that can be modified in two local virtual envi-
ronments concurrently. An example is a hull map with marks that indicate
where AGVs intend to drive—we explain the use of hull maps in detail when
we discuss collision avoidance in section 5.5. When the local virtual envi-
ronments on different machines synchronize, the local virtual environments
must generate a consistent and up-to-date state in both local virtual envi-
ronments.

Perception Manager handles perception in the local virtual environment. The
perception manager’s task is straightforward: when the agent requests a percept,
for example the current positions of neighboring AGVs, the perception manager
queries the necessary information from the state repository of the local virtual
environment and returns the percept to the agent. Perception is subject to laws
that restrict agents perception of the virtual environment. For example, when an
agent senses the hulls for collision avoidance of neighboring AGVs, only the hulls
within collision range are returned to the AGV agent (for details see section 5.5).

Action Manager handles agents’ influences. AGV agents can perform two kinds
of influences. One kind of influences are commands to the AGV, for example mov-
ing over a segment and picking up a load. These influences are handled fairly easily
by translating them and passing them to the E’nsor control software. Obviously,
transport agents do not perform this kind of influences. A second kind of influences
attempt to manipulate the state of the local virtual environment. Putting marks

5.3 Documentation of the Software Architecture 139

in the local virtual environment is an example. An influence that changes the state
of the local virtual environment may in turn trigger state changes of neighboring
local virtual environments (see Synchronization below). Influences are subject to
laws, e.g., when an AGV projects a hull in the local virtual environment, this
latter determines when an AGV acquires the right to move on.

Communication Manager is responsible for exchanging messages between agents.
Agents can communicate with other agents through the virtual environment. A
typical example is an AGV agent that communicates with a transport agent to as-
sign a transport. Another example is an AGV agent that requests the AGV agent
of a waiting AGV to move out of the way. The communication manager translates
the high-level messages to low-level communication instructions that can be sent
through the network and vise versa (resolving agent names to IP numbers, etc.).
Communication is subject to laws, an example is the restriction of communication
range for messages used in the field-based approach for transport assignment, see
section 5.4.

Maintenance is responsible for maintaining dynamism in the local virtual en-
vironment. We give an example of such dynamism when we discuss field-based
transport assignment in section 5.4.

Synchronization has a dual responsibility. It periodically polls E’nsor and up-
dates the state of the local virtual environment accordingly. An example is the
maintenance of the actual position of the AGV in the local virtual environment.
Furthermore, synchronization is responsible for synchronizing state between local
virtual environments of neighboring machines. To synchronize state among local
virtual environments, the interaction between the synchronization component and
the middleware is bidirectional. We give examples of such an update process when
we discuss collision avoidance in section 5.5.

5.3.5.2 Design Rationale

Different functionalities provided by the local virtual environment are assigned to
different components. This helps architects and developers to focus on specific
aspects of the functionality of the local virtual environment. It also helps to
accommodate change and to update one component without affecting the others.

Changes in the system (e.g., AGVs that enter/leave the system) are reflected in
the state of the local virtual environment, releasing agents from the burden of such
dynamics. As such, the local virtual environment—supported by the ObjectPlaces
middleware—supports openness.

Since an AGV agent continuously needs up-to-date data about the system
(position of the vehicles, status of the battery, etc.), we decided to keep the rep-
resentation of the relevant state of the deployment context in the local virtual
environment synchronized with the actual state. Therefore, E'nsor and the Ob-

140 Architectural Design of an AGV Transportation System

jectPlaces middleware are periodically polled to update the status of the system.
As such, the state repository maintains an accurate representation of the state of
the system to the AGV agent.

Laws are not explicitly modelled in the local virtual environment, but inte-
grated in the corresponding components. This improves efficiency, since there is
no need to look-up the applicable laws from a repository. On the other hand, the
design becomes less organized since laws are scattered over different elements.

The general architecture of the local virtual environment of the AGV applica-
tion considerably contributed to the development of the application environment
of the reference architecture. However, for the reference architecture we decided
to split up the functionalities of the perception, interaction, and communication
managers, and to introduce an explicit representation of laws in the system. Sec-
tion 4.3.3.5 explains the motivations in detail.

5.4 Transport Assignment

We now explain transport assignment in the AGV transportation system. Tra-
ditional AGV systems use so called “schedule-based transport assignment”. A
schedule defines a number of rules that are associated with a particular location
and is only valid for that location. The rules define what a vehicle has to do when
it visits the schedule’s associated location. The transportation system itself deter-
mines when the schedule is triggered. In other words, the moment of triggering a
schedule depends on the current situation of the system, e.g. the current position
and status of the vehicles, loads, etc. Schedule-based transport assignment has
two important advantages: (1) the behavior of the system is deterministic, and
(2) transport assignment can precisely be tailored to the requirements of the ap-
plication at hand. Unfortunately, the approach has also disadvantages. First, the
approach is complex and labour-intensive. Layout engineers have to define all the
rules manually. Second, the assignment of transports is statically defined. The
approach lacks flexibility. To improve flexibility, dynamic scheduling is introduced.
Dynamic scheduling allows reassignment of jobs when a vehicle is able to perform
more opportune work. Yet, the approach remains limited since it only allows an
AGYV to perform a new pick job in very specific circumstances, for example, when
an AGV drives to a park location or when it performs an opportunity charge
action.

The decentralized architecture aims to provide an approach for transport as-
signment that enables AGVs to flexibly switch transport assignment when oppor-
tunities occur. In this section, we discuss a decentralized mechanism for transport
assignment that is based on gradient fields [198, 199, 179, 178]. We explain how
the mechanism works, we zoom in on the decision making component of AGV
agents, and we explain test results obtained from simulations on a real map. Fi-
nally, we briefly discuss a protocol-based approach to assign transports to AGVs

5.4 Transport Assignment 141

and we compare this approach with field-based transport assignment.

5.4.1 Gradient Field Based Transport Assignment

Techniques based on fields have been put forward as a valuable approach for the
coordination of agents in a metric space [74, 126, 47, 148, 127]. In this approach,
elements in the environment produce fields, which are propagated in the environ-
ment in a certain range. At each position in the metric space these fields have a
certain value, forming potential fields. These values are typically inversely propor-
tional to the distance from the source of the field. Agents perceive the fields and
combine them in a certain way. The behavior of an agent then simply consists of
following the combined potential field uphill or downhill, that is, agents follow the
direction of the gradient of the combined field. Whereas most of the existing work
on field-based coordination of software agents is applied in simplified settings, we
explain how we have applied the approach in a complex real-world domain.

The basic idea of field-based transport assignment is to let each idle AGV fol-
low the gradient of a field that guides it toward a load that has to be transported.
There are two types of fields in the system: (1) transports emit fields into the
environment that attract idle AGVs; (2) to avoid multiple AGVs driving towards
the same transport, AGVs emit repulsive fields. AGVs combine received fields and
follow the gradient of the combined fields, that guide them towards pick locations
of transports. The AGVs continuously reconsider the situation of the environment
and transport assignment is delayed until the load is picked, which benefits the
flexibility of the system. To explain the field-based approach for transport assign-
ment, we use the scenario depicted in Fig. 5.11.

AGYV agents and transport agents. Task assignment is achieved by the in-
teraction between AGV agents and transport agents. Physically, transport agents
execute at the transport base, but conceptually each transport agent resides at
the pick location of the load of the associated transport. In particular, transport
agents are situated in the local virtual environment of the transport base sys-
tem and each transport agent occupies the position of the load of its associated
transport in the local virtual environment.

Both AGV and transport agents emit fields in the local virtual environment,
called AGV fields and transport fields respectively, see Fig. 5.11. Fields have a
certain range and contain information about the source agent. AGV fields have a
fixed range, while the range of transport fields is variable. Fields are refreshed at
regular times, according to a predefined refresh rate.

AGYV agents store received fields. When an AGV agent perceives fields, it
stores the data contained in these fields in a field-cache. The field-cache consists of
a number of cache-entries. Each cache entry contains the identity of the received
field, the most recent data contained in that field and a freshness. The freshness
is a measure of how up-to-date the cached data is. For example, in Fig. 5.11 the

142 Architectural Design of an AGV Transportation System

Figure 5.11: Example scenario of field-based transport assignment. Lines represent
paths of the layout, small circles represent nodes at crossroads, hexagons represent
transports, dotted circles represent transport fields, and full circles AGV fields.

Figure 5.12: Two successive scenarios in which AGV 1 follows the gradient of the
combined fields. For clarity, we have not drawn the fields.

5.4 Transport Assignment 143

field-cache of AGV A will consists of three entries, one for transport 1, one for
transport 2, and one for AGV B.

AGYV agents construct calculated-fields to decide their movement. An
AGYV agent constructs a calculated-field to decide in which direction to drive from
a node. A calculated-field is a combination of the received fields, which are stored
in the field-cache. The lower the freshness of a cache-entry, the lower the influence
of the associated field on the calculated-field.

When an AGV is on its way from one location to another, it will lock a certain
number of nodes in advance, reserving a part of the route. The reason for locking
nodes is twofold: (1) it enables vehicles to avoid collisions and prevent deadlock
situations; (2) it allows vehicles to keep moving, vehicles do not have to accelerate
and decelerate in between two consecutive nodes. Node locking is based on a
predefined distance (LockAheadDistance parameter). We elaborate on locking
when we explain collision avoidance in section 5.5.

The calculated-field is therefore constructed from the last node that has been
locked and contains values for each outgoing segment. An AGV agent follows the
calculated-field in the direction of the smallest value. This can be considered as
following the gradient of the calculated-field downhill.

Transport fields have an attractive influence on the calculated-field, which re-
sults in AGVs driving towards unassigned transports. However, it is undesirable
that many AGVs drive to the same transport, since they will obstruct each other
and travel superfluous distance. To remedy this, AGV fields have a repulsive
influence.

In the left part of Fig. 5.12, AGV A constructs a calculated-field on a node
(circle at the crossroad of the paths). Although transport 1 is closer, the calculated-
field will guide AGV A towards transport 2. This is the result of the repulsive
effect of AGV B. Notice that it would have been ineffective for AGV A to drive
towards transport 1, since AGV B is closer and likely will reach the transport first.

Task assignment occurs at pick up. Task assignment is delayed until an AGV
actually reaches the pick location and picks up the load. This results in a greater
flexibility with respect to task assignment, in comparison with the traditional
centralized approach. By delaying task assignment, the field-based approach can
cope with unforseen situations like transports which suddenly popup, as illustrated
in the left part of Fig. 5.12. While AGV A is driving towards transport 2, a new
transport (transport 4) appears close to AGV A. Since no transport has been
assigned to AGV A yet, it can drive towards the closer transport 4.

5.4.1.1 Software Architecture

We limit the discussion of the software architecture to the decision making compo-
nent of the AGV agent, see Fig. 5.13. The architecture corresponds to the decision
making component defined in the reference architecture extended with a number

144 Architectural Design of an AGV Transportation System

of additional elements (see the discussion in section 5.3.4). Transport agents have
a similar but more simple decision making component since these agents have only
to deal with emitting fields. We discuss the various components of the decision

Route Data
Router l
Decision Making
Field
Calculator
Field Cache Calculated
Field
v Operator
Collision &
Action Selection = ——»| Deadlock
Current Avoidance
Knowledge Update
Operator
o Y
T
P Field Transport Execution
< Update
Distance to Most
Important Transport
Influence
A
Local Virtual Environment
|:| Runtime Component
®—e Exposed Interface —» Data Flow

KEY Ej Data Repository

O Data Element

Agent-Environment

—— Interface Connector ===
Interface

Figure 5.13: Decision making component of the AGV agent for field-based trans-
port assignment

making component in turn. For a detailed discussion of the architecture of field-
based transport assignment, we refer to [198, 179].

Field-cache: This repository stores the information of fields of other AGV agents
and transport agents in cache-entries. A freshness is associated with each cache-
entry, which is a measurement of how up-to-date the entry is.

Router. The router uses a map of the warehouse layout with nodes and segments

5.4 Transport Assignment 145

to calculate paths and distances from one node to another. For testing, we have
used a static router that uses the A* algorithm [88]. However, the approach is
compatible with a dynamic router that would take into account dynamic runtime
information such as traffic distribution and blocked segments.

Field calculator. The field calculator constructs a calculated-field from the last
selected target node by combining the received fields, which are stored in the field-
cache. The higher the freshness of a cache-entry, the more influence the field as-
sociated with the cache-entry will have on the construction of the calculated-field.
Thus, although still used, less importance is given to outdated information. The
field calculator makes use of the router to calculate the values of the calculated-
field on different positions. The gradient of the calculated-field is used as driving
direction on the target node.

Field update. The field update component requests perception updates to up-
date the fields for the AGV agent. Therefore, the field update component selects
a field focus and an appropriate set and filters to sense the environment. Field
update requests are periodically invoked by the action selection component.

Action selection: The action selection component continuously reconsiders the
dynamic conditions in the environment and selects appropriate actions to perform
the agent’s tasks. Action selection passes the selected operator to the Collision &
Deadlock Avoidance component that locks the path associated with the selected
operator. As soon as the path is locked, the operator is passed to the Execution
component that invokes an influence in the local virtual environment. Action se-
lection maintains the agent’s current most important transport and the distance
to the most tmportant transport. These values are used to achieve the repulsive
influence of AGV agents. The action selection component of a transport agent
maintains, among other data, the current priority of the transport and the field
range. To avoid starvation of the transport, the priority of the transport grows over
time. The field-range of the transport agent is a function of time and the number
of interested AGV agents. The following two high-level descriptions summarize
the behavior of the agents during task assignment:

{Action selection procedure of the AGV agent}
while idle
do repeat with constant frequency {
1. Sense fields and enter them in the field-cache
2. Select operator
3. Perform influence

}

{Action selection procedure of the transport agent}
while not assigned
do repeat with constant frequency {

146 Architectural Design of an AGV Transportation System

1. Calculate priority and field-range
2. Update status
b

The local virtual environment is responsible for spreading the fields. Field
management is a dynamic process that takes into account the status of the agents.
As soon as an AGV has picked up a load, it will inform the transport agent and
execute the transport.

5.4.1.2 Test Results

To evaluate the field-based approach for transport assignment, we have performed
a series of simulation tests on the map of a real layout that has been implemented
by Egemin at EuroBaltic, see Fig. 5.14. The size of the physical layout is 134 m

L
. =
.o’
. -e)me) -s jme)

- - — —
= ¢ - — D s - .
L 22Y 2 . L 2 - - » - - - .
PP se)jms)mspmes) welms) w=@i=s)

WaAP LAY oY P AP

L

Figure 5.14: Map used for testing transport assignment

x 134 m. The map has 56 pick and 50 drop locations. The six locations at the
lower side of the map are only pick locations, all other locations are pick and drop

5.4 Transport Assignment 147

locations. For convenience, a number of small modifications were performed to
the map, e.g., all curved segments were changed to straight lines.

Transport profile and AGVs. We used a standard transport test profile that
is used by Egemin for testing purposes. This profile generates 140 transports
with a random pick location and a random drop location per simulation run,
corresponding to the number of transports that are generated in one hour real
time.

In the simulation, we used 14 AGVs just as in the real application. The average
driving speed of AGVs is 0.7 m/s, while pick and drop actions take an average
amount of time of 5 s.

Simulation and metrics. We used an AGV simulator for testing the field-
based approach for task assignment [1]. The simulator uses a framework for time
management [91, 90] to make sure the simulation results are independent of per-
formance characteristics of the execution platform, working load of the processor,
and amount of memory. Tests were run on a cluster of 40 machines: P4 2Ghz,
512MB RAM, Debian Stable 3.0.

Every simulation was run for 50000 timesteps, corresponding to approximately
one hour real time, i.e. one time step represents 20 ms in real time. All test results
are average values over 20 simulation runs. Performance is measured in terms of
throughput and reaction time. Additionally, the amount of communication needed
is measured.

Reference algorithm: Contract-Net. We used standard Contract-Net (CNET
[183, 237]) as a reference algorithm to compare the field-based approach. With
CNET each transport that enters the system is assigned as soon as possible to the
most suitable AGV (i.e., an idle AGV for which the cost to reach the pick loca-
tion is minimal). When transports can not be assigned immediately, they enter
a waiting status. All waiting transports are ordered by priority, and this priority
determines the order in which transports are assigned. The priority of transports
grows over time, the same way as in the field-based approach.

Refreshment of fields. Maintenance of fields is achieved by periodically broad-
casting the status of the fields (both position and strength). Obviously, the period
between subsequent broadcasts strongly affects the amount of messages being sent.
Making the period too short will produce a huge number of useless messages, but
each agent in the system will have up-to-date information. On the other hand, if
the broadcast period is too long, AGVs may have outdated information about the
fields and probably miss some opportunities.

Fig. 5.15 shows the expected decrease in number of messages sent if the period
between two broadcasts increases. The values on the X-axis express the field
refresh period in time steps, e.g. a value of 20 indicates that the field status is
broadcasted every 20 x 20 ms = 400 ms. With a field refresh period of 200 time
steps the number of messages sent with the field-based approach is 1.7 times higher

148 Architectural Design of an AGV Transportation System

I I I I I I Fiel&-Basec; L
\ CNET -
50000 .

\

\

\\
3 \
S 40000 | -
%23 \
(%] \
(0] \
£ \
S 30000 [\ T
o}
o)
£
3
£ 20000 | B
©
°
|_

10000 P — T
———————— Xommmm s X X e X e X e X X X - X
0 1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
Period between broadcasts (in timesteps)

Figure 5.15: Amount of messages being sent

than with CNET. Of course what is interesting are the implications of reducing
the field refresh on the performance of the system.

Performance and field refresh. Fig. 5.16 depicts the percentage of transports
handled as a function of the field refresh period. It can be seen that the percentage
of completed tasks fluctuates around 81,5% and slowly decreases, the difference
between a refresh period of 20 and 200 is only 1% but still significantly better then
the CNET approach. Fig. 5.17 illustrates that the average waiting time slowly
increases with lower refresh rates, here the difference between refresh period 20
and 200 is 14%, which is still 31% better then the CNET approach.

These results clearly illustrate that communication overhead can be reduced
by using a longer broadcast period, without significant performance loss. Overall,
the throughput of the field-based approach is 10% higher than the throughput of
CNET. The average waiting time of a transport is 39% lower, while the average
number of transports waiting at each time step was around 20% lower for the
field-based approach. [179] elaborates on the distance travelled by the AGVs. On
average, the travelled distance of all AGVs with the field-based approach was 33%
lower compared to CNET which is a result of a more optimal allocation of tasks.

Average waiting time per pick location. Although the average waiting time
for transports is significantly better for the field-based approach compared to the
reference algorithm, it is interesting to compare the average waiting time for trans-

5.4 Transport Assignment 149

90 T T T T T T LT T T

Field-Based —+—
CNET ---%---

85 | —

75 | b

70 b -

% Completed

60 - ,

55 - .

50 I I I I I I I I I
20 40 60 80 100 120 140 160 180 200

Period between broadcasts (in timesteps)

Figure 5.16: Percentage of completed transports

ports per pick location.

Fig. 5.18 shows the average waiting time for transports grouped by pick loca-
tion. Clearly, the CNET reference algorithm achieves a more equal distribution.
In particular, the waiting times for pick locations 1 to 5 are significantly higher
for the field-based approach. This drawback can be explained as follows: because
the pick locations 1 to 5 are far away from the main traffic in the warehouse, the
chance an AGV will be close to the pick location is significantly lower and this
decreases the chance for immediately attraction an idle AGV when a new trans-
port pops up. Starvation is prevented since the priorities of the transports on the
remote locations gradually increase when the loads are not picked. It simply takes
a longer time for the field to “grow” and attract AGVs compared to the immediate
assignment of an AGV in the CNET protocol. A possible remedy to this problem
is to increase the strength of fields of transports on isolated locations right from
the moment the transport is created.

Reflection. In the field-based approach for task assignment each idle AGV is
guided toward a load of an unassigned transport by following the gradient of a
field that combines attracting fields received from transports and repulsing fields
received from competing AGVs. By delaying the definitive assignment of a trans-
port until the load is finally picked, the approach achieves the required flexibility
to exploit opportunities that may arise while AGVs search for transports in the
highly dynamic environment. In addition, the field-based approach for transport

150 Architectural Design of an AGV Transportation System

I I I I I Fiela-Basecli "
6000 - CNET -~
———————— S e R R T T 4
[o))
£
g 5000 —
[%2]
Q
2
@ 4000 -]
£ e A
% — 1
5 3000 —
Ke)
1S
2
o 2000 R -
(o))
o
g
< 1000 | 1
O 1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
Period between broadcasts (in timesteps)

Figure 5.17: Average waiting time for transports

assignment supports openness. The approach easily handles AGVs that leave or
re-enter the system. When for example an AGV becomes available after it has
finished a transport, the AGV immediately and automatically participates in the
ongoing transport assignments.

Tests show that the field-based approach outperforms standard CNET for
throughput as well as for average waiting time of transports. On the other hand,
the approach requires an additional amount of bandwidth, and the waiting time
for isolated pick locations is higher compared to CNET. To deal with local minima,
agents do not use straight distances from sources of fields to construct calculated
fields, but use a router that takes into account real distances along the paths on
the map. As a result, we experienced little problems with local minima.

5.4.2 Protocol-Based Transport Assignment

As an alternative to the field-based approach, we have studied and developed a
protocol-based approach for transport assignment. The protocol is a dynamic
version of CNET in which transport agents and idle AGV agents continuously
reconsider the assignment of transports until loads are picked, aiming to exploit
opportunities that arise in the environment. We call the protocol DynCNET.
Whereas the coordination among transports and AGVs with gradient fields is
an emergent phenomenon, the goal of the DynCNET protocol is to consider the

5.4 Transport Assignment 151

T T T T CNET T
20000 |- Field-based -
7
&
% 15000 -
[0
£
°
£
£ 10000 | -
S
[0
()]
o
2
< 5000 |- -
0 “H'”””””” ”””H ”””” ”H”H “”
0 10 20 30 40 50

Pick Location

Figure 5.18: Average waiting time for transports per pick location

interaction between transport agents and AGV agents explicitly.

5.4.2.1 Protocol Description

Fig. 5.19 shows a high-level description of the DynCNET protocol for transport as-
signment. The protocol describes the behavior of the communication components
of both AGV agent and transport agent.

In the DynCNET protocol, multiple transport agents negotiate with multiple
AGYV agents. First we look at the protocol from the perspective of the transport
agent. Then we look at the protocol from the point of view of the AGV agent.

Protocol transport agent. When a new transport enters the system, the cor-
responding transport agent enters the state Awarding announcing the new task
is available (send(publish)). The transport agent only contacts agents within
a certain range of the pick location of the load. When no AGVs are available,
the transport agent gradually increases the range to find AGVs. The set of avail-
able AGV agents is called the InitialCandidates. The AGV agents can bid
on the transport (send(quote)). Once the transport agent has receive the bids
of the candidate AGV agents it selects a winner (send(win)) and it enters the
state Assigned. The local virtual environment—supported by the ObjectPlaces

152 Architectural Design of an AGV Transportation System
[transport ready] Protocol Transport Agent [vehicle ready] Protocol AGV Agent
’ ’
Active Working
a ~ N/ AT
[InitialCandidates] send(abort) send(quote)
send(publish) Switch AGV Voting
T [aborted]
~ [winner] N
Awarding [new leader] send(retract) Detter offer] send(quote)
send(win)
[retracted] Swith Transport Intentional
P
d/\bl' h T
send(win) send(pubish) i send(bound)
SwitchTransport()
Executed Assigned 1I_E xecute
\\ [bounded] \\ ransport
é AGVInScope() AGVOutOfScope() TransportinScope() TransportOutOfScope()
[transport completed] é [¥shiclelready]
KEY UML Statechart

Figure 5.19: High-level description of the DynCNET protocol for transport as-
signment

middleware—provides a service to transport agents to inform them when AGVs
come within scope to take part in the negotiation or when AGVs exit the zone of
interest (AGVInScope() and AGVOutOfScope () respectively). The transport agent
may switch to a new leader when a more suitable AGV becomes available (new
leader). In such case the previous leader is informed by means of an abort mes-
sage. Finally, when the current leader picks the load, the transport agent will
be notified (the transport is bound) after which the transport is executed (state
Executed).

Protocol AGV agent. Let us now look at the protocol from the point of view
of the AGV agent. The agent of an idle AGV that is looking for work (vehicle
ready) is in the Voting state. This agent can send quotes for announced trans-
ports. Quotes typically depend on the actual distance between the AGV and the
pick locations of the loads of the announced transports. When an AGV agent is
selected as winner (winner) it enters the state Intentional. The local virtual en-
vironment provides a service to AGV agents to inform them when transports enter
or exit the scope of interest (TransportInScope () and TransportOut0fScope()).
When the AGV agent receives an offer that is better than its current best offer,

5.4 Transport Assignment 153

it may switch transports. In such case, the old transport agent will receive a
retract message. Finally, when the AGV arrives at the load of the transport for
which it is the current leader, it will pick the load, inform the transport agent
(send (bound)), and execute the transport.

The DynCNET protocol allows agents to regularly reconsider the situation in the
environment and switch transport assignment when opportunities occur. Since
transport agents and AGV agents have a different context, we allow both types
of agents to switch transports. AGV agents can switch to a new transport that
suddenly pops up, transport agents can switch to a new AGV agent that becomes
available. Obviously, care must be taken that the overall behavior of the system
converges and AGVs effectively perform transports. This problem was relatively
easy solved by tuning a number of parameters in the protocol. Sensitive parame-
ters are the broadcast range of the agents and the factor with which the broadcast
range grows over time when no suitable agents are found have. For details about
parameter tuning, see [67].

5.4.2.2 Test Results

To evaluate the DynCNET protocol, we have performed a series of simulation
tests. We used the same map and test setting as for the field-based approach,
see section 5.4.1.2. This allowed us to compare DynCNET with the field-based
approach and CNET. For the tests, we have determined and used the most optimal
parameters for the three tested protocols. Test runs were extended from 50000 to
200000 time steps, corresponding to approximately four hours real time testing.
We have measured communication load, average waiting time, and the number of
finished transports. In addition, we have performed a stress test in which AGVs
have to handle as quickly as possible a fixed number of transports from a limited
number of locations. This test simulates a peak load of transports in the system,
an example is the arrival of a truck with goods that have to be distributed in a
warehouse. All tests results are average values of 20 simulation runs.

Communication load. To compare the communication load, we have measured
the average number of messages sent per finished transport. Fig. 5.20 shows the
results of the test.

The number of messages of DynCNET is approximately the same as for the
field-based approach, while the communication load of CNET is about half of the
load of the dynamic protocols. However, an important difference exists between the
type of messages sent. Fig. 5.21 summarizes the number of unicast and broadcast
messages sent by the three protocols.

For CNET, more than 90 % of the communication are unicast messages. For
DynCNET the balance unicast—broadcast messages is about 75-25, yet, for the
field-based approach this balance is about 2575, thus the opposite. This difference
is an important factor for selecting appropriate communication infrastructure.

154 Architectural Design of an AGV Transportation System

140 T T T
CNET —+——
DynCNET ---%---
120 F Field-based 4
w 100 F5 e
o
D
@ B e SR SRt CENMVINEVERE AR SN A O T S 'S TEn Shid S
& % *
$ 80 .
S \
s \
5 60 | i
£ N
S T
=4 B e S e oS B S S S S—
40 —
20 —
oL ..
50000 100000 150000 200000

Time of simulation [timesteps]

Figure 5.20: Amount of messages being sent per finished transport

Average waiting time. Fig. 5.22 shows the test results for average waiting time
for transports. Average waiting time is expressed as the number of time steps
a transport has to wait before an AGV picks up the load. After the transition
period (around 30000 time steps), DynCNET outperforms CNET. The difference
increases when time elapses. On the other hand, the field-based protocol is slightly
better than DynCNET over the full test range. This came as a surprise to us, since
we expected—if fine tuned well—DynCNET could perform better than the field-
based approach.

Number of finished transports. Fig. 5.23 shows the number of transports
finished by each of the protocols during the test run. The results confirm the
measures of the average waiting time per finished transport. DynCNET handles
more transports than CNET, but less than the field-based protocol. After four
hours in real-time, CNET has handled 380 transports, DynCNET has handled
467 transports, and the field-based approach 515 transports. For the 467 executed
transports of DynCNET, we measured an average of 414 switches of transport
assignments performed by transport agents and AGV agents.

Stress test. In addition to the standard transport test profile, we have performed
a stress test in which 50 transports are created at a limited number of locations in
the beginning of the test. These transports have to be dropped at a particular set
of destinations. The test simulates for example the arrival of a truck with loads

5.4 Transport Assignment 155

CNET mmmmm

CNET s
120 - DynCNET === 120 DynCNET ===
Field-based —— Field-based ——

@

2 100 | 4 9 100+ B
=3 @
2 2

€ = 8or 7
= %
g g
S 2

g g 6o 1
5 2
= o

] g 40

] £
Z =]
z

20 q

0 0
10000 50000 100000 150000 200000 10000 50000 100000 150000 200000
Time of simulation [timesteps] Time of simulation [timesteps]
(a) (b)

Figure 5.21: (a) Number of unicast messages, (b) Number of broadcast messages.

T T
CNET —+—
16000 - DynCNET -]
Field-based
14000 B
L+
IS
12000 4

10000

8000

6000

Average Waiting time [timesteps]

4000

2000 b b
50000 100000 150000 200000

Time of simulation [timesteps]

Figure 5.22: Average waiting time

that have to be distributed in a warehouse. The task of the AGVs is to bring
45 of the loads as quickly as possible to the right destinations. We limited the
number of transports to 45 to avoid the effects of AGVs that hinder one another
while performing the final transports. The transport test profiles for the three
approaches was identical. Fig. 5.24 shows the test results.

The slopes of the curves of the field-based protocol and DynCNET protocol are

156

Architectural Design of an AGV Transportation System

' ' CNET —
600 - DYnCNET -
Field-based
500 —
X
%) X
h = X
S 400 | x -
2 x o
o X e
E=1 X ///
o 300 X A —
2 x A
2] N A
2 .
i g
200 |+ R .
X ~
X
,"Xz//f/
100 - X-ﬁ/ﬂ“ 1
T
ol
0 S T T T |
50000 100000 150000 200000
Time of simulation [timesteps]
Figure 5.23: Number of finished transports
T T T T T T T T
CNET —+—
50 L DynCNET ------
Field-based
e ¥
40 - e B
2 X
S g
Q 3
%) ’,A
& 30 4
5 X -
3 ;
2 g
[72] f
€ 20} N // i
i
10 - .
x
0....I....I....I....I....I....I....I....I....I..
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Figure

Time of simulation [timesteps]

5.24: Number of finished transports in the stress test

5.4 Transport Assignment 157

about equal but much steeper than the curve of CNET. The results demonstrate
that CNET requires about 2.5 times more time to complete the 45 transports than
the dynamic protocols. The communication load for this test scenario is shown in
Fig. 5.25.

450 e e e

CNET —+—
DynCNET ---%---
400 - Field-based T

350 J
300 i
250 |+ g

200 | .

Messages per transport

150 X |

100 -
N

50 B \#\”"’”w*w*ﬂ*f‘w777+—7+77

Finished transports

Figure 5.25: Messages per finished transports

In the stress test, the communication load of the field-based protocol is slightly
higher as DynCNET during the full test. In the initial phase of the test, the dy-
namic protocol requires much more bandwidth as CNET (about factor four), later
the difference converges to the difference we have measured for the standard test
profiles (about factor two).

Variance. The tests we have discussed in the previous sections are non-determinis-
tic. Orders are generated randomly and priorities are assigned randomly. To verify
the statistic significance of the mean values of the test results we have calculated
the 95 % confidence interval [197]. Fig. 5.26 shows the average waiting time per
finished transport of Fig. 5.22 with a 95 % confidence interval.

The results show rather small confidence intervals. This means that the vari-
ance of the test results is small. The results of the other tests show similar values
for confidence intervals. For details we refer to [67].

Reflection. DynCNET outperforms CNET on all performance measures. The
cost is a doubling of required bandwidth. Yet, contrary to our expectations, DynC-
NET is in general not able to outperform the field-based approach. At best DynC-

158 Architectural Design of an AGV Transportation System

T T . ,
Dynamic-CNET -+~
ey Field-Based T
Field-Based r—x—
14000 |
¥
.o g EFF
£ 12000 - %/%%% ¥ |
§ 10000 |- |
©
[}
& 8000 | |
c
LE . . -
6000 - +++++ +--- % |
4000 -%/ |
2000 Lo — 1 | | |

50000 100000 150000 200000
Waiting time per finished transport [timesteps]

Figure 5.26: Average waiting time per finished transport with a 95 % confidence
interval

NET is able to equal the performance of field-based transport assignment. With
respect to flexibility, DynCNET and the field-based approach are of the same
quality.

Contrary to field-based transport assignment, DynCNET defines the interac-
tions among agents explicitly. This allows to reason about the assignment of
transport in the system. It helps to better understand the overall behavior of
system, and it supports fine tuning of the protocol to application specific needs.
A significant difference exists in the ratio unicast—broadcast messages that are
communicated in the approaches. This difference is important with respect to the
applied communication infrastructure. Finally, an important distinction between
DynCNET and the field-based approach concerns robustness. Whereas field-based
transport assignment is robust to various failures such as a break down of an AGV
and the loss of messages, DynCNET is much more sensitive. Without additional
measurements, the DynCNET protocol can fail when for some reason the pre-
scribed sequence of messages is disturbed.

5.5 Collision Avoidance

We now explain how AGVs avoid collisions. In the centralized approach, collision
avoidance is realized as follows: for each AGV in the system, a series of hulls

5.5 Collision Avoidance 159

are calculated along the path each AGV is going to drive. A hull represents the
physical area an AGV occupies, and a hull projection projects a hull over a part of
the path the AGV intends to drive on. When two or more hull projections overlap,
AGVs are within collision range and all except one AGV are commanded to wait.

5.5.1 Decentralized Mechanism for Collision Avoidance

In a decentralized architecture, a central arbitrator does not exist. However, the
virtual environment enables the agents to act as if they are situated in a shared
environment, while the virtual environment takes on the burden of coordination.
Fig. 5.27 shows a series of screenshots of a simulation run in a realistic map. In
Fig. 5.27(a), two AGVs, A and B, are approaching one another. Both AGVs are
projecting hulls in the environment. At this point, no conflict is detected. In
Fig. 5.27(b), AGV B has projected further ahead, and is now in conflict with the
hull projection of AGV A. If we assume that AGV A has already reserved the
trajectory occupied by its hull, AGV A is given priority to AGV B that must wait.
In 5.27(c), AGV A is taking the curve, passing AGV B. Finally, in 5.27(d), AGV
A has parked at the bottom, and AGV B is moving.

We now describe the collision avoidance mechanism in more detail. First,
we focus on how the agent avoids collision without being aware of the actual
underlying collision avoidance protocol, then we study the work behind the scenes
(i.e. the protocol) in the virtual environment.

In order to drive, the agent takes the following actions:

1. The agent determines the path it intends to follow over the layout. The agent
determines how much of this path it wants to lock. This is determined by
LockAheadDistance parameter that ensures that the AGV moves smoothly
and stops safely?.

2. The agent marks the path it intends to drive with a requested hull projection.
This projection contains the agents id and a priority, that depends on the
current transport the AGV is handling.

3. The agent perceives the environment to observe the result of its action.
4. The agent examines the perceived result. There are two possibilities:

(a) The hull is marked as “locked” in the environment; it is safe to drive.

(b) The hull is not marked as locked. This means that the agent’s hull
projection conflicted with that of another agent. The agent may not

4Besides the LockAheadDistance, the AGV also applies basic rules for deadlock avoidance
such as locking a bi-directional path until the end to avoid that another AGV enters from the
other direction, leading directly to a deadlock situation. Yet, we do not further elaborate on
deadlock avoidance here.

160 Architectural Design of an AGV Transportation System

EEEENEEN

e

B R Sren overven:
B AN S Ak b
s FA S lssdle
>
N o

LI

i
il

@RS

(c) (d)

Figure 5.27: (a) Two AGVs approaching, (b) A conflict is detected, (¢) One AGV
passes safely, (d) The second AGV can pass as well.

pass; at this point the agent may decide to wait and look again at a later
time, or remove its hull projection and take another path altogether.

The virtual environment plays an important role in this coordination approach:
it must make sure that a hull projection becomes locked eventually. To this end,
the local virtual environment of the AGV agent that requests a new hull projection,
executes a collision avoidance protocol with local virtual environments of nearby
AGVs.

It is desirable to make the set of nearby AGVs not larger than necessary, since
it is not scalable to interact with every AGV in the system. On the other hand,
the set must include all AGVs with which a collision is possible: safety must be
guaranteed.

A solution to this problem is shown in Fig. 5.28. The local virtual environ-

5.5 Collision Avoidance 161

Hr 0@ S Qi

e SO0 rseet Engieh (Unted Sites)

Figure 5.28: Determining nearby AGVs

ment of a requesting AGV will interact with the local virtual environments of
other AGVs whose hull projection circle overlaps with the hull projection of the
requesting AGV. The hull projection circle is defined by a center point, which is
the position of the AGV itself, and a radius, which is equal to the distance from
the AGV to the furthest point on its hull projection. If two such circles overlap,
this indicates (to a first approximation) that the two AGVs might collide. We call
the set of AGVs with overlapping hull projection circles the requested AGVs.

The local virtual environment of the requesting AGV executes the following
protocol with the local virtual environment’s of requested AGVs. The protocol is
a variant on well-known mutual exclusion protocols based on voting.

1. The local virtual environment of the requesting AGV sends the requested
hull projection to the local environments of all requested AGVs.

2. The local environments of requested AGVs check whether the projection
overlaps with their hull projection. There are three possibilities for each of
the requested AGVs:

(a) No hull projections overlap. The local virtual environment of the re-
quested AGV sends an “allowed” message to the local virtual environ-
ment of the requesting AGV.

(b) The requesting AGV’s hull projection overlaps with the requested AGV’s
hull projection, and the requested AGV’s hull is already locked. The

162 Architectural Design of an AGV Transportation System

local virtual environment of the requested AGV sends a “forbidden”
message to the local virtual environment of the requesting AGV.

(¢) The requesting AGV’s hull projection overlaps with the requested AGV’s
hull projection, and the requested AGV’s hull is not locked. Since each
of the requested hulls contains a priority, the local virtual environment
of the requested AGV can check which hull projection has precedence.
If the hull projection of the requesting AGV has a higher priority than
that of the requested AGV, the local virtual environment of the re-
quested AGV replies “allowed”; it replies “forbidden” otherwise.

3. The local virtual environment of the requesting AGV waits for all “votes” to
come in. If all local virtual environments of the requested AGVs have voted
“allowed”, the hull projection can be locked and the state of the local virtual
environment is updated. If not, the local virtual environment of the request-
ing AGV waits a random amount of time and then tries again from step 1.

If at any time, the agent removes the requested hull from the virtual environ-
ment, the protocol is aborted.

The approach used for collision avoidance shows how the virtual environment
serves as a flexible coordination medium, which hides much of the distribution of
the system from the agents: agents coordinate by putting marks in the environ-
ment, and observing marks from other agents.

5.5.2 Software Architecture: Communicating Processes for
Collision Avoidance

We now illustrate how collision avoidance is dealt with in the software architecture
of the AGV transportation system. Fig. 5.29 shows the primary presentation of
the communication processes view for collision avoidance.

The communicating processes view presents the basic components of the AGV
control system and overlay them with the main processes and repositories involved
in collision avoidance; compare the module decomposition view of the AGV trans-
port system in Fig. 5.7 of section 5.3.2, the collaborating components of the AGV
agent in Fig. 5.9 of section 5.3.4, and the collaborating components view of the
local virtual environment in Fig. 5.10 of section 5.3.5. We now discuss the main
architectural elements involved in collision avoidance in turn.

The Perception Process is part of the perception component (see section 5.3.4),
and corresponds to the Perception process in the reference architecture. If the per-
ception process receives a request for perception, it requests the up-to-date data
from the local virtual environment and updates the agent’s current knowledge.

The Perception Generator Process is part of the perception manager (see sec-
tion 5.3.5), and corresponds to the Representation Generator process in the refer-
ence architecture. This process is responsible for handling perception requests, it

5.5 Collision Avoidance 163

AGV Agent

Update Current Get Data

Knowledge

Collision
Avoidance
Process

Perception
Process

€
)

Perceive
Monitor Hull

Project Hull
Sense Move

Representation

0 Local Virtual
i i Action
Perception Get Data Environment
Generator '\I@?gsg:sr

Process

Activate

Monitor

Position Update Hull

Hull
Maintainer
Process

Property
Maintainer
Process

Collision
Avoider

Move

” Project
Update Position Monitor Hull Hull

Setup Collision
4 Avoidance Protocol Y

Update Protocol E'nsor
Node . Interaction Process
Properties objectplaces Process
ObjectPlaces Middleware
& E'nsor Execute Protocol
. Boundary layer
Ej Repository
KEY
o—+o Exposed Interface

Q ——— —> Message

Figure 5.29: Communicating processes for collision avoidance

derives the requested data from the state repository of the local virtual environ-
ment according to the given foci of the request.

Collision Avoidance Process is part of the collision avoidance component of

164 Architectural Design of an AGV Transportation System

decision making, see section 5.3.4. This process is an application-specific instance
of the Decision Making process in the reference architecture. The collision avoid-
ance process calculates the required hull projection for collision avoidance, based
on the most up-to-date data and projects the hull in local virtual environment.
Once the hull is locked, the collision avoidance process invokes a move command
in the local virtual environment.

The Action Manager Process is part of the action manager component, see
section 5.3.5. This process corresponds to the Interaction process in the reference
architecture. The action manager process collects the influences invoked in the
local virtual environment and dispatches them to the applicable processes in the
local virtual environment, or to the E’nsor process. For a hull projection, the
action manager process passes the action to the collision avoider process.

Objectplaces repository is a repository of data objects in the ObjectPlaces
middleware, see section 5.3.2. The repository contains the hulls the AGV agent
has requested.

NodeProperties is a data repository in the middleware in which relevant proper-
ties of the node are maintained, such as the AGV’s current position. Maintenance
of node properties in the repository is handled by the Property Maintainer
Process. This process is a maintenance process of the local virtual environment,
see section 5.3.5. The current position in the node properties repository is used
by the ObjectPlaces middleware to determine whether the AGV is within collision
range of other AGVs.

The Collision Avoider is a helper process of action manager (see section 5.3.4)
that projects the requested hull in the objectplaces repository and initiates the
collision avoidance protocol in the middleware.

The Protocol Interaction Process is a process of the ObjectPlaces middleware
that is responsible for executing the mutual exclusion protocol for collision avoid-
ance with the AGVs in collision range. This process maintains the state of the
agent’s hull in the objectplaces repository.

The Hull Maintainer Process is part of the synchronization component, see
section 5.3.5. This process is an application-specific instance of a Synchronization
process in the reference architecture. The hull maintainer process monitors the
hull object in the objectplaces repository and keeps the state of the hull in the
state repository of the local virtual environment consistent.

5.6 ATAM Evaluation

For the evaluation of the software architecture of the AGV transportation system
we used the Architecture Tradeoff Analysis Method (ATAM) [45, 43]. The main

5.6 ATAM Evaluation 165

goal of the ATAM is to examine whether the software architecture satisfies system
requirements, in particular the quality requirements. We applied the ATAM for
one concrete application, in casu a tobacco warehouse transportation system that
was used as a test case in the project. In this section, we give an overview of the
ATAM evaluation. We briefly introduce the tobacco warehouse application and the
business goals. Then we zoom in on the utility tree and we discuss the analysis of
architectural approaches for two quality attribute scenarios. The section concludes
with a reflection on the ATAM experiences.

5.6.1 ATAM Workshop

In preparation to the ATAM evaluation, three stakeholders together with one of
the evaluators held a four-days Quality Attribute Workshop (QAW [33]). A QAW
is a facilitated method that engages stakeholders to discover the driving quality
attributes of a software-intensive system. During the QAW we developed a utility
tree for the tobacco warehouse transportation system.

The ATAM itself was conducted by a team of three evaluators and nine stake-
holders, including a project manager, two architects, a project engineer, two devel-
opers, a service and a simulation engineer, and a representative for the customer.
The workshop took one day and followed the standard ATAM phases, i.e., pre-
sentations of ATAM, business drivers, architecture and architectural approaches.
Next the quality attribute utility tree was discussed with the stakeholders and
two quality scenarios were analyzed in detail. The workshop initiated a number
of additional activities. A number of tests were conducted to investigate the main
risks that were identified during the workshop. An extra analysis of risks and
tradeoffs of the software architecture was performed with a reduced number of
stakeholders. Finally, the architects finished the architectural documentation, and
the evaluators presented the main workshop results.

5.6.2 Tobacco Warehouse Transportation System

In the tobacco application, bins with tobacco are stored in a warehouse and AGVs
have to bring the full and empty bins to different tobacco-processing machines
and storage locations. The warehouse measures 75 x 55 meters with a layout of
approximately 6000 nodes. The installation provides 12 AGVs that use navigation
with magnets in the floor (1800 in total). There are 30 startup points for AGVs,
i.e., points where AGVs can enter the system in a controlled way. AGVs use
opportunity charging and a 11 Mbps wireless ethernet is available for communica-
tion. Transports are generated by a warehouse management system. The average
load is 140 transports/hour, i.e., 11,5 transports/AGV. Processing machines can
be in two modes: low-capacity when machines ask for bins and high-capacity mode
when bins are pushed to machines. Particular opportunities for optimization are
double play (a double play is a combined transport consisting of a drop action in

166 Architectural Design of an AGV Transportation System

a predefined double play area by a specific vehicle and a pick action of a waiting
load in the same area by the same vehicle), late decision for storage orders, and
opportunity charging.

Important business goals for the tobacco warehouse transportation system are:

e Flexibility with respect to storage capacity, throughput, and order profiles.
e Extendibility of the layout, production lines, and the number of vehicles.

e Reliability, i.e. 99.99 % up-time, downtime may never cause production halt,
and full tracing of quantities.

e Integration with ICT environment, wireless communication, security policy,
and remote connectivity.

The installation is subject to a number of technical constraints, including
backwards compatibility with E’pia the general purpose framework developed by
Egemin that provides basic support for persistency, security, logging, etc., and
compatibility with E’'nsor the low-level control software deployed on AGVs. Fi-
nally, the load of the wireless network is restricted to 60 % of its full capacity.

5.6.3 Utility Tree

A utility tree provides a mechanism for architects and other stakeholders involved
in a system to define and prioritize the relevant quality requirements precisely.
A utility tree characterizes the driving attribute-specific requirements in a 4-level
tree structure where each level provides more specific information about important
quality goals with leaves specifying measurable quality attribute scenarios. Each
scenario is assigned a ranking that expresses its priority relatively to the other sce-
narios. Prioritizing takes place in two dimensions. The first mark (High, Medium
or Low) of each tuple refers to the importance of the scenario to the success of the
system, the second to the difficulty to achieve the scenario.

During the QAW, 11 different qualities and 34 concrete quality attribute sce-
narios were specified for the tobacco warehouse transportation system. Fig. 5.30
shows an excerpt of the utility tree of the AGV system. At the ATAM workshop,
minor changes were applied to the utility tree based on the discussion with the
extended group of stakeholders.

5.6.4 Analysis of Architectural Approaches

Based upon the high-priority quality goals, the architectural approaches that ad-
dress those factors were elicited and analyzed. During this step in the ATAM, a
number of architectural risks (i.e. problematic architectural decisions), sensitiv-
ity points (i.e. architectural decision that involve architectural elements that are
critical for achieving the quality attributes), and tradeoff points (i.e. architectural

5.6 ATAM

Evaluation

167

Utility —|

Performance

Scalability ——

Flexibility ——

Openess

Capacity —‘:

Bandtwidth ——

Number
of Vehicles

Routing —‘:

Transport
Assignment

— Maintainability — Start/ Stop ——

Add /
Remove AGV

(H,H)

(H,H)

(H,m)

(H.M)

(H.M)

(ML)

(H,M)

(HL)

(M, M)

(H,M)

(M,L)

P1.1: 12 AGVs with an availability of
85% should handle 112 transports / hour

P1.2: 12 AGVs with an availability of
100% should handle 140 transports / hour

P2.1: The amount of communication,
with 12 AGVs and a max. load of 140
transports/hour, does not exceed 60% of
the 11Mbps communication channel.

S1.1: The system should scale up to 24
AGVs, for similar system requirements,
without changing the software

F1.1: Ifan AGV blocks a path, other AGVs
choose an alternative route (if it exists)

F1.2.: If an operator disables a node, AGVs
choose an alternative route (if it exists)

F2.1: As long as a transport has not been
picked, the system dynamically changes
the transport to the most suitable AGV.

F2.2.: If an AGV drops an empty bin (add-
back feederes, conveyer 1) and a full bin is
available, this task is assigned to the AGV

M1.1: A cold start of the system is

possible within 15 minutes

O1.1: If an operator removes an AGV in
a controlled way, the rest of the system
continues working

0O1.2: If an operator starts an AGV ata
startuppoint, the AGV determines its
current job and continues working

Figure 5.30: Excerpt of the utility tree for the tobacco warehouse transportation

System

decisions that affect more than one attribute) of the software architecture were
identified. The group of stakeholders discussed two particular quality attribute
scenarios: one scenario concerning flexibility (transport assignment) and another
scenario concerning performance (bandwidth usage). We give an overview of the
results of the analysis of the two scenarios.

168

Architectural Design of an AGV Transportation System

5.6.4.1 Architectural Analysis of Flexibility

Fig.

5.31 shows an overview of the analysis of architectural decisions for the main

quality attribute scenario of flexibility. The table shows the main architectural

Analysis of Architectural Approach

As long as a transport has not been picked up, the system
dynamically changes that transport's assignment to the most

Scenario #: F2.1

suitable AGV.
Attributes Flexibility
Environment Normal operation
Stimulus A transport has not been picked up and the transport's

assignment can be improved.

Response The system dynamically changes the assignment of the
transport to the most suitable AGV.

Architectural decisions Sensitivity Tradeoff Risk

AD 1 Negotiating agents T1

AD 2 Locality $1

AD 3 DynCNET protocol for R1

transport assignment

Figure 5.31: Analysis architectural approaches with respect to flexibility

decisions (AD) that achieve the quality attribute scenario, and specifies sensitivity
points, tradeoffs, and risks associated with the architectural decisions. We give a
brief explanation of the various architectural decisions:

AD 1

AD 2

An agent is associated with each AGV and each transport in the system. To
assign transports, multiple AGV agents negotiate with multiple transport
agents. Agents continuously reconsider the changing situation, until a load
is picked. The continuous reconsideration of transport assignments improves
the flexibility of the system. However, it also implies a significant increase
of communication. This was registered as tradeoff T1.

For their decision making, agents take only into account local information
in the environment. The most suitable range varies per type of information,
and may even vary over time for one particular type of information, e.g.
candidate transports, vehicles to avoid collisions, etc. The determination of

5.6 ATAM Evaluation 169

AD 3

this range for various functionalities is a sensitivity point. This sensitivity
point was denoted as S1.

The dynamic Contract-Net transport assignment protocol is documented at
a high-level of abstraction. At the time of the ATAM, several important
decisions were not taken yet. The difficulty of parameter tuning to ensure
convergence and optimal behavior was unclear. This lack of clearness was
registered as risk R1.

5.6.4.2 Architectural Analysis of Bandwidth Usage

Fig. 5.32 shows an overview of the analysis of architectural decisions for the main
quality attribute scenario of bandwidth usage.
We give a brief explanation of the various architectural decisions:

AD 1

AD 2

AD 3

AD 4

AD 5

The AGYV transportation system software is built on top of the .NET frame-
work. This choice was a business constraint but also an evident choice since
the E’pia library that is used for logging, persistence, security, etc., also uses
.NET. The overhead induced by the choice for the point-to-point commu-
nication approach of .NET remoting was registered as a sensitivity point
S2.

Each AGV vehicle is controlled by an agent that is physically deployed on
the machine. This decentralized approach induces a risk with respect to the
required bandwidth for inter-agent communication. This was recorded as
risk R2. An AGV agent can flexibly adapt its behavior to dynamics in the
environment. AGVs controlled by autonomous agents can enter/leave the
system without interrupting the rest of the system. However, flexibility and
openness comes with a communication cost. This tradeoff was noted as T2.

The dynamic Contract-Net protocol for transport assignment enables flexible
assignment of transports among AGVs. Yet, the continuous reconsideration
of transport assignment implies a communication cost. This tradeoff was
denoted as T3.

AGYV agents use a two phase deadlock prevention mechanism. AGV agents
first apply static rules to avoid deadlock, e.g. agents lock unidirectional paths
over their full length. These rules however, do not exclude possible deadlock
situations completely. If an agent detects a deadlock, it contacts the other
involved agents to resolve the problem. Yet, the implications of the deadlock
mechanism on the communication overhead are at the time of the ATAM
not fully understood. This lack of insight was denoted as risk R3.

The ObjectPlaces middleware uses unicast communication. However, some
messages have to be transmitted to several agents, causing overhead. Sup-
port for multicast is possible, yet, this implies that the basic support of NET

170 Architectural Design of an AGV Transportation System

Analysis of Architectural Approach

Scenario #: P2.1 The amount of communication, with maximal 12 AGVs and a
maximal load of 140 transporta per hour, does not exceed 60 %
of the bandwidth of the 11 Mbps communication channel.

Attributes Performance

Environment All operation modes with maximal 12 AGVs and a maximal
load of 140 transports per hour.

Stimulus Communication among subsystems.

Response Communication load should not exceed 60 % of the bandwidth
of the 11 Mbps communication channel.

Architectural decisions Sensitivity Tradeoff Risk
AD 1 Choice for .NET remoting S2
AD 2 Agents located on T2 R2

machine controls AGV

AD 3 DynCNET protocol for T3
transport assignment

AD 4 Two step deadlock R3
prevention mechanism

AD 5 Unicast communication in S3
the middleware

Figure 5.32: Analysis architectural approaches with respect to bandwidth usage

remoting would no longer be usable. This potential problem was registered
as sensitivity point S3 (see also S2).

5.6.4.3 Testing Communication Load

One important outcome of the ATAM evaluation was an improved insight on the
tradeoff between flexibility and communication load. To further investigate this
tradeoff, we conducted a number of tests after the ATAM workshop. Besides the
simulation tests of the two approaches for transport assignment (see section 5.4),
we tested the efficiency of the middleware in the AGV application by measuring
bandwidth usage of a system in a real factory layout.

Fig. 5.33 shows the results of four consecutive test runs. We measured the

5.6 ATAM Evaluation 171

4.5 T T T T T T T T T T

3.5 _

25 —

Usage [% 11 Mbps]

1.5 | -

1 P e I

0 20 40 60 80 100 120 140 160 180
Time [min]

0.5

Figure 5.33: Bandwidth usage in a test setting

amount of data sent on the network by each AGV, and averaged this per minute
to obtain the bandwidth usage relative to the bandwidth of a 11 Mbps IEEE
802.11 network. The first test (Time: 10-30 min.) has three AGVs, of which two
were artificially put in deadlock (a situation which is avoided in normal operation),
because then the collision avoidance protocol is continually restarted, and never
succeeds. This is a peak load of the system. The second test (40-60 min.) has
three AGVs driving around freely. The third test (130-150 min.) has five AGVs
driving around freely. The fourth test (160—180 min.) has five AGVs, all artificially
put in deadlock. During the time in between test runs, AGVs were repositioned
manually. On average, the bandwidth usage doubles when going from three to
five AGVs. This is because the AGVs need to interact relatively more to avoid
collisions. Based on these test results, Egemin experts consider the bandwidth
usage acceptable for an extrapolation to 12 AGVs, taking into account that the
maximal bandwidth usage should be less than 60 % of the available 11 Mbps, and
given that bandwidth optimizations were not applied yet.

5.6.5 Reflection on the ATAM Workshop

The ATAM workshop was a valuable experience. For the first time, the assembled
group of stakeholders discussed the architecture in depth. Participants agreed

172 Architectural Design of an AGV Transportation System

that their insights were improved on: (1) the importance of software architecture
in software engineering; (2) the importance of business drivers for architectural
design; (3) the importance of explicitly listing and prioritizing quality attributes
with the stakeholders; (4) the strengths and weaknesses of the architecture and
architectural approaches. One interesting outcome of the ATAM was the clarifi-
cation of the tradeoff between flexibility and communication load. Although the
architects were aware of this tradeoff, during the ATAM several architectural de-
cisions were identified as risky and required further investigation. Field tests after
the ATAM proved that the communication cost remains under control.

A number of critical reflections about the ATAM were made as well. (1) Per-
forming a thorough and complete architectural evaluation using the ATAM is
difficult to achieve in a single day. (2) Coming up with a quality attribute tree
proved to be difficult, time consuming, and at times tedious. A lack of experience
and clear guidelines of how to build up such a tree hindered and slowed down the
discussion. (3) While the general AGV software architecture was developed with
several automation projects in mind, the ATAM evaluated it within the scope of
a single automation project. The ATAM however, is devised to evaluate a single
architecture in a single project. This difference in scope hindered the discussions
because some architectural decisions were motivated by the product line nature of
the architecture. (4) During the preparation of the ATAM, we experienced a lack
of good tool support to document architectures. Currently, drawing architectural
diagrams and building up the architectural documentation incurs much overhead.
Especially changing the documentation and keeping everything up-to-date (e.g.
cross references and relations between different parts of the documentation) turned
out to be hard and time consuming. Good tool support would be helpful.

5.6.6 Demonstrator of AGV Transportation System

As a proof of concept, we have developed a demonstrator of the decentralized
AGYV transportation system. The demonstrator with two AGVs is developed in
.Net and supports the basic functionality for executing transport orders. The core
of the action selection module of the AGVs is set up as a free-flow tree. A monitor
enables remote access of the AGVs and generates a fusion view that represents the
status of the local virtual environments of both AGVs. Fig. 5.34 shows a snapshot
of the AGVs in action with the fusion view.

More information and demonstration movies of the prototype implementation
can be found at the DistriNet website [6].

5.7 Concluding Remarks

The AGV transportation system provided a challenging application to investigate
the feasibility of applying a situated multiagent system in an industrial setting.

5.7 Concluding Remarks 173

5 FlisionProject - Fusion View
Brlaa e s At

S e Tniae

290 px, 74

scale 1 px ’”3‘3-257 mm
raster 665 mmy; 19.996 px

Figure 5.34: Demonstrator with AGVs in action

The architectural design of this complex real-world application and its success-
ful implementation demonstrated the usefulness of situated multiagent systems to
achieve important quality goals such as flexibility and openness.

Engineering the AGV application gained us a better insight in the important role
of software architecture in the software engineering process. The AGV transporta-
tion system is a quite complex piece of software. Software architecture allowed us
to concisely define how the software of the AGV application is structured and how
its components work together to provide the required functionality and to achieve
the main quality goals. The technical documentation of the software architecture
specifies inviolable constraints as well as exploitable freedom to the developers of
the software. We learned that software architecture can—and should !—be evalu-
ated. Evaluating a software architecture brings the stakeholders together to discuss
the software; and more importantly, it compels them to define and prioritize the
quality requirements of the system precisely. Architecture evaluation makes ex-
plicit causal connections between design decisions made in the architecture and
the qualities and properties in the software system. It reveals the weak and strong
points of the architecture, providing valuable feedback to the architects. This helps
to avoid problems later in the development process when changes in the structure
of the software are much harder to achieve, or become too expensive.

174 Architectural Design of an AGV Transportation System

Applying situated multiagent systems in this real-world application learned us a
lot about the connection between multiagent systems and software architecture.
The primary use of situated multiagent systems came from the way in which we
structured the software as a set of self-managing agents that coordinate through
an environment. In particular, the integrated set of mechanisms for adaptivity
helped us to shape the software architecture of the AGV application and to pro-
vide the required functionalities and achieve the important quality goals flexibility
and openness.

The insights derived from the architectural design of the AGV transportation sys-
tem have considerably contributed to the development of the reference architecture
for situated multiagent systems. We gained valuable insights about the structures
and processes of the application environment, and the interaction of the situated
multiagent system with the deployment context. These assets were used to struc-
ture the application environment of the reference architecture.

Finally, our project partner Egemin learned a lot about the potential as well as
the possible implications of applying multiagent system technology in AGV sys-
tems. Moving from a centralized to a decentralized architecture implies a radical
redesign which has a deep impact on the software and the organization. This calls
for a step-wise integration of agent technology. At the time of writing this thesis,
Egemin plans to apply the first results of the project in a system for one of its
clients. In this application, Egemin experiences the need for improved flexibility
and plans to integrate one of the transport assignment approaches in the system.

Chapter 6

Related Work

The two pillars in this work are software architecture and situated multiagent
systems. In the text, we have extensively referred to work related to both these
pillars. In chapter 2, we explained how our architecture-centric perspective on
software engineering is related to other approaches in the domain. In chapter 3,
we explained in detail how our model for situated multiagent systems relates to
state-of-the-art work in the domain. We discussed related work on the concept of
environment, and models and architectures for situated agents.

The core of this research however, is the integration of the two pillars in an
architecture-centric perspective on software engineering with multiagent systems.
Work related to this perspective is only mentioned briefly in the text. In this
chapter, we discuss related work that explicitly considers the connection between
software architecture and multiagent systems. The discussion is divided in two
main topics. First, we discuss related work on architectural styles and multiagent
systems. Then, we explain related work on reference models and architectures
for multiagent systems. Additionally, we give a brief overview of related work
on the control of AGV transportation systems. It is important to notice that
the overview is not intended to be complete, our goal is to give a representative
overview of related research.

6.1 Architectural Styles and Multiagent Systems

In this section, we discuss related work on quality attributes and architectural
styles for multiagent systems.

Architectural Properties of Multiagent Systems. In [181], Shehory presents
an initial study on the role of multiagent systems in software engineering, and
in particular their merit as a software architecture style. The author observes
that the largest part of research in the design of multiagent systems addresses

175

176 Related Work

the question: given a computational problem, can one build a multiagent system
to solve it? However, a more fundamental question is left unanswered: given
a computational problem, is a multiagent system an appropriate solution? An
answer to this question should precede the previous one, lest multiagent systems
may be developed where much simpler, more efficient solutions apply.

The author presents an initial set of architectural properties that can support
designers to assess the suitability of a multiagent system as a solution to a given
problem. The properties provide a means to characterize multiagent systems as
a software architecture style. Properties include the agent internal architecture,
the multiagent system organization, the communication infrastructure and other
infrastructure services such as a location service, security, and support for mobility.
Starting from this perspective, the author evaluates a number of multiagent system
frameworks and applications and compares them with respect to performance,
flexibility, openness, and robustness.

Although the discussed properties are not unique to multiagent systems, the
author states that the combination of the properties results in systems that are
suitable for solving a particular family of problem domains. Characteristics of
these domains are: distribution of information, location, and control; the environ-
ment is open and dynamically changing; and uncertainty is present. At the same
time, the author points out that if only a few of these domain characteristics are
present, it may be advisable to consider other architectures as solutions instead of
a multiagent system.

Almost a decade later, the majority of researchers in agent-oriented software
engineering still pass over the analysis whether a multiagent system is an appro-
priate solution for a given problem. Our research shares the position of Shehory.
In particular: (1) a designer should consider a multiagent system as one of the
possible architectural solutions to a problem at hand; and (2) the choice should
be driven by the characteristics of the problem domain and the quality goals of
the system.

Organizational Perspective on Multiagent Architectures. As part of the
Tropos methodology [81], a set of architectural styles were proposed which adopt
concepts from organization management theory [115, 58]. The styles are mod-
elled using the ¢* framework [239] which offers modelling concepts such as actor,
goal, and actor dependency. Styles are evaluated with respect to various software
quality attributes.

Proposed styles are joint venture, hierarchical contracting, bidding, and some
others. As an example, the joint venture style models an agreement between
a number of primary partner actors who benefit from sharing experience and
knowledge. Each partner actor is autonomous and interacts directly with other
partner actors to exchange services, data, and knowledge. However, the strategic
operations of the joint venture are delegated to a joint management actor that
coordinates tasks and manages the sharing of knowledge and resources. Secondary

6.1 Architectural Styles and Multiagent Systems 177

partner actors supply services or support tasks for the organization core.

Different kinds of dependencies exist between actors, such as goal dependencies,
task dependencies, and resource dependencies. An example of a task dependency
in a joint venture is a coordination task between the joint management actor and
a principal partner. A particular kind of dependency is the so-called softgoal
that is used to specify quality attributes. Softgoal dependencies are similar to
goal dependencies, but their fulfillment cannot be defined precisely [58]. [115]
states that softgoals do not have a formal definition, and are amenable to a more
qualitative kind of analysis. Examples of softgoals in the joint venture style are
“knowledge sharing” among principle partner actors, and “added value” between
the joint management actor and a principle partner actor. According to [58], a
joint venture is particularly useful when adaptability, availability, and aggregability
are important quality requirements. A joint venture is partially useful for systems
that require predictability, security, cooperativity, and modularity. The style is
less useful when competivity is an important quality goal.

A softgoal dependency in Tropos has no clear definition, it lacks a criterion to
verify whether the goal is satisfied or not. Contrary, in our work we use quality at-
tribute scenarios to precisely specify quality goals. A scenario includes a criterion
to measure whether the scenario is satisfied. In [114], Klein et al. describe “gen-
eral scenarios” that allow a precise articulation of quality attributes independent
of a particular domain. This allows to specify scenarios for architectural styles.
Another difference with our work is the handling of tradeoffs among quality re-
quirements. Whereas we use a utility tree to prioritize quality requirements and
to determine the drivers for architectural design, Tropos does not consider a sys-
tematic prioritization of quality goals such as a utility tree. In Tropos, a designer
visualizes the design process and simultaneously attempts to satisfy the collection
of softgoals for a system.

The assessment of architectural styles in Tropos is based on a set of quality
attributes. Some of these attributes, such as availability and reliability, have been
studied for years and have generally accepted definitions. Other attributes, such
as cooperativity, competitivity, and aggregability, do not. Simply naming such
attributes by themselves is not a sufficient basis on which to judge the suitability
of an architectural style. Stating that the joint venture style shows aggregability is
subject to interpretation and may lead to misunderstanding. In our work, we have
rigorously specified the various architectural patterns of the reference architecture
in different views, and explained the rationale for the design of each view.

Architectural Evaluation of Agent-Based Systems. In [234], Woods and
Barbacci study the evaluation of quality attributes of architectures of agent-based
systems in the context of ATAM. The authors put forward an initial list of four
relevant quality attributes for agent-based systems. The first attribute is perfor-
mance predictability. Due to the autonomy of agents, it is difficult to predict the
overall behavior of the system. The second attribute is security. Verifying au-

178 Related Work

thenticity for data access is an important concern of many agent-based systems.
The third quality attribute is adaptability to changes in the environment. Agents
are usually required to adapt to changes in their environment, including agents
that leave the system and new agents that enter the system. The fourth attribute
considered is availability. Availability of functionality is related to the presence of
agents and other services in the system and their mutual dependencies.

To discuss quality attributes in agent-based systems, the authors propose a
classification of agent-based systems. The classification abstracts from particular
agent architectures, but focusses on the coordination among agents. The classi-
fication is inspired by previous work of Hayden et al. [89]. Example classes are
matchmaker and broker that act as mediators between agents that provide ser-
vices and agents that request for services. For each class, the authors define a set
of quality attribute scenarios. Scenarios are formulated in a template form that
consists of three parts: “may affect” describes the quality attributes that may be
affected by the scenario; “implications” describes the risks or potential problems
illuminated by the scenario; and “possible solutions” proposes ways to cope with
possible risks. As an example, one of the scenarios of matchmaker is “provider fails
after advertising service”. This scenario may affect performance and reliability of
the consumer of the service. A possible implication might be that the consumer
blocks while it is waiting for the service, holding up the system. Ome possible
solution is to let the consumer times out and notify the matchmaker.

The approach of Woods and Barbacci requires a decomposition of the agent
based system into primitive fragments that fit the generic defined agent types
(matchmaker, broker, etc.). Scenarios can then be specified based on the inter-
action between the identified fragments. However, the presented scenarios are
generic and lack specificity. When applied to a real system such as the AGV
application, scenarios should be further refined according to the domain specific
requirements and constraints. In addition, the scenarios only support the evalu-
ation of communicative interactions between the agents. For some domains this
may cover a significant part of the system. However, for other domains such as
the AGV application, direct communication takes up only a very small part of the
System.

6.2 Reference Models and Architectures for Mul-
tiagent Systems

In this section, we discuss a number of representative reference models and archi-
tectures for multiagent systems.

PROSA: Reference Architecture for Manufacturing Systems. [236] de-
fines a reference architecture as a set of coherent engineering and design principles
used in a specific domain. PROSA—i.e. an acronym for Product—Resource—Order—

6.2 Reference Models and Architectures for Multiagent Systems 179

Staff Architecture—defines a reference architecture for a family of coordination
and control application, with manufacturing systems as the main domain. These
systems are characterized by frequent changes and disturbances. PROSA aims to
provide the required flexibility to cope with these dynamics.

The PROSA reference architecture [53, 193] is built around three types of basic
agents: resource agent, product agent, and order agent. A resource agent contains
a production resource of the manufacturing system, and an information processing
part that controls the resource. A product agent holds the know-how to make a
product with sufficient quality, it contains up-to-date information on the product
life cycle. Finally, an order agent represents a task in the manufacturing system, it
is responsible for performing the assigned work correctly and on time. The agents
exchange knowledge about the system, including process knowledge (i.e. how to
perform a certain process on a certain resource), production knowledge (i.e. how to
produce a certain product using certain resources), and process execution knowl-
edge (i.e. information and methods regarding the progress of executing processes
on resources). Staff agents are supplementary agents that can assist the basic
agents in performing their work. Staff agents allow to incorporate centralized ser-
vices (e.g, a planner or a scheduler). However, staff agents only give advice to
basic agents, they do not introduce rigidity in the system.

The PROSA reference architecture uses object-oriented concepts to model the
agents and their relationships. Aggregation is used to represent a cluster of agents
that in turn can represent an agent at a higher level of abstraction. Specialization
is used to differentiate between the different kinds of resource agents, order agents,
and product agents specific for the manufacturing system at hand.

The target domain of PROSA is a sub-domain of the target domain of the refer-
ence architecture for situated multiagent systems. As such, the PROSA reference
architecture is more specific and tuned to its target domain. The specification of
the PROSA reference architecture is descriptive. PROSA specifies the responsibil-
ities of the various agent types in the system and their relationships, but abstracts
from the internals of the agents. As a result, the reference architecture is easy
to understand. Yet, the informal specification allows for different interpretations.
An example is the use of object-oriented concepts to specify relationships between
agents. Although intuitive, in essence it is unclear what the precise semantics is
of notions such as “aggregation” and “specialization” for agents. What are the
constraints imposed by such a hierarchy with respect to the behavior of agents
as autonomous and adaptive entities? Without a rigorous definition, such con-
cepts inevitable leads to confusion and misunderstanding. Contrary, the reference
architecture for situated multiagent systems is formally specified. This avoids in-
terpretation.

[96] presents an interesting extension of PROSA in which the environment is ex-
ploited to obtain BDI (Believe, Desire, Intention [162]) functionality for the various
PROSA agents. To avoid the complexity of BDI-based models and the accompa-

180 Related Work

nying computational load, the agents delegate the creation and maintenance of
complex models of the environment and other agents to the environment. The
approach introduces the concept of “delegate multiagent system”. A delegate
multiagent system consists of light-weight agents which can be issued by the dif-
ferent PROSA agents. These ant-like agents can explore the environment, bring
relevant information back to their responsible agent, and put the intentions of
the responsible agent as information in the environment. This allows delegate
multiagent systems of different agents to coordinate by aligning or adapting the
information in the environment according to their own tasks. A similar idea was
proposed by Bruecker in [52], and has recently further been elaborated by Parunak
and Brueckner, see [152]. The use of the environment in the work of [96] is closely
connected to our perspective on the role of the environment as an exploitable
design abstraction. The main challenge is now to develop an architecture that
integrates the BDI functionality provided by a delegate multiagent system with
the architecture of the cognitive agent that issues the delegate multiagent system
in the environment.

Aspect-Oriented Agent Architecture. In [79], Garcia et al. observe that sev-
eral agent concerns such as autonomy, learning, and mobility crosscut each other
and the basic functionality of the agent. The authors state that existing approaches
that apply well-known patterns to structure agent architectures—an example is
the layered architecture of Kendall [108]—fail to cleanly separate the various con-
cerns. This results in architectures that are difficult to understand, reuse, and
maintain. To cope with the problem of crosscutting concerns, the authors propose
an aspect-oriented approach to structure agent architectures.

The authors make a distinction between basic concerns of agent architectures,
and additional concerns that are optional. Basic concerns are features that are
incorporated by all agent architectures and include knowledge, interaction, adap-
tation, and autonomy. Examples of additional concerns are mobility, learning, and
collaboration. An aspect-oriented agent architecture consists of a “kernel” that
encapsulates the core functionality of the agent (essentially the agent’s internal
state), and a set of aspects [111]. Each aspect modularizes a particular concern
of the agent (basic and additional concerns). The architectural elements of the
aspect-oriented agent architecture provide two types of interfaces: regular and
crosscutting interfaces. A crosscutting interface specifies when and how an archi-
tectural aspect affects other architectural elements. The authors claim that the
proposed approach provides a clean separation between the agent’s basic function-
ality and the crosscutting agent properties. The resulting architecture is easier to
understand and maintain, and improves reuse.

State-of-the-art research in aspect-oriented software development is mainly di-
rected at the specification of aspects at the programming level, and this is the
same for the work of Garcia and his colleagues. The approach has been developed
bottom up, resulting in specifications of aspects at the architectural level that

6.2 Reference Models and Architectures for Multiagent Systems 181

mirror aspect-oriented implementation techniques. The notion of crosscutting in-
terface is a typical example. Unfortunately, a precise semantics of “when and how
an architectural aspect affects other architectural elements” is lacking.

The aspect-oriented agent architecture applies a different kind of modular-
ization as we did in the reference architecture for situated multiagent systems.
Whereas a situated agent in the reference architecture is decomposed in functional
building blocks, Garcia and his colleagues take another perspective on the decom-
position of agents. The main motivation for the aspect-oriented agent architecture
is to separate different concerns of agents aiming to improve understandability and
maintenance. Yet, it is unclear whether the interaction of the different concerns in
the kernel (feature interaction [57]) will not lead to similar problems the approach
initially aimed to resolve. Anyway, crosscutting concerns in multiagent systems
are hardly explored and provide an interesting venue for future research.

Architectural Blueprint for Autonomic Computing. Autonomic Comput-
ing is an initiative started by IBM in 2001. Its ultimate aim is to create self-
managing computer systems to overcome their growing complexity [110]. IBM has
developed an architectural blueprint for autonomic computing [3]. This architec-
tural blueprint specifies the fundamental concepts and the architectural building
blocks used to construct autonomic systems.

The blueprint architecture organizes an autonomic computing system into five
layers. The lowest layer contains the system components that are managed by
the autonomic system. System components can be any type of resource, a server,
a database, a network, etc. The next layer incorporates touchpoints, i.e. stan-
dard manageability interfaces for accessing and controlling the managed resources.
Layer three constitutes of autonomic managers that provide the core functional-
ity for self-management. An autonomic manager is an agent-like component that
manages other software or hardware components using a control loop. The control
loop of the autonomic manager includes functions to monitor, analyze, plan and
execute. Layer four contains autonomic managers that compose other autonomic
managers. These composition enables system-wide autonomic capabilities. The
top layer provides a common system management interface that enables a system
administrator to enter high-level policies to specify the autonomic behavior of the
system. The layers can obtain and share knowledge via knowledge sources, such
as a registry, a dictionary, and a database.

We now briefly discuss the architecture of an autonomic manager, the most
elaborated part in the specification of the architectural blueprint. An autonomic
manager automates some management function according to the behavior defined
by a management interface. Self-managing capabilities are accomplished by taking
an appropriate action based on one or more situations that the autonomic manager
senses in the environment. Four architectural elements provide this control loop:
(1) the monitor function provides the mechanisms that collect, aggregate, and fil-
ter data collected from a managed resource; (2) the analyze function provides the

182 Related Work

mechanisms that correlate and model observed situations; (3) the plan function
provides the mechanisms that construct the actions needed to achieve the objec-
tives of the manager; and (4) the execute function provides the mechanisms that
control the execution of a plan with considerations for dynamic updates. These
four parts work together to provide the management functions of the autonomic
manager.

Although presented as architecture, to our opinion, the blueprint describes a
reference model. The discussion mainly focusses on functionality and relationships
between functional entities. The specification of the horizontal interaction among
autonomic managers is lacking in the model. Moreover, the functionality for self-
management must be completely provided by the autonomic managers. Obviously,
this results in complex internal structures and causes high computational loads.

The concept of application environment in the reference architecture for situ-
ated multiagent systems provides an interesting opportunity to manage complexity,
yet, it is not part of the IBM blueprint. The application environment could en-
able the coordination among autonomic managers and provide supporting services.
Laws embedded in the application environment could provide a means to impose
rules on the autonomic system that go beyond individual autonomic managers.

A Reference Model for Multiagent Systems. In [139], Modi et al. present a
reference model for agent-based systems. The aim of the model is fourfold: (1) to
establish a taxonomy of concepts and definitions needed to compare agent-based
systems; (2) to identify functional elements that are common in agent-based sys-
tems; (3) to capture data flow dependencies among the functional elements; and
(4) to specify assumptions and requirements regarding the dependencies among
the elements.

The model is derived from the results of a thorough study of existing agent-
based systems, including Cougaar [93], Jade [38], and Retsina [189]. The authors
used reverse engineering techniques to perform an analysis of the software systems.
Static analysis was used to study the source code of the software, and dynamic
analysis to inspect the system during execution. Key functions identified are
directory services, messaging, mobility, inter-operability services, etc.

Starting from this data a preliminary reference model was derived for agent-
based systems. The authors describe the reference model by means of a layered
view and a functional view. The layered view is comprised of agents and their
supporting framework and infrastructure which provide services and operating
context to the agents. The model defines framework, platform, and host layers,
which mediate between agents and the external environment. The functional view
presents a set of functional concepts of agent-based systems. Example functionali-
ties are administration (instantiate agents, allocate resources to agents, terminate
agents), security (prevent execution of undesirable actions by entities from within
or outside the agent system), conflict management (facilitate and enable the man-
agement of interdependencies between agents activities), and messaging (enable

6.3 Scheduling and Routing of AGV Transportation Systems 183

information exchange between agents).

The reference model in an interesting effort towards maturing the domain.
In particular, the reference model aims to be generic but does not make any
recommendation about how to best engineer an agent-based system. Putting
the focus on abstractions helps to resolve confusion in the domain and facilitates
acquisition of agent technology in practice.

Yet, since the authors have investigated only systems in which agents commu-
nicate through message exchange, the resulting reference model is biased towards
this kind of agent systems. The concept of environment as a means for informa-
tion sharing and indirect coordination of agents is absent. On the other hand,
it is questionable whether developing one common reference model for the broad
family of agent-based system is desirable.

6.3 Scheduling and Routing of AGV Transporta-
tion Systems

The control of AGVs is subject of active research since the mid 1980s. Most of
the research has been conducted in the domain of Al and robotics. Recently, a
number of researchers have applied multiagent systems, yet, most of this work is
applied in small-scale projects.

AT and Robotics Approaches. The problems of routing and scheduling of
AGVsis different from conventional path finding and scheduling problems. Schedul-
ing and routing of AGVs is a time-critical problem, while a graph problem usually
is not. Besides, the physical dimensions of the AGVs and the layout of the map
must be taken into account.

Roughly spoken, three kinds of methods are applied to solve the routing and
scheduling problem. Static methods use a shortest path algorithm to calculate
routes for AGVs, see e.g. [66]. In case there exists an overlap between paths of
AGVs, only one AGV is allowed to proceed. The other AGVs have to wait until the
first AGV has reached its destination. Such algorithms are simple, but not efficient.
Time-window-based methods, maintain for each node in the layout a list of time-
windows reserved by scheduled AGVs. An algorithm routes vehicles through the
layout taking into account the reservation times of nodes, see e.g. [112]. Dynamic
methods apply incremental routing. An example algorithm is given in [190]. This
algorithm selects the next node for the AGV to visit (towards its destination) based
on the status of the neighboring nodes (reserved or not) and the shortest travel
time. This is repeated until the vehicle reaches its destination. Measurements
show that the algorithm is significant faster than non-dynamic algorithms, yet,
the calculated routes are less efficient.

A number of researchers have investigated learning techniques to improve
scheduling and routing of AGVs, see e.g. [159, 124]. This latter work applies re-

184 Related Work

inforcement learning techniques and demonstrates that the approach outperforms
simple heuristics such as first-come-first-served and nearest-station-first.

Contrary to the decentralized approach we have applied in the EMC? project,
traditional scheduling and routing algorithms usually run on a central traffic con-
trol system from where commands are dispatched to the vehicles [161]. Moreover,
most approaches are intended to find an optimal schedule for a particular setting.
Such approaches are very efficient when the tasks are known in advance as for
example the loading and unloading of a ship in a container terminal. In our work,
scheduling and routing are going concerns, with AGVs operating in a highly dy-
namic environment.

Multiagent System Approaches. [147] presents a decentralized approach for
collision-free movements of vehicles. In this approach, agents use cognitive plan-
ning to steer the AGVs through the warehouse layout. [39] discusses a behavior-
based approach for decentralized control of automatic guided vehicles. In this
work, conflict resolution with respect to collision and deadlock avoidance is man-
aged by the agents based on local information. In [121], Lindijer applies another
agent-based approach to determine conflict-free routes for AGVs. The author
motivates his approach by considering quality requirements, including safety, flex-
ibility, and scalability. Central to the approach is the concept of semaphore that is
used as a traffic control component that guards shared infrastructure resources in
the system such as an intersection. The system is validated with simplified scale
models of real AGVs.

Arora and his colleagues have published a number of papers that describe the
control of AGV systems with an agent-based decentralized architecture [22, 23].
Vehicles select their own routes and resolve the conflicts that arise during their
motion. Control laws are applied to find save conditions for AGVs to move.

[47] discusses a variation on the field-based approach where agents construct
a field in their direct neighborhood to achieve routing and deadlock avoidance in
a simplified AGV system. Hoshino et al. [97] study a transportation system in
which cranes unload a container ship and pass the loads to AGVs that bring them
to a storage depot. Each AGV and crane is represented in the system by an agent.
The authors investigate various mechanisms for AGV agents to select a suitable
crane agent. The selection mechanisms are based on the actual and local situation
of AGVs and cranes, examples are selection based on distance, time, and area
(quay, transportation, and storage). The selection mechanism are combined with
random container storage and planned storage. Simulations allow to determine
the optimal combination of cranes and AGVs for a particular throughput. The
approach uses an off-line simulation to find an optimal solution in advance. Such
approach is restricted to domains where no disturbances are expected.

Contrary to our research, the discussed agent-based approaches are only val-
idated in simulations and under a number of simplifying assumptions. Applying
decentralized control in a real industrial setting involves numerous complicating

6.3 Scheduling and Routing of AGV Transportation Systems 185

factors that deeply affect the scheduling and routing of AGVs. Most of the related
work focusses on isolated concerns in AGV control. For a practical application
however—as the AGV application in the EMC? project, different concerns have
to be integrated, which is not a trivial problem.

One lesson we learned from our experience is that communication is a ma-
jor bottleneck in a decentralized AGV control system. Most related work only
considers simple layouts with a small number of AGVs, and abstracts from com-
munication costs.

An important difference between our research and the discussed approaches is
that we have applied an architecture-centric design for the AGV application in
the EMC? project. Scheduling and routing are integrated in the software archi-
tecture with other concerns such as deadlock avoidance and maintenance of the
AGVs. Most related work does not consider software architecture explicitly. As
a consequence, little attention is payed to the tradeoffs between quality goals. In
the EMC? project on the other hand, the tradeoffs between quality goals were the
drivers for the system design.

186 Related Work

Chapter 7

Conclusions

The research presented in this dissertation started from the observation that de-
veloping and managing today’s distributed applications is complex. We identified
three important reasons for the increasing complexity that characterize the fam-
ily of systems we target in our research: (1) stakeholders involved in the systems
have various, often conflicting quality requirements; (2) the systems are subject to
highly dynamic and changing operating conditions; (3) activity in the systems is
inherently localized, global control is hard to achieve or even impossible.

In this dissertation, we presented an approach for developing such complex
systems. The approach integrates situated multiagent systems in an architecture-
centric software engineering process. Key aspects of the approach are architecture-
centric software development, self-management, and decentralized control. These
aspects enable to handle the complexity of the target family of applications as
follows:

o Quality goals and tradeoffs. Putting software architecture at the heart of the
software development process compels the architects and other stakeholders
involved in the system to deal explicitly with quality goals and tradeoffs
among the various requirements of the system.

e Dynamic and changing operating conditions. Self-management enables a
software system to deal autonomously with the dynamic and changing cir-
cumstances in which it has to operate. Key qualities for endowing systems
with abilities to manage dynamism and change are flexibility and openness.
Situated agents adapt their behavior according to the changing situation in
the environment, the multiagent system can cope with agents leaving the
system and new agents that enter.

e Inherent locality of activity. Decentralized control is essential to cope with
the inherent locality of activity. In a system where global control is not

187

188 Conclusions

an option, the functionality of the system has to be achieved by collaborat-
ing subsystems. Control in a situated multiagent system is decentralized,
situated agents cooperate to achieve the overall functionality of the system.

In the remainder of this concluding section, we first summarize the main contribu-
tions of our research. Next, we point to a number of lessons we have learned from
applying multiagent systems in an industrial setting. We conclude the thesis with
suggestions for further research, and a closing reflection on software engineering
with multiagent systems.

7.1 Contributions

In this dissertation, we presented a promising perspective on software engineering
with multiagent systems. Whereas agent-oriented software engineering generally
considers multiagent systems as a radically new way of engineering software, we
presented an engineering approach which integrates multiagent systems as software
architecture in a general software engineering process. We consider the structuring
of a system as a set of agents embedded in an environment as an architectural
approach that provides particular quality attributes. In our research, we have
developed a reference architecture for situated multiagent systems. This reference
architecture provides a reusable architectural approach to develop systems in which
flexibility and openness are important quality goals.

The contribution of our research consists of three parts. First, we have de-
veloped an advanced model for situated multiagent systems that extends state-
of-the-art approaches in the domain. Second, from our experiences with building
various multiagent system applications, we have developed a reference architec-
ture for situated multiagent systems. Third, we have validated the usefulness
of architecture-centric software development with situated multiagent systems in
practice. Concrete contributions of our research are:

e We have developed a new perspective on the role of the environment in
multiagent systems [216, 223, 230, 208, 215]. In particular, we have promoted
the environment to a first-class abstraction that can be exploited creatively
in the design of multiagent system applications.

e We have extended state-of-the-art approaches in situated multiagent sys-
tems with an advanced model for situated agents [206, 228, 226, 184, 227]
that supports selective perception, social behavior with roles and situated
commitments, and protocol-based communication.

e From our experiences with building various situated multiagent system appli-
cations, we have developed a reference architecture for situated multiagent
systems [214, 210, 213]. The reference architecture serves as a blueprint

7.2 Lessons Learned from Applying Multiagent Systems in Practice 189

for developing concrete software architectures. It integrates a set of archi-
tectural patterns architects can draw from during architectural design. To
demonstrate the feasibility of the reference architecture, we have developed
an object-oriented framework that implements the architecture, and we have
instantiated the framework for a couple of prototype applications.

e We have applied a situated multiagent system in a challenging industrial
automated transportation system [222, 221, 217, 177]. The insights derived
from the architectural design of this application has considerably contributed
to the development of the reference architecture. The architectural design,
the development, and the evaluation of this complex application proved the
feasibility of situated multiagent systems in a real-world setting [198, 211, 45].

7.2 Lessons Learned from Applying Multiagent
Systems in Practice

Although multiagent systems have been studied for more than two decades, in-
dustrial applications remain rare [156, 194]. The lack of experiences with applying
agent technology in practice hampers the maturation of the domain. In this sec-
tion, we report some lessons we learned from applying multiagent systems in a
complex real-world application.

Qualities and tradeoffs. A main motivation for applying a multiagent system to
the AGV transportation system was to investigate whether the decentralized archi-
tecture could improve flexibility and openness. Obviously, a commercial product
such as an AGV transportation system is subject to various quality requirements
and business constraints. The decentralized architecture introduces new tradeoffs
between the various system requirements.

Important lessons we learned are: (1) the motivation to apply a multiagent
system should be driven by quality goals; (2) we experienced a tendency from our
industrial partner to overestimate agent technology (e.g., adding new capabilities
to an autonomous agent—such as integrating functionality to manoeuvre an AGV
around an obstacle—was simplified). It is therefore important to deal explicitly
with tradeoffs between system requirements from the early start of a project.

Integration with legacy systems. Most industrial software systems require an
integration with legacy systems, and this was the case for the AGV transporta-
tion system as well. Egemin has developed a common framework that provides
basic support for various concerns such as logging, persistency, and security. This
framework is used over the various software systems that are developed by the
company. Obviously, the AGV application software has to be integrated with the
framework. Besides, various parts of the existing AGV control software could be

190 Conclusions

reused for the decentralized architecture, examples are the low-level control soft-
ware for AGVs, the layout of maps, and the basic routing algorithm. Reusing this
software saved a lot of work.

Lessons we learned are: (1) the integration with legacy software is a matter
of fact when agent technology is applied in an industrial setting; (2) software ar-
chitecture provides the means to reason about, and deal with the integration of
legacy software in an agent-based system.

Stepwise integration. The existing AGV transportation systems deployed by
Egemin have a centralized architecture. The agent-based architecture on the other
hand has a decentralized architecture. Switching towards an agent-based archi-
tecture is a big step with far reaching effects for the company, not only for the
software but for the whole organization.

A lesson we learned is: integration of an agent-based approach should be done
in a controlled way, step-by-step. For example, in a coming project, Egemin ex-
periences the need for improved flexibility and plans to integrate the agent-based
approach for transport assignment in their usual architecture.

Evaluation. The ATAM evaluation of the software architecture contributed to
a better understanding of the strengths and weaknesses of the decentralized ar-
chitecture. Besides the evaluation of quality attributes, the functional behavior
of the system must be evaluated. It is well known that giving guarantees about
the global behavior of a decentralized system is hard. Distributed algorithms are
complex, hard to debug, and difficult to evaluate (especially in a physical setting).

Lessons we learned are: (1) a disciplined evaluation of the software architecture
of the agent-based system is invaluable; (2) debugging a decentralized system is
hard; (3) thorough simulations are the main vehicle to give (to a certain extent)
guarantees about global properties of the system.

7.3 Future work

We give a number of suggestions for future research.

Architectural design with a reference architecture. Research and current
practice in software architecture mainly focus on the documentation, design, and
evaluation of software architectures for concrete applications. A software product
line is a relatively new idea that aims to collect a common set of core assets that
can be used to develop a specific family of software products [62]. A product line
architecture specifies a common core that is used for all products of the family and
variation points that provide variability to tailor each product to its specific needs.
Various methods have been studied and developed for documenting, designing, and
evaluating product line architectures, see e.g., [134, 145].

7.3 Future work 191

A reference architecture, on the other hand, describes a blueprint architecture
that can be used to develop concrete software architectures in a particular domain.
As such, a reference architecture can not be documented, applied, and evaluated
in the same way as a concrete software architecture or a product line architecture.

Researchers and engineers use various methods to document, apply, and eval-
uate reference architectures. Two illustrative examples are [36] and [26]. [36]
discusses the documentation of a reference architecture with views. The author
emphasizes the identification of interfaces of architectural elements and the specifi-
cation of adaptation guidelines for instructing architects how to instantiate target
architectures from the reference architecture. [26] proposes an integrated approach
for documenting, applying, and evaluating a reference architecture that is based
on a combination of the IEEE 1471 standard for “Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems”[99], the Rational Unified
Process [118], and the Unified Modelling Language [13].

In our research, we have documented the reference architecture for situated
multiagent systems with a set of architectural views that specify the architectural
core and variation mechanisms. Our approach joins the suggestion of UP [118, 100]
to document a reference architecture with different views. UP however, is unclear
on how to specify the variability of a reference architecture, which we have doc-
umented with variation mechanisms. To design a concrete software architecture,
we apply a process of iterative decomposition inspired by attribute driven design
(ADD). The reference architecture can serve as a blueprint to guide the architect
through the decomposition process. It provides an integrated set of architectural
patterns the architect can draw from to select suitable architectural solutions. To
refine and extend specific architectural elements, additional common architectural
patterns have to be selected by the architect.

It would be interesting to compare our approach to document and apply a ref-
erence architecture with other approaches. The insights derived from such a study
can be used to develop common methods to document a reference architecture, to
apply a reference architecture in architectural design, and to evaluate a reference
architecture.

Software architecture and multiagent systems. The connection between
software architecture and multiagent systems provides a promising venue for fu-
ture research.

In our research, we have put forward flexibility and openness as important
qualities to apply situated multiagent systems. However, multiagent systems are
generally considered to be useful for other qualities as well, such as robustness and
scalability. It would be interesting to investigate how these qualities translate to
architectural approaches and how these qualities tradeoff with other qualities in
the system.

The reference architecture for situated multiagent systems abstracts from the
concrete deployment of the multiagent system application. For a distributed appli-

192 Conclusions

cation, the deployment context consists of multiple processors deployed on different
nodes that are connected through a network. For such applications, agents and
the application environment typically have to be distributed over the processors of
the application nodes. It would be interesting to investigate whether patterns can
be identified for particular classes of applications that allow to specify distribution
as a concern of multiagent systems.

The modularization of the reference architecture is primarily based on the sep-
aration of different functionalities of agents (perception, communication, actions)
and their support in the environment. An important advantage of this modu-
larization is that the structure of the architecture is easy to understand. Yet,
the integration of concerns such as security and logging that crosscut different
modules of the architecture does not naturally fit with the basic modularization.
Aspect-oriented software development (AOSD) provides an interesting approach
to modularize and integrate crosscutting concerns in a system. It would be inter-
esting to investigate how AOSD can be used to integrate crosscutting concerns in
the reference architecture.

Variation mechanisms in the reference architecture only provide high-level guid-
ance of how particular parts of a software architecture can be tailored to the specific
needs of the application at hand. Additional support for the design of particular
mechanisms would be helpful for architects and developers. Examples are support
for protocol-based communication, support for the design of behavior-based ac-
tion selection mechanisms with roles and situated commitments (as for example
in [184]), support for indirect interaction mechanisms, and the concrete design of
laws.

Another interesting challenge is to develop a scientific foundation and tech-
niques for verifying global behavior of decentralized multiagent systems. Such
verification should provide sufficient information of global properties during archi-
tectural design. Interesting work in this direction is [238, 232].

7.4 Closing Reflection

As a specific domain of software systems ages and matures, more and more sys-
tems are built, and their functionality, structure, and behavior become common
knowledge. At a software-architecture level, this kind of common knowledge is
called a reference architecture.

Within the domain of situated multiagent systems, software systems have been
studied and built for over two decades. The efforts of many prominent researchers
have laid the foundation on which our research contributions are built. As such,
the reference architecture for situated multiagent systems reifies the knowledge and
expertise we have acquired during our research that is founded on two decades of
domain maturing.

The reference architecture for situated multiagent systems demonstrates how

7.4 Closing Reflection 193

knowledge and practices with multiagent systems can systematically be docu-
mented and maturated in a form that has proven its value in mainstream software
engineering. We believe that the integration of multiagent systems as software
architecture in mainstream software engineering is a key to industrial adoption of
multiagent systems.

194 Conclusions

Bibliography

Automatic Guided Vehicle Simulator, DistriNet, K.U.Leuven, (6/2006).
www.cs.kuleuven.ac.be/~distrinet /taskforces/agentwise/agvsimulator/.

Autonomic Computing: IBM’s Perspective on the State of Information Tech-
nology, (6/2006). www.research.ibm.com/autonomic/research/.

IBM, An Architectural Blueprint for Autonomic Computing, (6/2006).
www-03.ibm.com/autonomic/.

Microsoft Dynamic Systems Initiative Overview White Paper, (6/2006).
www.microsoft.com/windowsserversystem/dsi/dsiwp.mspx.

Architecture Description Languages, Software Engineerin Institute, CMU,
(8/2006). www.sei.cmu.edu/str/descriptions/adl_body.html.

DistriNet Research Group, Egemin Modular Controls Concept Project,
(8/2006). www.cs.kuleuven.ac.be/cwis/research/distrinet/public/research/.

EMC?: Egemin Modular Controls Concept, Project Supported by the In-
stitute for the Promotion of Innovation Through Science and Technology in
Flanders (IWTVlaanderen), (8/2006). http://emc2.egemin.com/.

FOLDOC: Free On-Line Dictionary of Computing, Imperial College London,
(8/2006). http://foldoc.doc.ic.ac.uk/foldoc/index.html.

H. V. D. Parunak, Chief Scientist NewVectors LLC, USA, Home Page,
(8/2006). http://www.newvectors.net /staff/parunakv/.

Lego Mindstorms, (8/2006). http://mindstorms.lego.com/.

LeJOS, Lego Java Operating System for the Lego Mindstorms RCX,
(8/2006). http://lejos.sourgeforce.com/.

Software Engineering Institute, Carnegie Mellon University, (8/2006).
http://www.sei.cmu.edu/.

195

196

BIBLIOGRAPHY

[13]
[14]

[15]

[16]

The Unified Modeling Language, (8/2006). http://www.uml.org/.

P. Agre and D. Chapman. Pengi: An Implementation of a Theory of Activity.
In National Conference on Artificial Intelligence, Seattle, WA, 1987.

P. Agre and D. Chapman. What are Plans for? Designing Autonomous
Agents, MIT Press, 1990.

T. Al-Naeem, I. Gorton, M. Babar, F. Rabhi, and B. Benatallah. A Quality-
driven Systematic Approach for Architecting Distributed Software Applica-
tions. In 27th International Conference on Software Engineering, New York,
NY, USA, 2005. ACM Press.

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logic.
Journal of Logic and Computation, Special Issue on Actions and Processes,
4:531-579, 1994.

M. Arbib. Schema Theory. Encyclopedia of Artificial Intelligence, 1992.

R. Arkin. Motor Schema-Based Mobile Robot Navigation. International
Journal of Robotics Research, 8(4):92-112, 1989.

R. Arkin. Integrating Behavioral, Perceptual, and World Knowledge in Re-
active Navigation. Designing Autonomous Agents, MIT Press, 1990.

R. Arkin. Behavior-Based Robotics. Massachusetts Institute of Technology,
MIT Press, Cambridge, MA, USA, 1998.

S Arora, A. Raina, and A. Mittal. Collision Avoidance Among AGVs at
Junctions. In IEFE Intelligent Vehicles Symposium, 2000.

S Arora, A. Raina, and A. Mittal. Hybrid Control in Automated Guided
Vehicle Systems. In IEEE Conference on Intelligent Transportation Systems,
2001.

C. Atkinson and T. Kuhne. Aspect-Oriented Development with Stratified
Frameworks. IEEFE Software, 20(1):81-89, 2003.

J. Austin. How To Do Things With Words. Oxford University Press, Oxford,
UK, 1962.

P. Avgeriou. Describing, Instantiating and Evaluating a Reference Architec-
ture: A Case Study. Enterprise Architect Journal, 2003. Fawcette Technical
Publications.

O. Babaoglu, H. Meling, and A. Montresor. Anthill: A Framework for the
Development of Agent-Based Peer-to-Peer systems. In 22nd International
Conference on Distributed Computing Systems, Vienna, Austria, 2002. IEEE
Computer Society, Digital Library.

BIBLIOGRAPHY 197

(28]

[29]

F. Bachmann and L. Bass. Managing Variability in Software Architectures.
In Symposium on Software Reusability, New York, NY, USA, 2001. ACM
Press.

S. Bandini, M. L. Federici, S. Manzoni, and G. Vizarri. Towards a Method-
ology for Situated Cellular Agent Based Crowd Simulations. In 6th Inter-
national Workshop on Engineering Societies in the Agents World, ESAW,
2005.

S. Bandini, S. Manzoni, and C. Simone. Dealing with Space in Multiagent
Systems: A Model for Situated Multiagent Systems. In st International
Joint Conference on Autonomous Agents and Multiagent Systems. ACM
Press, 2002.

S. Bandini, S. Manzoni, and G. Vizzari. MultiAgent Approach to Localiza-
tion Problems: the Case of Multilayered Multi Agent Situated System. Web
Intelligence and Agent Systems, 2(3):155-166, 2004.

S. Bandini, S. Manzoni, and G. Vizzari. A Spatially Dependent Communica-
tion Model. In 1st International Workschop on Environments for Multiagent
Systems, Lecture Notes in Computer Science, Vol. 3374. Springer-Verlag,
2005.

M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock, and
W. Wood. uality Attribute Workshops. Technical Report CMU /SEI-2003-
TR-016, Software Engineering Institute, Carnegie Mellon University, PA,
USA, 2003.

M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock. uality Attribute
Workshops. Technical Report CMU/SEI-95-TR-21, Software Engineering
Institute, Carnegie Mellon University, PA, USA, 1995.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison Wesley Publishing Comp., 2003.

J. Batman. Characteristics of an Organization with Mature Architecture
Practices. Essays on Software Architecture, (6/2006). Software Engineering
Institute, http://www.sei.cmu.edu/architecture/essays.html.

K. Beck and R. Johnson. Patterns Generate Architectures. In ECOOP
’94: Proceedings of the 8th European Conference on Object-Oriented Pro-
gramming, Lecture Notes in Computer Science, Vol. 821, London, UK, 1994.
Springer-Verlag.

F. Bellifemine, A. Poggi, and G. Rimassa. Jade, A FIPA-compliant Agent
Framework. In 4th International Conference on Practical Application of
Intelligent Agents and Multi- Agent Technology, London, UK, 1999.

198

BIBLIOGRAPHY

[39]

[40]

[47]

(48]

S. Berman, Y. Edan, and M. Jamshidi. Decentralized autonomous AGVs in
material handling. Transactions on Robotics and Automation, 19(4), 2003.

C. Bernon, M-P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe: A Method-
ology for Adaptive Multiagent Systems Engineering. In 3th International
Workshop on Societies in the Agents World, ESAW, Lecture Notes in Com-
puter Science, Vol. 2577. Springer-Verlag, 2002.

E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and G. Theraulaz.
Routing in telecommunications networks with ant-like agents. In Second
International Workshop on Intelligent Agents for Telecommunication a Ap-
plications, IATA, Paris, France, 1998. Springer-Verlag.

N. Boucké. Situated Multiagent System Approach for Distributing Control in
Automatic Guided Vehicle Systems. Master Thesis, Katholieke Universiteit
Leuven, Belgium, 2003.

N. Boucké, T. Holvoet, T. Lefever, R. Sempels, K. Schelfthout, D. Weyns,
and J. Wielemans. Applying the Architecture Tradeoff Analysis Method to
an Industrial Multiagent System Application. In Technical Report CW 481.
Department of Computer Science, Katholieke Universiteit Leuven, Belgium,
2005.

N. Boucké, D. Weyns, T. Holvoet, and K. Mertens. Decentralized allocation
of tasks with delayed commnencement. In 2nd Furopean Workshop on Multi-
Agent Systems, EUMAS, Barcelona, Spain, 2004.

N. Boucké, D. Weyns, K. Schelfthout, and T. Holvoet. Applying the ATAM
to an Architecture for Decentralized Contol of a AGV Transportation Sys-
tem. In 2nd International Conference on Quality of Software Architecture,
QoSA, Vasteras, Sweden, 2006. Springer.

C. Boutilier and R. I. Brafman. Partial-order planning with concurrent
interacting actions. Journal on Artificial Intelligence Research, 14:105-136,
2001.

L. Breton, S. Maza, and P. Castagna. Simulation multi-agent de systémes
d’AGVs: comparaison avec une approche prédictive. 5¢ Conférence Franco-
phone de Modélisation et Simulation, 2004.

M. Brodie, I. Rish, S. Ma, and N. Odintsova. Active probing strategies for
problem determination. In 18th International Joint Conference on Artificial
Intelligence, 2003.

R. Brooks. Achieving artificial intelligence through building robots. ATl
Memo 899, MIT Lab, 1986.

BIBLIOGRAPHY 199

[50]

[51]

[52]

[53]

[54]

[55]

[56]

R. Brooks. The Behavior Language; User’s Guide. AI Memo 1227, MIT
Lab, 1990.

R. Brooks. Intelligence without reason. In 12th International Joint Confer-
ence on Artificial Intelligence, Sydney, Australia, 1991.

S. Brueckner. Return from the Ant, Synthetic Ecosystems for Manufacturing
Control. Ph.D Dissertation, Humboldt University, Berlin, Germany, 2000.

H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters.
Reference Architecture for Holonic Manufacturing Systems: PROSA. Jounal
of Manufactoring Systems, 37(3):255-274, 1998.

J. Bryson. Intelligence by Design, Principles of Modularity and Coordination
for Engineering Complex Adaptive Agents. PhD Dissertation, MIT, USA,
2001.

F. Buchmann and L. Bass. Introduction to the Attribute Driven Design
Method. In 23rd International Conference on Software Engineering, Toronto,
Ontario, Canada, 2001. IEEE Computer Society.

G. Cabri, L. Ferrari, and F. Zambonelli. Role-Based Approaches for Engi-
neering Interactions in Large-Scale Multi-agent Systems. In Software En-
gineering for Multi-Agent Systems II, Lecture Notes in Computer Science,
Vol. 2940. Springer-Verlag, 2004.

M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature Inter-
action: A Critical Review and Considered Forecast. Computer Networks,
41(1):115-141, 2003.

J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven In-
formation Systems Engineering: The Tropos Project. Informatica Systems,
27(6):365-389, 2002.

L. Claesen. Regional Synchronization in Situated Multiagent Systems. Mas-
ter Thesis, Katholieke Universiteit Leuven, Belgium, 2004.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison Wesley Publishing Comp., 2002.

P. Clements, R. Kazman, and M. Klein. Ewvaluating Software Architectures:
Methods and Case Studies. Addison Wesley Publishing Comp., 2002.

P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. Addison Wesley Publishing Comp., August 2001.

200

BIBLIOGRAPHY

[63]

[64]

[72]

(73]

[74]

P. Cohen and H. Levesque. Teamwork. Nous, Special Issue on Cognitive
Science and Artificial Intelligence, 4(25):487-512, 2002.

C. Cuesta, M. del Pilar Romay, P. de la Fuente, and M. Barrio-Solofzano.
Architectural Aspects of Architectural Aspects. In 2nd European Wirkshop
on Software Architecture, EWSA, Lecture Notes in Computer Science, Vol.
3527. Springer, 2005.

R. Custers. The Agent Network Architecture FExtended for Cooperating
Robots. Master Thesis, Katholieke Universiteit Leuven, Belgium, 2003.

D. Daniels. Real-time Conflict Resolution in Automated Guided Vehicle
Scheduling. PhD Dissertation: Dept. of Industrial Eng., Penn. State Uni-
versity, USA, 1988.

B. Demarsin. DynCNET: A Protocol for Flexible Transport Assignment in
AGV Transportation Systems. Master Thesis, Katholieke Universiteit Leu-
ven, Belgium, 2006.

Y. Demazeau. Multi-Agent Systems Methodology. In 2nd Franco-
Mezxican School on Cooperative and Distributed Systems, LAFMI 2003,
http://lafmi.lania.ma/escuelas/esd03/ponencias/Demazeau.pdyf.

J. Deneubourg and S. Goss. Collective Patterns and Decision Making. Ecol-
ogy, Ethology and Evolution, 1:295-311, 1989.

M. Dorigo and L. Gambardella. Ant Colony System: A Cooperative Learn-
ing Approach to the Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation, 1(1):53-66, 1997.

B. Dunin-Keplicz and R. Verbrugge. Calibrating collective commitments.
In Multi-Agent Systems and Applications III, 3rd International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS, Prague,
Czech Republic, Lecture Notes in Computer Science, Vol. 2691. Springer,
2003.

E. Durfee and V. Lesser. Negotiating Task Decomposition and Allocation
Using Partial Global Planning. Distributed Artificial Intelligence, 2:229-244,
1989.

M. Fayad and D. Schmidt. Object-Oriented Application Frameworks, Guest
Editorial. Communications of the ACM, Special Issue on Object-Oriented
Application Frameworks, 40(10):32-38, 1997.

J. Ferber. An Introduction to Distributed Artificial Intelligence. Addison-
Wesley, 1999.

BIBLIOGRAPHY 201

[75]

[76]

[77]

(78]

[79]

[80]

[81]

J. Ferber, F. Michel, and J. Baez. AGRE: Integrating environments with or-
ganizations. In 1st International Workschop on Environments for Multiagent
Systems, Lecture Notes in Computer Science, Vol. 3374. Springer-Verlag,
2005.

J. Ferber and J. Muller. Influences and Reaction: a Model of Situated
Multiagent Systems. 2nd International Conference on Multi-agent Systems,
Japan, AAAI Press, 1996.

FIPA. Foundation for Intelligent Physical Agents, FIPA Abstract Architec-
ture Specification. http://www.fipa.org/repository/bysubject.html, (8/2006).

B. Gallagher. Using the Architecture Tradeoff Analysis Method to Evaluate a
Reference Architecture. Technical Report CMU/SEI-2000-TN-007, Software
Engineering Institute, Carnegie Mellon University, PA, USA, 2000.

A. Garcia, U. Kulesza, and C. Lucena. Aspectizing Multi-Agent Systems:
From Architecture to Implementation. In Software Engineering for Multi-
Agent Systems I1I, SELMAS 2004, Lecture Notes in Computer Science, Vol.
3390. Springer, 2005.

M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmanns, 1997.

F. Giunchiglia, J. Mylopoulos, and A. Perini. The TROPOS Software De-
velopment Methodology: Processes, Models and Diagrams. 1st International
Joint Conference on Autonomous Agents and Multi-Agent Systems AA-
MAS’02, ACM Press, New York, 2002.

O. Glorieux. A Model for Adaptive Agents, Applied to the Packet—World.
Master Thesis, Katholieke Universiteit Leuven, Belgium, 2003.

P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles
chez Bellicositermes Natalensis et Cubitermes sp. La theorie de la Stigmergie.
Essai d’interpretation du Comportement des Termites Constructeurs. In-
sectes Sociauz, 6:41-81, 1959.

N. Griffiths, M. Luck, and M. d’Iverno. Cooperative Plan Annotation
through Trust. In UK Workshop on Multi-Agent Systems, Liverpool, UK,
2002.

M. Griss, I. Jacobson, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison Wesley Professional, 1997.

S. Hadim and N. Mohamed. Middleware Challenges and Approaches for
Wireless Sensor Networks. IEEE Distributed Systems Online, 7(3), 2006.

202

BIBLIOGRAPHY

[87]

(8]

[89)]

[90]

[92]

[93]

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 3(8):231-274, 1987.

P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):28-29, 1968.

S. Hayden, C. Carrick, and Q. Yang. A Catalog of Agent Coordination Pat-
terns. In 8th International Conference on Autonomous Agents, New York,
NY, USA, 1999. ACM Press.

A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers. Extending time
management support for multi-agent systems. In Multiagent and Multiagent-
based Simulation, New York, USA, Lecture Notes in Computer Science, Vol.
3415, 2005.

A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers. Towards time man-
agement adaptability in multi-agent systems. In Agents and Multiagent Sys-
tems III: Adaptation and Multiagent Learning, Lecture Notes in Computer
Science, Vol. 3494, 2005.

E. Helsen and K. Deschacht. The Delta Framework for Situated Multiagent
Systems. Master Thesis, Katholieke Universiteit Leuven, Belgium, 2005.

A. Helsinger, R. Lazarus, W. Wright, and J. Zinky. Tools and Techniques
for Performance Measurement of Large Distributed Multiagent Systems. In
2nd International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, Melbourne, Victoria, Australia. ACM, 2003.

A. Holvoet. Visualisation of a Peer-to-Peer Network. Master Thesis,
Katholieke Universiteit Leuven, Belgium, 2004.

T. Holvoet and E. Steegmans. Application-Specific Reuse of Agent Roles. In
Software Engineering for Large-Scale Multi- Agent Systems, Lecture Notes in
Computer Science, Vol. 2603. Springer-Verlag, New York, 2003.

T. Holvoet and P. Valckenaers. Exploiting the Environment for Coordinat-
ing Agent Intentions. In 3th International Workshop on Environments for
Multiagent Systems, E{MAS, Hakodate, Japan, 2006.

S. Hoshino, J. Ota, A. Shinozaki, and H. Hashimoto. Design of an AGV
Transportation System by Considering Management Model in an ACT. In-
telligent Autonomous Systems, 9:505-514, 2006.

M. Huhns and L.M. Stephens. Multiagent Systems and Societies of Agents.
In Multiagent Systems, A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, 2000.

BIBLIOGRAPHY 203

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

IEEE. Recommended Practice for Architectural Description of Software-
Intensive Systems, IEEE Std 1471-2000. Institute of Electrical and FElectron-
ics Engineers, 2000.

I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

M. Jazayeri, A. Ran, and F. van der Linden. Software Architecture for
Product Families. Addison Wesley Longman Inc., 2000.

N. Jennings. An agent-based approach for building complex software sys-
tems. Communications of the ACM, 44(4):35-41, 2001.

N. Jennings, A. Luomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Au-
tomated Negotiation: Prospects, Methods and Challenges. International
Journal of Group Decision and Negotiation, 10(2):199-215, 2001.

R. Johnson and B. Foote. Designing reusable classes. Journal of Object
Oriented Programming, 1(2):22-35, 1988.

L. Kaelbling. Goals as Parallel Program Specifications. In 7th National
Conference on Artifical Intelligence, Minneapolis, Minnesota, 1988.

L. Kaelbling and J. Rosenschein. Action and Planning in Embedded Agents.
Designing Autonomous Agents, MIT Press, 1990.

E. Kendall. Role modeling for agent system analysis, design, and implemen-
tation. IEEE Concurrency, 8(2):34-41, 2000.

E. Kendall and C. Jiang. Multiagent System Design Based on Object Ori-
ented Patterns. Journal of Object Oriented Programming, 10(3):41-47, 1997.

J. Kephart. Research Challenges of Autonomic Computing (IBM). Invited
talk, International Conference on Software Engineeging, St. Louis, USA,
2005.

J. Kephart and D. Chess. The Vision of Autonomic Computing. IEEE
Computer Magazine, 36(1).

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science, Vol.
1241, Berlin, Heidelberg, New York, 1997. Springer-Verlag.

C. Kim and J. Tanchoco. Operational Control of a Bi-directional Auto-
mated Guided Vehicle Systems. International Journal of Production Re-
search, 31(9):2123-2138, 2002.

204

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

D. Kinny, M. Ljundberg, and A. Rao. Planning with Team Activity. In
4th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Lecture Notes in Computer Science, Vol. 830. Springer-Verlag, Lon-
don, UK, 1992.

M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson.
Attribute-Based Architecture Styles. In 1st Working Conference on Software
Architecture, WICSA, San Antonio, TX, USA, 1999.

M. Kolp, P. Giorgini, and J. Mylopoulos. A Goal-Based Organizational
Perspective on Multi-agent Architectures. In 8th International Workshop
on Intelligent Agents, London, UK, 2002. Springer-Verlag.

D. Kotz and R. Gray. Mobile Agents and the Future of the Internet. ACM
Operating Systems Review, 33(3):3-17, 1999.

P. Kruchten. The 441 View Model of Architecture. IEEE Software, 12(6):42—
50, 1995.

P. Kruchten. The Rational Unified Process. Addison Wesley Publishing
Comp., 2003.

Y. Labrou. Standardizing Agent Communication. New York, NY, USA,
2001. Springer-Verlag.

C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall, 2002.

D. Lindeijer. Controlling Automated Traffic Agents. PhD Dissertation:
University of Delft, The Netherlands, 2003.

P. Maes. Situated Agents can have Goals. Designing Autonomous Agents,
MIT Press, 1990.

P. Maes. Modeling Adaptive Autonomous Agents. Artificial Life Journal,
1(1-2):135-162, 1994.

R. Makar, S. Mahadevan, and M. Ghavamzadeh. Hierarchical MultiAgent
Reinforcement Learning. In 5th International Conference on Autonomous
Agents, 2001.

C. Malcolm and T. Smithers. Symbol Grounding via a Hybrid Architecture
in an Autonomous Assembly System. Designing Autonomous Agents, MIT
Press, 1990.

M. Mamei and F. Zambonelli. Co-Fields: A Physically Inspired Approach to
Distributed Motion Coordination. IEEE Pervasive Computing, 3(2):52-61,
2004.

BIBLIOGRAPHY 205

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

M. Mamei and F. Zambonelli. Programming pervasive and mobile computing
applications with the TOTA middleware. In 2nd International Conference on
Pervasive Computing and Communications. IEEE Computer Society, Wash-
ington, DC, USA, 2004.

M. Mamei and F. Zambonelli. Field-based Coordination for Pervasive Mul-
tiagent Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

M. Mamei and F. Zambonelli. Motion Coordination in the Quake3 Arena
Environment. In Environments for Multiagent Systems, E4MAS, Lecture
Notes in Computer Science, Vol. 3374. Springer, 2005.

M. Mamei, F. Zambonelli, and L. Leonardi. Distributed Motion Coordina-
tion with Co-Fields: A Case Study in Urban Traffic Management. In 6th
IEEE Symposium on Autonomous Decentralized Systems, Pisa, Italy. IEEE
Press, 2003.

M. Mamei, F. Zambonelli, and L. Leonardi. Tuples On The Air: A Mid-
dleware for Context-Aware Computing in Dynamic Networks. International
Conference on Distributed Computing Systems Workshops, 2003.

X. Mao and E. Yu. Organizational and social concepts in agent oriented soft-
ware engineering. In Agent-Oriented Software Engineering V, 5th Interna-
tional Workshop, AOSE, New York, NY, USA, Lecture Notes in Computer
Science, Vol. 3382. Springer-Verlag, 2004.

M. Mataric. Leaning to Behave Socially. In From Animals to Animats, 3th
International Conference on Simulation of Adaptive Behavior. MIT Press,
1994.

M. Matinlassi. Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. In ICSE °04: 26th
International Conference on Software Engineering, Edinburgh, UK, 2004.
IEEE Computer Society.

S. McConell. Rapid Development: Taming Wild Software Schedules. Mi-
crosoft Press, 1996.

N. Medvidovic and R. N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions
on Software Engineering, 26(1):70-93, 2000.

J. De Meulenaere. Stigmergy Applied in the Packet—World. Master Thesis,
Katholieke Universiteit Leuven, Belgium, 2004.

206

BIBLIOGRAPHY

[138]

[139)

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

F. Michel, A. Gouaich, and J. Ferber. Weak Interaction and Strong Inter-
action in Agent Based Simulations. In Multi-Agent-Based Simulation II1
4th International Workshop, MABS, Melbourne, Australia, Lecture Notes in
Computer Science, Vol. 2927. Springer-Verlag, 2003.

P. Modi, S. Mancoridis, W. Mongan, W. Regli, and I. Mayk. Towards a
Reference Model for Agent-Based Systems. In Industry Track of the 5th
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, Hakodate, Japan, 2006. ACM.

A. Murphy, G.P. Picco, and G.C. Roman. LIME: a Middleware for Physical
and Logical Mobility. 21th International Conference on Distributed Com-
puting Systems, 2001.

N. Nilsson. Teleo-Reactive Programs for Agent Control. Journal of Artificial
Intelligence Research, 1:139-158, 1994.

L. Northrop. A Framework for Software Product Line Practice, Version 4.2.
http:/ /www.sei.cmu. edu/productlines/framework.html, (8/2006).

J. Odell, H. V. D. Parunak, and M. Fleischer. The Role of Roles. Journal
of Object Technology, 2(1):39-51, 2003.

J. Odell, H. V. D. Parunak, M. Fleischer, and S. Breuckner. Modeling Agents
and their Environment. In Agent-Oriented Software Engineering III, Third
International Workshop, Bologna, Italy, 2002, Lecture Notes in Computer
Science, Vol. 2935. Springer-Verlag, 2003.

F. Olumofin and V. Misic. Extending the ATAM Architecture Evaluation
to Product Line Architectures. In 5th IEEE-IFIP Conference on Software
Architecture, Pittsburgh, Pennsylvania, USA, 2005.

L. Padgham and M. Winikoff. Prometheus: A Methodology for Develop-
ing Intelligent Agents. In Agent-Oriented Software-Engineering I1I, Lecture
Notes in Computer Science, Vol. 2585. Springer-Verlag, New York, 2003.

L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi. Decentralized co-
operative conflict resolution for multiple nonholonomic vehicles. In ATAA
Conference on Guidance, Navigation and Control, 2005.

F. De Paoli and G. Vizzari. Context dependent management of field dif-
fusion: an experimental framework. Workshop Dagli Oggetti agli Agenti,
Villasimius, Italy, 2002.

D. Parnas. On a ”Buzzword”: Hierarchical Structure. Software pioneers:
Contributions to software engineering, pages 429440, 2002.

BIBLIOGRAPHY 207

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

H. V. D. Parunak. Go to the Ant: Engineering Principles from Natural
Agent Systems. Annals of Operations Research, 75:69-101, 1997.

H. V. D. Parunak and S. Brueckner. Analyzing Stigmergic Learning for
Self-Organizing Mobile Ad-Hoc Networks (MANET’s). In Engineering Self-
Organising Systems, Methodologies and Applications, ESOA, Lecture Notes
in Computer Science, Vol. 3464. Springer, 2005.

H. V. D. Parunak and S. Brueckner. Concurrent Modeling of Alternative
Worlds with Polyagents. In 7th International Workshop on Multi-Agent-
Based Simulation, Hakodate, Japan, 2006.

H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell. A preliminary
taxonomy of multiagent interactions. In Agent-Oriented Software Engineer-
ing 1V, 4th International Workshop, AOSE, Melbourne, Australia, 2003,
Lecture Notes in Computer Science, Vol. 2935. Springer-Verlag, 2004.

H. V. D. Parunak, S. Brueckner, and J. Sauter. Digital Pheromones for Co-
ordination of Unmanned Vehicles. In Environments for Multiagent Systems,
E/MAS, Lecture Notes in Computer Science, Vol. 3374. Springer, 2005.

H. V. D. Parunak, S. Brueckner, J. Sauter, and R. Matthews. Global Con-
vergence of Local Agent Behaviors. In th Joint Conference on Autonomous
Agents and Multiagent Systems, Utrecht, The Netherlands, 2005.

M. Pechouchek, D. Steiner, and S. Thompson. Proceedings of the Industry
Track of the 4th International Joint Conference on Autonomous Agents and
Multiagent Systems. ACM, Utrecht, The Netherlands, 2005.

D. Perry and A. Wolf. Foundations for the Study of Software Architecture.
Software Engineering Notes, 17(2):40-52, 2000.

E. Platon, N. Sabouret, and S. Honiden. Tag Interactions in Multiagent
Systems: Environment Support. In Proceedings of the Second International
Workshop on Environments for Multi- Agent Systems, Utrecht, Lecture Notes
in Computer Science, Vol. 3380. Springer Verlag, 2005.

T. Prasad and D. Ok. Scaling Up Average Reward Reinforcement Learning
by Approximating the Domain Models and the Value Function. In Thirteenth
International Conference on Machine Learning, 1996.

Z. Pylyshyn. The Robot’s Dilemma. The Frame Problem in Artificial Intel-
ligence. Ablex Publishing Corp., Norwood, New Jersey, 1987.

L. Qiu, W. Hsu, S. Huang, and H. Wang. Scheduling and Routing Algorithms
for AGVs: A Survey. International Journal of Production Research, 40(3),
2002.

208

BIBLIOGRAPHY

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173)]

[174]

A. Rao and M. Georgeff. BDI Agents: From Theory to Practice. In 1st In-
ternational Conference on Multiagent Systems, 1995, Agents, San Francisco,
California, USA. The MIT Press, 1995.

A. Rao, M. Georgeff, and E. Sonenberg. Social Plans: A Preliminary Report.
In Decentralized AI 3, 3th FEuropean Workshop on Modelling Autonomous
Agents in a Multi-Agent World, MAAMAW, Kaiserslautern, Germany, 1992.
Elsevier Science B.V.: Amsterdam, Netherland.

P. Reed. Reference Architecture: The Best of Best Practices. The Rational
Edge, 2002. www-128.ibm.com/developerworks/rational/library/2774.html.

C. Reynolds. Flocks, Herds and Schools: A Distributed Behavior Model.
Computer Graphics, 21(4):25-34, 1996.

J. Richter. Applied Microsoft .NET Framework Programming. Microsoft
Press, Redmond, USA, 2002.

G. Roman, C. Julien, and J. Payton. A Formal Treatment of Context-
Awareness. 7th International Conference on Fundamental Approaches to
Software Engineering, 2004.

J. Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation.
In Spring Symposium on Lessons Learned from Implemented Software Ar-
chitectures for Physical Agents. AAAI Press, 1995.

K. Rosenblatt and D. Payton. A Fine Grained Alternative to the Subsump-
tion Architecture for Mobile Robot Control. International Joint Conference
on Neural Networks, IEEE, 1989.

J. Rosenschein and L. Kaelbling. The Synthesis of Digital Machines With
Provable Epistemic Properties. In 1st Conference on Theoretical Aspects of
Reasoning about Knowledge, Monterey, CA, 1986.

N. Rozanski and E. Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison Wesley Publishing
Comp., 2005.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

J. Sauter and H. V. D. Parunak. ANTS in the Supply Chain. Agent based
Decision Support for Managing the Internet-Enabled Supply Chain, Seattle,
WA, 1999.

K. Schelfthout and T. Holvoet. Views: Customizable abstractions for
context-aware applications in MANETSs. Software Engineering for Large-
Scale Multi-Agent Systems, St. Louis, USA, 2005.

BIBLIOGRAPHY 209

[175]

[176]

[177]

178

[179)]

[180]

[181]

[182]

[183]

[184]

[185]

K. Schelfthout, T. Holvoet, and Y. Berbers. Views: Customizable Abstrac-
tions for Context-Aware Applications in MANETSs. In 4th International
Workshop on Software Engineering for Large-scale Multiagent Systems, St.
Louis, Missouri, 2005. ACM Press.

K. Schelfthout, D. Weyns, and T. Holvoet. Middleware for Protocol-based
Coordination in Dynamic Networks. In 3rd International Workshop on Mid-
dleware for Pervasive and Ad-hoc Computing, Grenoble, France, 2005. ACM
Press.

K. Schelfthout, D. Weyns, and T. Holvoet. Middleware that Enables
Protocol-Based Coordination Applied in Automatic Guided Vehicle Control.
IEEEFE Distributed Systems Online, 7(8), 2006.

W. Schols. Gradient Field Based Order Assignment in AGV Systems. Master
Thesis, Katholieke Universiteit Leuven, Belgium, 2005.

W. Schols, T. Holvoet, N. Boucké, and D. Weyns. Gradient Field Based
Transport Assignment in AGV Systems. In CW-425, Technical Report. De-
partement of Computer Science, Katholieke Universiteit Leuven, Belgium.
http://www.cs kuleuven.ac.be/publicaties/rapporten/CW /2005/ .

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

O. Shehory. Architectural Properties of MultiAgent Systems. Technical
Report CMU-RI-TR-98-28, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 1998.

M. Singh. Commitments Among Autonomous Agents in Information-Rich
Environments. In 8th European Workshop on Modelling Autonomous Agents
i a Multi-Agent World, London, UK, 1997. Springer-Verlag.

R. Smith. The Contract Net Protocol: High Level Communication and
Control in a Distributed Problem Solver. IEEE Transactions on Computers,
29(12):1104-1113, 1980.

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A Design Process for
Adaptive Behavior of Situated Agents. In Agent-Oriented Software Engineer-
ing 'V, 5th International Workshop, AOSE, New York, NY, USA, Lecture
Notes in Computer Science, Vol. 3382. Springer, 2004.

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. Designing Roles for
Situated Agents. In 5th International Workshop on Agent-Oriented Software
Engineering, New York, NY, USA, 2004.

210 BIBLIOGRAPHY

[186] L. Steels. Cooperation between Distributed Agents through Self-
Organization. Decentralized Artificial Intelligence, 1989.

[187] L. Steels. Exploiting Analogical Representations. Designing Autonomous
Agents, MIT Press, 1990.

[188] K. Sycara. Multiagent Systems. Artificial Intelligence, 10(2):79-93, 1998.

[189] K. Sycara, M. Paolucci, M. Van Velsen, and J. Giampapa. The RETSINA
MAS Infrastructure. Autonomous Agents and Multi-Agent Systems, 7(1-
2):29-48, 2003.

[190] F. Taghaboni and J. Tanchoco. Comparison of Dynamic Routing Techniques
for Automated Guided Vehicle Systems. International Journal of Production
Research, 33(10):2653-2669, 1995.

[191] B. Tekinerdogan. ASAAM: Aspectual Software Architecture Analysis
Method. In 4th Working Conference on Software Architecture, WICSA,
Oslo, Norway. IEEE Computer Society, 2004.

[192] T. Tyrrell. Computational Mechanisms for Action Selection. PhD Disserta-
tion, University of Edinburgh, 1993.

[193] P. Valckenaers and H. Van Brussel. Holonic Manufacturing Execution Sys-
tems. CIRP Annals-Manufacturing Technology, 54(1):427-432, 2005.

[194] T. Wagner and M. Pechouchek. Proceedings of the Industry Track of the
5th International Joint Conference on Autonomous Agents and Multiagent
Systems. ACM, Hakodate, Japan, 2005.

[195] R. Want. System Challenges for Pervasive and Ubiquitous Computing
(Intel). Invited talk, International Conference on Software Engineeging,
St. Louis, USA, 2005.

[196] P. Wavish and D. Connah. Representing Multiagent Worlds in ABLE. Tech-
nical Note, TN2964, Philips Research Laboratories, 1990.

[197] E. Weisstein. Confidence Interval, Probability and Statistics, MathWorld.
http://mathworld.wolfram.com/Confidencelnterval.html, (6/2006).

[198] D. Weyns, N. Boucké, and T. Holvoet. Gradient Field Based Transport

Assignment in AGV Systems. In 5th International Joint Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS, Hakodate, Japan,
2006.

BIBLIOGRAPHY 211

199

[200]

201]

[202]

203

204]

[205]

206]

207]

208]

209]

D. Weyns, N. Boucké, T. Holvoet, and W. Schols. Gradient Field-Based Task
Assignment in an AGV Transportation System. In 3th Furopean Workshop
on Multi-Agent Systems, Brussels, Belgium. Koninklijke Vlaamse Academie
van Belgie voor Wetenschappen en Kunsten, 2005.

D. Weyns, A. Helleboogh, and T. Holvoet. The Packet-World: a Test Bed
for Investigating Situated Multi-Agent Systems. In Software agent-based
applications, platforms, and development kits. Whitestein Series in Software
Agent Technology, 2005.

D. Weyns and T. Holvoet. A Colored Petri Net for a Multi-Agent Applica-
tion. In Proceedings of Modeling Objects, Components and Agents, MOCA,
University of Aarhus, Denmark.

D. Weyns and T. Holvoet. Look, Talk, and Do: A Synchronization Scheme
for Situated Multiagent Systems. In UK Workshop on Multi-Agent Systems,
Oxford, UK, 2002.

D. Weyns and T. Holvoet. Model for Simultaneous Actions in Situated Multi-
agent Systems. In Multiagent System Technologies, 1st German Conference,
MATES 2008, Erfurt, Germany, Lecture Notes in Computer Science, Vol.
2831. Springer Verlag, 2003.

D. Weyns and T. Holvoet. Synchronous versus asynchronous collaboration
in situated multi-agent systems. In 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, 2003.
ACM.

D. Weyns and T. Holvoet. A Colored Petri Net for Regional Synchronization
in Situated Multiagent Systems. In Ist International Workshop on Coordi-
nation and Petri Nets, Bologna, Italy, 2004.

D. Weyns and T. Holvoet. Formal Model for Situated Multi-Agent Systems.
Fundamenta Informaticae, 63(1-2):125-158, 2004.

D. Weyns and T. Holvoet. Regional Synchronization for Situated Multi-agent
Systems. In 8th International Central and Fastern FEuropean Conference on
Multi-Agent Systems, Prague, Czech Republic, Lecture Notes in Computer
Science, Vol. 2691. Springer Verlag, 2004.

D. Weyns and T. Holvoet. On Environments in Multiagent Systems.
AgentLink Newsletter, 16:18-19, 2005.

D. Weyns and T. Holvoet. On the Role of the Environment in Multiagent
Systems. Informatica, 29(4):408-421, 2005.

212

BIBLIOGRAPHY

210]

[211]

212]

213]

214]

[215]

[216]

[217]

[218]

[219]

D. Weyns and T. Holvoet. A Reference Architecture for Situated Multiagent
Systems. In FEnvironments for Multiagent Systems III, 3th International
Workshop, E4MAS, Hakodate, Japan, 2006, Lecture Notes in Computer
Science. Springer, 2006.

D. Weyns and T. Holvoet. Architectural Design of an Industrial AGV Trans-
portation System with a Multiagent System Approach. In Software Architec-
ture Technology User Network Workshop, SATURN, Pittsburg, USA, 2006.
Software Engineering Institute, Carnegie Mellon University.

D. Weyns and T. Holvoet. From Reactive Robotics to Situated Multiagent
Systems: A Historical Perspective on the Role of Environment in Multiagent
Systems. In Engineering Societies in the Agents World VI, 6th International
Workshop, ESAW, Kusadasi, Turkey, Lecture Notes in Computer Science,
Vol. 3963. Springer-Verlag, 2006.

D. Weyns and T. Holvoet. Multiagent systems and Software Architec-
ture. In Special Track on Multiagent Systems and Software Architecture,
Net.ObjectDays, Erfurt, Germany, 2006.

D. Weyns and T. Holvoet. Multiagent Systems and Software Architecture:
Another Perspective on Software Engineering with Multiagent Systems. In
5th International Joint Conference on Autonomous Agents and Multi-Agent

Systems, AAMAS, Hakodate, Japan, 2006.

D. Weyns, A. Omicini, and J. Odell. Environment as a First-Class Abstrac-
tion in Multiagent Systems. Autonomous Agents and Multi-Agent Systems,
14(1), 2007.

D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Envi-
ronments for Multiagent Systems, State-of-the-art and Research Challenges.
Lecture Notes in Computer Science, Vol. 3374. Springer Verlag, 2005.

D. Weyns, K. Schelfthout, and T. Holvoet. Architectural design of a dis-
tributed application with autonomic quality requirements. In ICSE Work-
shop on design and evolution of autonomic application software, St. Louis,
Missouri, New York, NY, USA, 2005. ACM Press.

D. Weyns, K. Schelfthout, and T. Holvoet. Exploiting a Virtual Environment
in a Real-World Application. In Proceedings of the Second International
Workshop on Environments for Multi-Agent Systems, Utrecht, Lecture Notes
in Computer Science, Vol. 3830. Springer Verlag, 2005.

D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux. A Role Based Model
for Adaptive Agents. In 4th Symposium on Adaptive Agents and Multi-Agent
Systems, UK, 2004.

BIBLIOGRAPHY 213

220]

[221]

222

[223]

[224]

[225]

[226]

[227]

[228]

[229]

D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux. Towards Adaptive
Role Selection for Behavior-Based Agents. In Adaptive Agents and Multi-
Agent Systems II: Adaptation and Multi-Agent Learning, Lecture Notes in
Computer Science, Vol. 3394. Springer, 2005.

D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentralized control
of E’'GV transportation systems. In 4th Joint Conference on Autonomous
Agents and Multiagent Systems, Industry Track, Utrecht, The Netherlands,
2005. ACM Press, New York, NY, USA.

D. Weyns, K. Schelfthout, T. Holvoet, T. Lefever, and J. Wielemans.
Architecture-centric development of an AGV transportation system. In
Multi-Agent Systems and Applications 1V, 4th International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS, Budapest,
Hungary, Lecture Notes in Computer Science, Vol. 3690. Springer, 2005.

D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet. Environ-
ments for Multiagent Systems. Knowledge Engineering Review, 20(2):127—
141, 2005.

D. Weyns, E. Steegmans, and T. Holvoet. A Model for Active Perception
in Situated Multiagent Systems. In 1st European Workshop on Multi-Agent
Systems, Oxford, UK, 2003.

D. Weyns, E. Steegmans, and T. Holvoet. Combining Adaptive Behavior and
Role Modeling with Statecharts. In 3th International Workshop on Software
Engineering for Large Scale Multiagent Systems, Edingburg, Scotland, 2004.

D. Weyns, E. Steegmans, and T. Holvoet. Integrating Free-Flow Architec-
tures with Role Models Based on Statecharts. In Software Engineering for
Multi-Agent Systems I1I, SELMAS, Lecture Notes in Computer Science, Vol.
3390. Springer, 2004.

D. Weyns, E. Steegmans, and T. Holvoet. Protocol Based Communication
for Situated Multi-Agent Systems. In 3th Joint Conference on Autonomous
Agents and Multi-Agent Systems, New York, USA, 2004. IEEE Computer
Society.

D. Weyns, E. Steegmans, and T. Holvoet. Towards Active Perception in
Situated Multi-Agent Systems. Applied Artificial Intelligence, 18(9-10):867—
883, 2004.

D. Weyns, E. Steegmans, T. Holvoet, E. Helsen, and K. De-
schacht. Delta Framework Cookbook. In Technical Report. Departe-
ment of Computer Science, Katholieke Universiteit Leuven, Belgium.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/CW /2005/, 2006.

214

BIBLIOGRAPHY

230

231]

[232]

[233]

[234]

[235]

[236]

237

[238]

239

[240]

D. Weyns, G. Vizzari, and T. Holvoet. Environments for situated multiagent
systems: Beyond Infrastructure. In Proceedings of the Second International
Workshop on Environments for Multi-Agent Systems, Utrecht, 2005, Lecture
Notes in Computer Science, Vol. 3380. Springer Verlag.

S. Whiteson and P. Stone. Adaptive Job Routing and Scheduling. Engi-
neering Applications of Artificial Intelligence Special Issue on Autonomic

Computing and Automation, 17(7):855-869, 2004.

T. De Wolf, G. Samaey, T. Holvoet, and D. Roose. Decentralised Auto-
nomic Computing: Analysing Self-Organising Emergent Behaviour Using
Advanced Numerical Methods. In 2nd International Conference on Auto-
nomic Computing, IEEE Computer Society, 2005.

M. Wood and S. DeLoach. An Overview of the Multiagent Systems En-
gineering Methodology. In Agent-Oriented Software Engineering I, Volume
1957 of Lecture Notes in Computer Science, Vol. 1957. Springer-Verlag, New
York, 2000.

S. Woods and M. Barbacci. Architectural Evaluation of Collaborative Agent-
Based Systems. Technical Report CMU/SEI-99-TR-025, Software Engineer-
ing Institute, Carnegie Mellon University, PA, USA, 1999.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent
Systems, 3(3):285-312, 2000.

J. Wyns, H. Van Brussel, P. Valckenaers, and L. Bongaerts. Workstation
Architecture in Holonic Manufacturing Systems. In 28th CIRP International
Seminar on Manufacturing Systems, Johannesburg, South Africa, 1996.

L. Xu and H. Weigand. The Evolution of the Contract Net Protocol. In
Advances in Web Age Information Systems, 2nd Internation Conference,
Lecture Notes in Computer Science, Vol. 2118. Springer, 2001.

D. Yamins. Towards a Theory of 'Local to Global’ in Distributed Multiagent
Systems. In 4th Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, The Netherlands, 2005.

E. Yu. Modelling Strategic Relationships for Process Reengineering. 1995.
PhD Dissertation: University of Toronto, Canada.

F. Zambonelli, N. Jennings, and M. Wooldridge. Developing Multiagent Sys-
tems: The Gaia Methodology. ACM Transactions on Software Engineering
and Methodology, 12(3):317-370, 2003.

BIBLIOGRAPHY 215

[241] F. Zambonelli and A. Omicini. Challenges and Research Directions in Agent-
Oriented Software Engineering. Journal of Autonomous Agents and Multia-
gent Systems, 9(3):253-283, 2003.

[242] F. Zambonelli and H. V. D. Parunak. From Design to Intention: Signs of a
Revolution. 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Bologna, Italy, ACM Press, New York, 2002.

[243] K. Zeghal and J. Ferber. CRAASH: A Coordinated Collision Avoidance
System. In Furopean Simulation Conference, Lyon, France, 1993.

216 BIBLIOGRAPHY

Appendix A

Formal Specification of the
Reference Architecture

This appendix gives a formal specification of the reference architecture for situ-
ated multiagent systems. The specification precisely describes the core properties
of the architectural elements and it defines the constraints the architectural ele-
ments have to comply to. We employ a simple formal notation based on set theory.
The specification gradually introduces new concepts to specify the properties of
architectural elements in subsequent views. The formalization is delimitated by
the specification of concepts that introduce variability of the reference architec-
ture. These concepts are not further specified, but, when applying the reference
architecture, these concepts have to be defined according to the requirements of
the application at hand. Not further specified concepts typically relate to variation
mechanisms that are described in the reference architecture documentation.

The specification consists of three parts that correspond to the first three views
of the reference architecture described in chapter 4. Part A.1 specifies the archi-
tectural elements of the module view of the reference architecture (described in
section 4.3). Part A.2 specifies the architectural elements of the shared data view
(section 4.4). Finally, part A.3 specifies the elements of the collaborating compo-
nents view (section 4.5). The specification of the architectural elements of a view
is divided in view packets that correspond to the view packets of the reference
architecture documentation. In each view packet, we first retake the overview
of the architectural elements from the architecture documentation. For the view
packets of the collaborating components view, the overviews are annotated with
symbols used in the formal specification. Then follows the specification of the
main properties of the architectural elements and the relationships between the
elements.

217

218 Formal Specification of the Reference Architecture

A.1 Architecture Elements of the Module Decom-
position View

The specification of the architectural elements of the module decomposition view

is structured according to the three view packets: the top-level decomposition of

the situated multiagent system, the primary decomposition of an agent, and the
primary decomposition of the application environment.

A.1.1 Module Decomposition View Packet 1:
Situated Multiagent System

A.1.1.1 Architectural Elements and Relationships

Fig. A.1 shows the top-level decomposition of a situated multiagent system with
the deployment context.

o) Influence
Agent 4C, ——

|
|
| r
| |
} } Perceive Send Receive
| |
| |
| |
|

|
|
|
|
I
I
|
I
Sense af \\rpemeive Send Receive ig Influence

Application Environment

J\\Observe Transmit Deliver J\\ Act
|
|
?

O« 4)7
4C4 —>O—|

|
?Observe Transmit

Deployment Context (External)

Deliver

O« 4)7
4C4 —>O—

KEY |:| Subsystem —O Provided Interface

-——> Dependency 4(Required Interface

Figure A.1: Top-level decomposition of a situated multiagent system with the
deployment context

A.1 Architecture Elements of the Module Decomposition View 219

A.1.1.2 Specification of Architectural Elements

General Definitions

Ag

Py,

Ont

Ag ={ai,..,ai,..,a,} is the set of agents in the multiagent system;
the index i € {1,..,n} is a unique identifier for agent a; € Ag; we
use Y = {1,..,n} to denote the set of agent identifiers in the system

a set partition of Ag; Pa, = {Ag1, .., Agt} is a disjoint subsets of
agents; each subset Agi € P44 groups the agents of one type; agents
of a type are assigned the same application goals and have the same
architecture structures; for the application-specific definition of
agent types, see variation mechanism M1 (section 4.3.1.4)

the ontology that defines the terminology of the application domain;
Ont is defined as a tuple (Voc, Rel) with:

1. Voc: the vocabulary of domain concepts

2. Rel: the set of relationships between concepts of Voc
Voc and Rel are not further specified, for the application-specific
definition of Ont, see variation mechanism M2 (section 4.3.1.4)

Agent — Application Environment Interface

Sense and Perceive. The Sense interface enables an agent to sense the envi-
ronment selectively. The application environment requires the interface Perceive
to pass on the resulting representation to the agent.

Fo

@gQFO

the set of foci for agents to sense the environment selectively, a focus
fo € Fo is defined as a 3-tuple (i, foname, foparam) with i € Y the
identity of the agent, foname a name that refers to the type of infor-
mation the agent aims to observe, and foparam a set of additional
scoping parameters of the focus; foname and foparam are not
further specified, see observation mechanism M5 (section 4.3.2.4)

the powerset of foci in the agent system (the power set of a set S,
denoted as 29 is the set of all subsets of S)

the set of representations of the environment, a representation r € R
is a data structure that refers back to elements or resources in the
environment; representations are not further specified, see variation
mechanism M6 (section 4.3.2.4)

Interface definition Sense

void : sense(O) ‘ senses the environment with a given set of foci

Interface definition Perceive

void : perceive(R) ‘ perceives the given representation

220 Formal Specification of the Reference Architecture

Send and Receive. The Send interface enables an agent to send messages to
other agents. The application environment requires the interface Receive to de-
liver messages to agents.

M the set of messages that can be sent by agents in the system; a message
m;_des € M is a formatted structure of characters that represents a
message sent by the agent with identity ¢ € Y to a set of agents with
identities specified in des € 2Y'; for brevity we use m; ; to denote a
message sent by the agent with identity ¢ € Y—the sender, to the agent
with identity 7 € Y—the addressee

Ont’ | the ontology that defines a shared vocabulary of words that agents use
to represent domain concepts and relationships between the concepts
in messages; Ont’ is defined as a tuple (Voc', Rel’) with Voc' a
vocabulary of domain concepts and Rel’ a set of relationships of the
ontology; Ont’ is typically a part of the integral ontology Ont of the
application domain (see section A.1.1).

L the communication language that defines the format of messages;
a message is a 5-tuple with the following fields:
1. cid € Cid: a unique id of the conversation, with C'id the set of
conversation ids; the function Cid() returns a new id to the
initiator of a conversation
. sender € Y: the id of the sender of the message
. addressees € 2¥: the ids of the addressees
. Perf: the set of performatives of L
5. Cont®™': the set of contents of L based on the ontology Ont’
Cid, Perf and Cont®™" are not further specified, for the domain-
specific definition of the communication language, see variation
mechanism M10 (section 4.3.2.4)

=W N

Interface definition Send

void : send(M)

sends the given message to the addressees indicated in the
message

Interface definition Receive

void : receive(M) | receives the given message; the addressee is denoted in the

message

Influence. The application environment provides the interface Influence that
enables agents to invoke influences in the environment.

A.1 Architecture Elements of the Module Decomposition View 221

Inf the set of influences that can be invoked in the environment; an
influence inf € Inf is defined as a 3-tuple (i, iname, iparam) with

1 € Y the identity of the agent, iname a name that refers to the type
of influence the agent invokes and iparam is a set of additional
parameters of the influence; iname and iparam are not further
specified, for the application-specific definition of influences, see
variation mechanism M8 (section 4.3.2.4)

Interface definition Influence

void : influence(Inf) | invokes the given influence in the environment

Application Environment — Deployment Context Interface

Observe. The application environment requires the Observe interface to observe
the state of external resources in the deployment context.

Opc the set of observation primitives to observe the deployment context;
an observation primitive is a 3-tuple (obpres, obptype, obpparam);
obpres refers to the resource that is subject of observation, obptype
describes the type of information that is observed, and obpparam is
a set of additional parameters of the observation primitive; obpres,
obptype, and obpparam are not further specified, see variation
mechanism M3 (section 4.3.1.4)

Spo the set of resource data observable from the deployment context;

a resource data is a data structure that refers back to resources in
the deployment context; resource data are not further specified, see
variation mechanism M3 (section 4.3.1.4)

Q) C 25pc | the power set of resource data that can be observed from the
deployment context

Interface definition Observe

Q2 : observe(Opc) | collects a set of resource data from the deployment context
with a given observation primitive

For convenience, we have specified observe as a synchronous operation. Yet, in
practice, alternative mechanisms such as publish/subscribe and callback can be
used to observe the deployment context.

Transmit and Deliver. The application environment requires the interface Trans-
mit to send messages to agents. The deployment context requires the interface
Deliver from the application environment to deliver the incoming messages to
the agents.

222 Formal Specification of the Reference Architecture

Mpe | the set of low-level formatted messages that can be transmitted via
the deployment context; a low-level formatted message is a structured
set of characters that represents a message exchanged between a
sender and one or more addressees; low-level formatted messages are
not further specified, see variation mechanism M3 (section 4.3.1.4)

Interface definition Transmit

void : transmit(Mpc) | transmits the given low-level formatted message to the

addressees indicated in the message

Interface definition Deliver

void : deliver(Mpc)

delivers the given low-level formatted message to the
addressee indicated in the message

Operations transmit(Mpc) and deliver(Mpc) provide a message transfer service
to transmit low-level formatted messages via the deployment context.

Act. The application environment requires the interface Act to modify the state
of external resources (based on influences invoked by agents).

Apc the set of action primitives to access the deployment context; an action
primitive is a 3-tuple (actres, actname, actparam); actres refers to the
target resource, actname describes the type of action, and actparam is
a set of additional parameters of the action primitive; actres, actname,
and actparam are not further specified, see variation mechanism M3
(section 4.3.1.4)

Interface definition Act

void : act(Apc) | invokes the given low-level action primitive in the deployment
context

A.1.2 Module Decomposition View Packet 2:
Agent

A.1.2.1 Architectural Elements and Relationships

Fig. A.2 shows the module decomposition of an agent.

A.1.2.2 Specification of Architectural Elements

Perception — Communication/Decision Making Interface

Request. The provided Request interface of the perception module enables de-
cision making and communication to request a perception of the environment.

A.1 Architecture Elements of the Module Decomposition View 223

Sense

Sense

A
|

j Request Request Influence Influence
. Decision
Perception ——(O<——)7 Making —C—»[]—C

Send Receive
Agent

the set of focus combinations of agent a;; this set contains all focus

the set of focus selectors in the agent system; a focus selector

sg € Se specifies a focus combination 6 € O, and is defined as
{fos1,.., foss} with fos, defined as (fosname,, fosparam,)
with fosname, the name of a selected focus and fosparam,, a set
of additional parameters of that focus; focus selectors are not
further specified, see variation mechanism M5 (section 4.3.2.4)

Perceive Perceive \f
Request
Communication
Send Receive
L] Port
E Subsystem -——> Dependency
KEY —O Provided Interface
— Delegate
l:l et 4(Required Interface R
Figure A.2: Module decomposition of an agent
Fo; C Fo | the set of foci available to agent a;
@i C 2Foi
combinations that can be selected by agent a;
Se
Se, the set of focus selectors available to agent a;
Ont
K,

the set of state elements of agents of Ag based on the ontology Ont;
a state element represents knowledge of an agent about the applica-
tion domain and can refer to elements external to the agent as well
as state private to the agent; a state element is defined as a tuple
(kname, k fields); kname is the name of the state element and
kfields a set of fields, each field consisting of a name and a value of
an accompanying domain; kname and k fields are not further speci-
fied, for the application-specific definition of KAOg”t see variation

mechanism SD1 (section 4.4.1.4)

224 Formal Specification of the Reference Architecture

K; C ngt the set of all state elements of agent a; € Ag

KC; C 2K the power set of state elements of agent a;; we denote the actual
set of state elements x € K; as the current knowledge of the agent

P, CK; the set of percepts of agent a;; a percept p € P; represents know-
ledge of agent a; about the environment

Fi; the set of filters of agent a;; a filter fi € F'i; is typed as

fi:p— Bool with p € P; and Bool = {true, false}; i.e. a filter
maps state elements of a percept onto boolean values; all state
elements s € p for which fi(s) returns true can pass the filter,
the elements that return false are blocked; filters are not further
specified, see variation mechanism M7 (section 4.3.2.4)

o, C 27 the set of filter combinations of agent a;; this set contains all filter
combinations that can be selected by agent a; to filter percepts

Sao the set of filter selectors available to agent a;; a filter selector

54 € So, specifies a filter combination ¢ € ®;, and is defined as
{fis1,.., fis, } with fis, defined as (fisname,, fisparam,)
with fisname, the name of a selected filter and fisparamg a set
of additional parameters of that filter; filter selectors are not

further specified, see variation mechanism M7 (section 4.3.2.4)

Interface definition Request

void : request(Se,, Se,) | requests a perception with the given focus and filter
selectors

A.1.3 Module Decomposition View Packet 3:
Application Environment

A.1.3.1 Architectural Elements and Relationships

Fig. A.3 shows the module decomposition of the application environment.

A.1.3.2 Specification of Architectural Elements

Perception Generator — Observation & Data Processing Interface

Collect and Generate. To observe resources in the deployment context, the
perception generator depends on the Collect interface of the observation & data
processing module. The observation & data processing module uses the Generate
interface provided by the perception generator to generate a representation based
on the data derived from the observed resources.

A.1 Architecture Elements of the Module Decomposition View 225
iE SenseT Perceive ReceiveT f Send f Influence
f f i
Application Environment
Sense TPerceive ReceiveT Send Influence
Perception Dynamics Communjcation Interaction
Generator Service

rJ\Collect </£ Generate DeliverMsg é fJ\ Translate (J\Translate
[‘ ‘ N e

~ —

| | ~ ~
DeliverMsg
Collect Generate Translate

Observation & Synchronizatio_n & Translation
Data Processing Data Processing
(J\\ Observe Observe (L Transmit (L Deliver (L Act
Observe l Transmit l l Deliver l Act

Port
-——> Dependency
Provided Interface

—» Delegates

I
L

Required Interface

Figure A.3: Module decomposition of the application environment

Ont
Sg

SEA

SED

the set of state elements of the application environment based on
ontology Ont; a state element of the application environment
represents a part of the state of the application environment or
the deployment context and is defined as (sname, sfields) with
sname the name of the state element, and sfields a set of fields,
each field consisting of a name and a value of an accompanying
domain; sname and sfields are not further specified, for the appli-
cation-specific definition of S™ see variation mechanism SD2
(section 4.4.2.4) (for brevity, we use Sg instead of SS™ hereafter)

Sea C Sk is the set of state elements that refer to elements of the
application environment

SEp C Sk is the set of state elements that can be deduced from
the observation of the deployment context

226 Formal Specification of the Reference Architecture

T C 2587 | the powerset of state elements of the application environment that
can be deduced from the observation of the deployment context

@) the set of observations to collect data from the observation of the
deployment context; an observation ob € O is typed as follows:

ob : Spp — Bool; i.e. an observation is a function that maps state
elements of Sgp on boolean values; ob(s) returns true for state
elements s € Sgp that are targeted by the observation, and false
otherwise; see variation mechanism M14 (section 4.3.3.4)

Interface definition Collect

void : collect(O)

collects data from the deployment context with the given
observation

Interface definition Generate

void : generate(V) | generates a representation with the given state elements

collected from the observation of the deployment context

Communication Service/Interaction — Translation Interface

DeliverMsg. Translation converts incoming messages into an appropriate format
for agents and uses the DeliverMsg interface of the communication service to de-
liver the messages.

Interface definition DeliverMsg

void : deliver(M) | delivers the given message to the addressee indicated in
the message

Translate. The Translate interface of the translation module provides a dual
functionality: (1) it converts messages into a low-level format for transmission
via the deployment context, and (2) it converts operations (from the influences
invoked by agents) into low-level action primitives of the deployment context.

G the set of operations in the agent system; an operation g € G is typed
as follows: g : Sg — {true, false,unspec}; g(st) = true denotes that
st € Sg is part of the target state of the operation, g(sf) = false
denotes that sf € Sg is not part of the target state, and finally

g(su) = unspec denotes that su € Sg is invariable to the operation;
for the application-specific definition of operations, see variation
mechanism M14 (section 4.3.3.4)

Interface definition Translate provided by Translation

void : translate(M) | translates the given message to a low-level interaction
with the deployment context

A .2 Architecture Elements of the Shared Data View 227

void : translate(G) | translates the given operation to a low-level interaction
with the deployment context

A.2 Architecture Elements of the Shared Data
View
The specification of the architectural elements of the shared data view is structured

according to the two view packets of the view: situated agent and the application
environment.

A.2.1 C & C Shared Data View Packet 1:
Agent

A.2.1.1 Architectural Elements and Relationships

Fig. A.4 shows the shared data view of a situated agent.

:Communication :Decision Making

|

Read-Write

Update

)— :Perception

:Current
Knowledge

:Agent

Ej Data Repository —) Provided Interface
Y

|:| Component)7 Required Interface

KE

Figure A.4: Repository and data accessors of an agent

A.2.1.2 Specification of Architectural Elements

Current Knowledge — Communication/Decision Making Interface

Read-Write. The Read-Write interface enables the communication and decision
making component to read and modify the agent’s current knowledge.

228 Formal Specification of the Reference Architecture

Interface definition Read-Write

K; s read() reads the agent’s current knowledge

void : write(2X+) | writes the given set of state elements in the agent’s current
knowledge

Current Knowledge — Perception Interface

Update. The Update interface enables the perception component to update the
agents knowledge according to the information derived from sensing the environ-
ment.

Interface definition Update

void : update(P;) ‘ updates the agent’s current knowledge with the given percept

A.2.2 C & C Shared Data View Packet 2:
Application Environment

A.2.2.1 Architectural Elements and Relationships

Fig. A.5 shows the shared data view of the application environment.

A.2.2.2 Specification of Architectural Elements

Interfaces Provided by State

Read and Read-Write. The provided interface Read enables the attached com-
ponents to read state of the state repository. The Read-Write interface enables
the attached components to read and modify the application environment’s state.

¥ C 297 | the powerset of state element of the State repository; we denote the
actual set of state elements o € ¥ as the current state of the
application environment

Interface definition Read

Y : read() | reads the current state of the application environment from the
state repository

Interface definition Read-Write

Y read() reads the current state of the application environment

void : write(2°%) | writes the give state elements in the state repository of the
application environment; overwrites old state if applicable

A .2 Architecture Elements of the Shared Data View 229

:Application

X Read-AL
Environment

Read-CL

. . :Representation :Communication
:Interaction i
Generator Service
Read-Write
Ty
v
:Dynamics ——(O— State ——) Read
\¥/
:Synchronization :Oberservation . .
& Data Processing & Data Processing Translation

KEY

@ Data Repository —O Provided Interface j—(&)v/(}

|:| Component)7 Required Interface Equivalent configurations

Figure A.5: Repositories and data accessors of the application environment

Interfaces Provided by Laws

Read-PL. The Read-PL interface provided by the Laws repository enables the rep-
resentation generator to consult the perception laws.

Sec

the set of perception scopes (or scopes for short); a scope sc € Sc

is typed as sc: Sgp — Bool; i.e. a scope maps state elements of the
environment on booleans; sc(si) returns true for the elements si € Sg
that are within the scope of sc¢, and sc(so) = false for the elements
so € S outside the scope; we call the set of state elements that map
on true as the domain of interest of a scope

230

Formal Specification of the Reference Architecture

COP

Lp

the set of perception constraints in the agent system; a perception
constraint cop € Cop is typed as cop : Sg — Bool; i.e. a perception
constraint maps state elements s € Sg on booleans restricting agents’
perception of the environment; cop(s) returns true for the state
elements s € Sg that are restricted for perception, and false for
unconstrained state elements

the set of perception laws; a perception law Ip € Lp is typed as
Ilp:Sex ¥ — Cop;

i.e. a perception law Ip(sc,) = cop takes a scope sc together with
the current state of the application environment ¢ and produces a
perception constraint cop

Interface definition Read-PL

Lp : plaws() ‘ consults the perception laws

Read-AL. The Read-AL interface provided by the Laws repository enables the in-
teraction component to consult the action laws.

COA

L4

the set of operation constraints in the agent system; an operation
constraint coa € Coy is typed as coa : Sg — Bool; i.e. an operation
constraint maps state elements s € Sg on booleans restricting agents’
actions in the environment; coa(s) returns true for the state elements
that are constrained for modification, and false for unconstrained
state elements

the set of action laws in the agent system; an action law la € L4 is
typed as follows: la : G x X — Coa;

an action law la(g,0) = coa takes an operation g and the current
state of the environment ¢ and returns an operation constraint coa

Interface definition Read-AL

L4 : alaws() | consults the action laws

Read-CL. The Read-CL interface provided by the Laws repository enables the com-
munication service to consult the communication laws.

A.3 Architecture Elements of the Collaborating Components View 231

Coc the set of communication constraints in the multiagent system; a
communication constraint coc € Co¢ is typed as coc : Y — Bool;
i.e. a communication constraint maps identities of agents ¢ € Y on
booleans; coc(i) returns true for identities of agents that are
excluded for a particular message, and false for non constrained
identities

L¢ the set of communication laws in the agent system; a communication
law lc € L¢ is typed as follows:

le: M x ¥ — Coc;

a communication law lc(m;— 4es,0) = coc takes a message m;_ des
and the current state of the environment ¢ and returns a communi-
cation constraint coc

Interface definition Read-CL

Lc : claws() | consults the communication laws

A.3 Architecture Elements of the Collaborating
Components View

The specification of the architectural elements of the collaborating components
view is structured according to the three view packets of the view. Subsequently,
we discuss the view packet with the collaborating components of perception, in-
teraction, and communication. Each view packet starts with the specification of
a number of additional concepts. Then the various collaboration components are
specified.

A.3.1 C & C Collaborating Components View Packet 1:
Perception and Representation Generator

A.3.1.1 Architectural Elements and Relationships

Fig. A.6 shows the collaborating components that realize the functionality for
perception.

A.3.1.2 Specification of Architectural Elements

General Definitions

X; the set of descriptions of agent a;; a description x € X; is typed as:
x : R — 2%, ie. a description maps a representation r € R on a
set of state elements of 25¢: for the application-specific definition
of descriptions, see variation mechanism CC1 (section 4.5.1.3)

232 Formal Specification of the Reference Architecture

So
— =3
‘Perception w o
R ’
ead F'i
— :Filter
m Selection
Read
F O ¢ Update
0j I ! (Current
p p' Knowledge)
:Sensing :Interpreting » Filtering ’C{]—Cof
A
Read (State)
0 r
ol
) } \ :Representation
/ RN ‘R : Generator
Y | \} :Representation
v \f } Generation
I
:Perception } 1
Restriction |
| €
I
I
I
:State Collection
| >
| n'
5
P A
? Read-PL (Laws) Y ob v
@ U Port —» Delegates
Repositol
KEY v —CO Privided Interface —» Data Flow
|:| Runtime Component) Required Interface _ __ Agent-Environment

Interface

Figure A.6: Collaborating components of perception and representation generator

N C 25¢ | the powerset of scopes in the agent system; 7 € A is a set of scopes
derived from a set of foci of a perception request; the convertion
of foci to scopes is the responsibility of the Scoping component (see
the definition of the collaborating components below)

A.3 Architecture Elements of the Collaborating Components View 233

ECY the set of state element sets that can be observed from the state of
the application environment;

dom(f) | we use the following notation: for a function f: D — {vl,..,on},
we use dom(f) to denote the domain of f, thus dom(f) = D; we
use dom(f)~ " to denote the subdomain of elements of dom(f)
that map to vi, with vi € {vl,..,on}

Collaborating Components

Components of agents are specified per agent, indicated with a subscript i. In
practice, agents of a particular agent type usually share the same component
definition (see section A.1.1).

Sensing; takes a focus selector and the set of foci of the agent!, and selects the
corresponding foci to produce a perception request. Sensing is typed as follows:

Sensing; : Se, — ©;

Sensing;(sg) =0
PerceptionRestriction takes the set of foci from a perception request, the current
state of the application environment, and generates according to the set of per-
ception laws, a perception scope for the perception request. PerceptionRestriction
is typed as follows:

PerceptionRestriction : © x ¥ — N

PerceptionRestriction(0,0) = n’
PerceptionRestriction first converts the set of foci of a perception request into a
set of scopes, and subsequently, it applies the perception laws to this set of scopes.
The conversion of foci to scopes is defined by the Scoping function that is typed
as follows:

Scoping : © — N

Scoping(0) =n
The application of the perception laws is defined by the ApplyL p function that is
typed as follows:

ApplyLp : N x ¥ — N;

ApplyLp(n, o) =n'

LGiven sets for a particular agent, such as the sets of foci of filters, are not explicitly indicated
in the definition of the components. In a similar way, given sets of the application environment,
such as the various sets of laws, are not explicitly indicated in component definitions of the
application environment.

234 Formal Specification of the Reference Architecture

ApplyLp applies the set of perception laws L, to a set of scopes n, given the
current state of the environment o. ApplyLp results in a restricted perception
scope 7’ For the resulting perception scope holds:

Vs € Sg:n/(s) = true iff (3 sct € n: sct(s) = true) A
(Vipe Lp,Vscen: (Veco€lp(seo):co(s)= false)))
otherwise 7/(s) = false

That is, a state element is within the restricted perception scope if (i) the state
element is within the domain of interest of at least one scope, and (ii) none of the
constraints of the applied perception laws is applicable to the state element.

For the resulting perception scope holds:

dom(n/)etrue — (Uscen dom(sc)ﬂtrue)

— false
ﬂ (Ulpe Lp, scen, co€lp(sc,o) dom(co) fa se)

The observable domain of the perception scope (i.e. the subdomain of elements of
observable state of the environment that map to true) consists of the intersection of
the domain of interest of the scopes of the perception request and the subdomain of
elements of the state of the environment that are not constrained by the perception
laws.

StateCollection collects the observable state for a perception request, given the
current state of the application environment. StateCollection selects the subset
of state elements of the application environment for the given perception scope,
and produces an observation to collect data from the deployment context within
perception scope. StateCollection is typed as follows:

StateCollection : N X ¥ — & x O
StateCollection(n',0) = (g,0b)

RepresentationGeneration takes the observed state of a perception request and
produces a representation. RepresentationGeneration is typed as follows:

RepresentationGeneration : € X ¥ x ¥ — R
RepresentationGeneration(e,,0) = r

The generated representation integrates the state observed from the application
environment € with the state collected from the observation of the deployment
context .

Interpreting; uses the set of descriptions to interpret a given representation re-
sulting in a percept for the agent. Interpreting is typed as follows:

Interpreting; : R — P;

Interpreting;(r) = p

A.3 Architecture Elements of the Collaborating Components View 235

FilterSelection; selects a subset of filters from the agent’s set of filters according
to a given filter selector.

FilterSelection; : Se, — ®;

FilterSelection;(s¢) = ¢
Filtering; finally, filters a percept of an agent according to the set of selected
filters. Filtering is typed as follows:

letermgz : P,L X (I)z — Pi

Filtering;(p, ¢) = p

/

For the elements of the given percept p that have passed the set of filters ¢ holds:

Vkep :(kep) N(Afic€ ¢;: fi(k) = false)

This expression states that the filtered percept only includes the elements of the
original percept for which no filter of the set of selected filters blocks the elements.

A.3.2 C & C Collaborating Components View Packet 2:
Decision Making and Interaction

A.3.2.1 Architectural Elements and Relationships

Fig. A.7 shows the collaborating components that realize the functionality for
actions.

A.3.2.2 Specification of Architectural Elements
General Definitions

T the set of stimuli in the agent system; a stimulus is factor internal
to the agent, or a factor that refers to external elements in the
environment, that drives an agent’s decision making process; a
stimulus ¢ € T is defined as { stname, stfields) with stname the
name of the stimulus, and stfields a set of fields, each field
consisting of a name and a value of an accompanying domain;
stname and stfields are not further specified; the application-
specific definition of stimuli depends on the applied mechanism for
action selection, see variation mechanism CC3 (section 4.5.2.3)

e
N
N

the set of stimuli of agent a;

N
I
[}
I

the powerset of stimuli of agent a;

236 Formal Specification of the Reference Architecture

<89 59> < :Decision Making
:D-Knowledge

Update Read-Write
D R
/ T
/ el

K /

—Q}—Dﬁ« — ——)—{ :Action Selection op
N
Read-Write AN l
(Current N
Knowledge) \ :Execution

()

:Operation C ,,,,,,,,,,,,,,,,,,, g CC
Restriction -

4 Read-Write

7 (State)
:Reactor 7@
gl

hA
La l "

? Read-AL (Laws)

@ U Port — - Delegates
Repositol
KEY v —CO Privided Interface —» Data Flow

|:| Runtime Component) Required Interface — —- Agent-Environment
Interface

:Interaction

Figure A.7: Collaborating components of decision making and interaction

Op the set of operators in the agent system; an operator op € Op is
defined as a tuple (opname, opparam) with opname a name that
refers to the type of operator, and opparam a set of additional
parameters of the operator; opname and opparam are not further
specified, see variation mechanism CC3 (section 4.5.2.3)

Op; € Op | the set of operators that can be selected by agent a;

T =2 the powerset of influences; ¢ € 7 is a set of influences in the agent
system

I=2¢ the powerset of operations in the agent system

A.3 Architecture Elements of the Collaborating Components View 237

Collaborating Components

D-KnowledgeUpdate; enables the agent to update its current knowledge of the
environment. D-KnowledgeUpdate takes the agent’s current knowledge and the
set of current stimuli and produces a set of focus and filter selectors. The focus and
filter selectors are passed to the perception module that senses the environment to
produce a new percept and update the agent’s knowledge. D—KnowledgeUpdate
is typed as follows:

D-KnowledgeUpdate; : IC; x T; — Se, X So,

D-KnowledgeUpdate;(k,T) = (sq,5¢)
ActionSelection; selects operators. ActionSelection takes the current stimuli and
the knowledge of the agent to select an operator and update the set of current
stimuli. ActionSelection is typed as follows:

ActionSelection; : T; x Ki — Op; X T;

ActionSelection(t, k) = (op,7")
ActionSelection encapsulates a behavior-based action selection mechanism ex-

tended with the notion of role and situated commitment. For the specification
of a role and a situated commitment, see chapter 4, section 4.5.2.

Ezecution; converts the selected operator into an influence. Execution takes the
operator and the current knowledge of the agent and produces an influence that
is invoked in the environment. Execution is typed as follows:

Execution; : Op; x K; — Inf

Execution;(op, k) = inf
The Collector collects influences invoked by the agents, and adds the influences to
the set of pending influences in the agent system. Collector is typed as follows:

Collector : T x Inf - T

Collector(t,inf) =1/

Collector adds influence inf to the set of pending influences, i.e. ' = ¢ U {inf}.

OperationRestriction takes an influence, the current state of the application envi-

ronment, and generates according to the set of action laws, an operation for the

selected influence. OperationRestriction is typed as follows:
OperationRestriction : I x ¥ — I x G

OperationRestriction(t,0) = (', ¢’)

238 Formal Specification of the Reference Architecture

OperationRestriction applies three functions in turn: (1) it selects an influence
from the set of pending influences invoked by agents, (2) it converts the selected
influence into an operation, and (3) it applies the actions laws to this operation.

The selection of an influence is defined by the InfluenceSelection function that
is typed as follows:

InfluenceSelection : T x ¥ — Inf xZ
InfluenceSelection(t,0) = (inf,.’)

The selection of an influence is based on the influence selection policy Pol; that
specifies the ordering of influences, taking into account the current state of the
environment. The influence selection policy is not further specified, see variation
mechanism CC4 (section 4.5.2.3). After influence selection holds: ¢ = ¢ \ {inf}.

OperationGeneration converts the selected influence into an operation. Oper-
ationGeneration is typed as follows:

OperationGeneration : Inf x ¥ — G
OperationGeneration(inf,o) = g

The application of the perception laws is defined by the ApplyL 4 function that
is typed as follows:

ApplyLs G x ¥ — G
ApplyLa(g,0) = ¢
ApplyL 4 applies the set of action laws L4 to operation g, given the current state

of the application environment o. ApplyL 4 restricts the operation g according to
the set of applicable action laws. For the restricted ¢’ holds:

s)=true) A (Vla€ Ly:(Vcoc€lalg,o):co(s)= false))
= false iff

s)= false) A (Vla€ La: (VY coc€la(g,o):co(s)= false))
= unspec otherwise

s}
~
S~
»

That is, (1) a state element of the environment is part of the target state of the
restricted operation if the state element is part of the target state of the operation
and none of the constraints of the applied action laws is applicable to the state
element; (2) the restricted operation is invariable to the rest of the state elements
of the environment.

For the restricted operation holds:

dom(g') 7% = (dom(9) ™) () Uns ¢ 11 co 1atm dole0)74%)
dom(g") 915 = (dom(9)~ 15%) () (Up,c 11, o tory dom(co) = 17150
dom(g')™""Pe = (dom(g) ™ ""*P°) |J (Ujq c La,coclalg,) dom/(co) ™ true)

A.3 Architecture Elements of the Collaborating Components View 239

The target domain of the restricted operation (i.e. the subdomains of elements of
state of the environment that map to true or false) consists of the intersection of
the target domain of the original operation and the subdomain of elements of the
state of the environment that are not constrained by the action laws.

The Reactor executes the restricted operation to the state of the application envi-
ronment, and produces an operation to act in the deployment context if applicable.
Reactor is typed as follows:

Reactor :G XX — L xG
Reactor(g',0) = (o’,9")

The execution of the operation modifies the state of the application environment
and produces an operation connected to the state of the deployment context that
is forwarded to the translation module.

A.3.3 C & C Collaborating Components View Packet 3:
Communication and Communication Service

A.3.3.1 Architectural Elements and Relationships

Fig. A.8 shows the collaborating components that realize the functionality for
communication.

A.3.3.2 Specification of Architectural Elements
General Definitions

M = 2M | the powerset of messages in the agent system; p € M denotes a set
of messages

Ddec the set of decoded message data, a decoded message data

md € Ddec represents the data of a received message and is defined
as a 4-tuple (cid, sender, per form, content); the elements of this
tuple are defined by the communication language L (section A.1.2);
we use the notation tupleleiement to selects an element of a tuple

Denc the set of message data to encode messages, a decoded message data
md € Ddec is defined as (cid, addressees, per form, content); the
elements of this tuple are defined by the communication language L

D the set of conversations in the agent system; a conversation d € D is
defined as a 3-tuple (pname, cid, history) with pname the name

of the protocol of the conversation, cid € Cid the unique id of the
conversation, and history the sequence of message data of received
and sent messages of the conversation

240 Formal Specification of the Reference Architecture

Read <39'5¢>

K i (Current Knowledge) A
FaG
|
|

%

C-Knowledge
Update
L md i
> Communicating L
l M€ . des i
IT; J\ Read)
Message O Message
Decoding Encoding

— '
. lJ.outi
] o

Add-Remove Add-Remove
Message Communication Message
Receiving Sending
A
,,, Mivdes ___
m..
jii
- Communication
ge Service Message
Delivering KL Buffering Out
I
I
Pin | S—
I
|
I
Add-Remove } Add-Remove
I
Message }) -
PR i — Mailing
Buffering In | i
Y ! s |
1 .
o ;\ n 0 A Le
m;; i-des v Read-CL
in Read (State) (Laws)
@ R " O Port —» Delegates
epository
KEY —O Privided Interface —» Data Flow
|:| Runtime Component D Required Interface ——- Agent-Environment
Interface

Figure A.8: Collaborating components of communication & communication service

D, CD the set of all conversations of agent a;

A; € 2P | the powerset of conversations of agent a;

A.3 Architecture Elements of the Collaborating Components View 241

St the set of protocol steps in the agent system; a protocol step st € St
is defined as a tuple of functions (cond, step); cond is a boolean
function that determines whether the protocol step is applicable, and
step determines the effects of the protocol step (see below)

pr € II; | a communication protocol of agent a; that is defined as a tuple

pr =(pname, (st1,...,st,)) with pname the protocol name

and st; € St for all j € {1..p }; for the application-specific definition
of protocols, see variation mechanism CC7 (section 4.5.3.3)

Collaborating Components

First we elaborate on the communicating component, after that we specify the
other components in the collaboration.

Communicating; handles the agent’s communicative interactions. Communicating
processes incoming messages and produces outgoing messages according to well-
defined communication protocols. Communicative interactions can modify the
agent’s state possibly affecting the agent’s selection of influences; an important
example is the activation and deactivation of a situated commitment. A commu-
nication protocol pr € II; consists of a series of protocol steps (see specification
above). We distinguish between three types of protocol steps: (A) conversation
initiation, (B) conversation continuation, and (C) conversation termination. We
specify each type of protocol step in turn.

A. Conversation initiation starts a new conversation according to a particular
protocol. A conversation can be initiated by the agent itself (EndogenousInitiation)
or by another agent (ExogenousInitiation).

EndogenousInitiation = { EndoIniCond, EndoIniStep)
Applied to an agent with identity ¢ € Y:

EndolIniCond; : K; — Bool
EndolIniStep; : A; X K;j — Denc x A; X K;

EndoIniCond; is the cond function of the protocol step and EndolIniStep; the step
function. If EndoIniCond;(k) = true then the protocol step EndoIniStep;(d, k) =
(me, ¢, k') is applicable. EndoIniStep; produces the message data me for a new
message, it updates the agent’s current knowledge, and it adds a new conversation
to the set of ongoing conversations. For the resulting set of conversations holds:

0" =6U{d} with d = (pr,Cid(), {me))

That is, a new conversation d is added to the set of ongoing conversations of
the agent. EndoIniStep; updates the agent’s current knowledge, i.e. x’ includes

242 Formal Specification of the Reference Architecture

modifications of the agent state implied by EndolniStep;.

FExogenousInitiation is defined as follows:
ExogenousInitiation = (ExoIniCond, ExolniStep)
Applied to an agent with identity i € Y:

FExolIniCond; : Ddec x K; — Bool
ExolniStep; : Ddec x A; x K; — A; x K;

ExolniCond; is the cond function of the protocol step and ExzolniStep; the step
function. If ExolniCond;(md,x) = true then ExoStep;(md,d,k) = (¢',k') is
applicable. EzolniStep; updates the agent’s current knowledge and adds a new
conversation to the set of ongoing conversations. For the updated set of conversa-
tions holds:

0" = dU{d} with d = (md |pr, md|cia, (md))

That is, a new conversation d is added to the set of ongoing conversations of the
agent, with md |, € II; the protocol of the conversation, md|.q the conversation
id, and {md) the initial history of the new conversation. ExolniStep; updates the
agent current knowledge, i.e. k¥’ includes modifications of the agent state implied
by EndolIniStep;.

B. Conversation continuation performs a step in an ongoing conversation. We
distinguish between three types of conversation continuations: Process deals with
a received message data without directly reacting to it, Reply immediately reacts
to a received message data, and finally Continue picks up the conversation after
a break. We specify each type in turn. Process is defined as follows:

Process = (ProcessCond, ProcessStep)
Applied to an agent with identity i € Y:

ProcessCond; : Ddec x A; x K; — Bool

ProcessStep; : Ddec x A; x Ky — A; X K;

ProcessCond; is the cond function of the protocol step and ProcessStep; the step
function. If ProcessCond;(md,d, k) returns true then ProcessStep;(md,d, k) =
(6’,K") is applicable. For the updated set of conversations holds:

¢ = (o0\{d}) u{d'}
with d € § : md|ciq = d|eia and d' = (d|pr, d|cid, (d|nist o md))

Process adds the message data md to the history of the conversation to which
the processed message belongs. Furthermore, Process updates the agent current

A.3 Architecture Elements of the Collaborating Components View 243

knowledge, i.e. k' includes modifications of the agent’s state implied by the pro-
tocol step.

Reply is defined as follows:
Reply = (ReplyCond, ReplyStep)
Applied to an agent with identity i € Y:
ReplyCond; : Ddec x A; x K; — Bool
ReplyStep; : Ddec x A; x K; — Denc x A; x K;
ReplyCond; is the cond function of the protocol step and ReplyStep; the step
function. If ReplyCond;(md,d, k) = true then ReplyStep;(md,d, k) = (me,d, k')

is applicable. me is the message data of the agents’ reply to the received message
with message data md. For the updated set of conversations holds:

¢ = (6\{d}) u{d'}
with d € § : md|cig = d|eig and d' = (d|pr, d|cid, ((d|pist © md) 0 me))

Reply adds the received message data md and the composed message data me
to the history of the conversation to which the received message belongs (i.e.
d|pist). Furthermore, Reply updates the agent current knowledge according to the
modifications implied by the Reply step.

Continue is defined as follows:
Continue = (ContCond, ContStep)
Applied to an agent with identity i € Y:
ContCond; : D; x K; — Bool
ContStep; : D; x K; — Denc x D; x K;

ContCond; is the cond function of the protocol step and ContStep; is the step
function of Continue. When ContCond;(d, k) becomes true the agent continues
conversation d with ContStep;(d,x) = (me,d’,;x’). me is the message data to
compose the new message and ' is the agent’s updated current knowledge implied
by the protocol step. For the updated conversation holds:

d = <d‘prad‘cid7 <d|hist © m6>>

Continue adds the composed message data me to the history of the conversation
for which the protocol step is applicable. After the Continue step, the set of on-
going conversations of the agent is updated to ¢’ = (6\{d}) U {d'}.

C. Conversation termination concludes an ongoing conversation. The termi-
nation of a conversation can be induced by changing circumstances in the environ-
ment or it can directly follow a preceding step of the conversation such as a Reply
or a Continue. Terminate is defined as follows:

244 Formal Specification of the Reference Architecture

Terminate = (TermCond, TermStep)
Applied to an agent with identity ¢ € Y:

TermeCond; : D; x KC; — Bool
TermStep; : D; x K; — K;

TermCond; is the cond function and TermStep; is the step function of the
Terminate protocol step. If TermCond;(d, k) returns true then TermStep;(d, k) =
k' terminates the conversation d and updates the agent’s current state accordingly.
After the Terminate step, the set of ongoing conversations of the agent is updated

to & = o\{d}.

For the application-specific definition of communication protocols, see variation
mechanism CC7 (section 4.5.3.3). Now we look at the functionalities of the other
collaborating components of communication and communication service.

C-Knowledge Update; enables the agent to update its current knowledge according
to its ongoing conversations. C—KnowledgeUpdate takes the agent current knowl-
edge and the set of conversations and produces a set of focus and filter selectors
that are passed to the perception module that senses the environment to produce
a new percept and update the agent’s knowledge. C-KnowledgeUpdate is typed
as follows:

C-KnowledgeUpdate; : IC; x A; — So, X Sa,
C-KnowledgeUpdate;(k,d) = (sg,54)

MessageEncoding; encodes newly composed message data into messages and puts
the messages in the outbox buffer of the agent. Message encoding is based on
the communication language L that is shared among the agents in the system.
MessageEncoding is typed as follows:

MessageEncoding; : (Denc — M) x M — M
Message Encoding;(Encode(me), pout;) = pout)

After message encoding, the new message is added to the outbox, i.e.:
pout, = pout; U {m} with m = Encode(me)

MessageSending; selects a message from the set of pending messages in the outbox
buffer and passes it to the communication service. Message selection is typically
first-in-first-out, see variation mechanism CC8 (section 4.5.3.3). MessageSending
is typed as follows:

MessageSending; : M — M x M
MessageSending;(pout;) = (m;— des, pout;)

A.3 Architecture Elements of the Collaborating Components View 245

Message sending removes the sent message from the outbox, i.e.:
pout, = pout, \{m;—des}

MessageBufferingOut collects messages sent by agents and puts them in the output
buffer of the communication service. MessageBufferingOut is typed as follows:

MessageBuf feringOut : M x M — M
MessageBuf feringOut(m;_ qes, prout) = pout’

For the outbox holds pout’ = pout U {m;_des }-

M ailing transmits a message selected from the output buffer, taking into account
the current state of the application environment and the set of communication
laws. Mailing is typed as follows:

Mailing: M x ¥ — MxX
Mailing(pout, o) = (Mi—des, pout’, ")

Mailing applies three functions in turn: (1) it selects a message from the set
of pending messages sent by agents, (2) it applies the communication laws to the
selected message, and (3) it transmits the message in the deployment context if
applicable.

The selection of an influence is defined by the MessageSelection function that
is typed as follows:

MessageSelection : M x ¥ — M x M

MessageSelection(pout, o) = (M;_des, prout’)

The selection of a message from the output buffer is based on the message selection
policy Polc that specifies the ordering of messages, taking into account the current
state of the environment. The message selection policy is not further specified,
see variation mechanism CC8 (section 4.5.3.3). After message selection holds:
pout’ = pout \ {m;_ges}-

The application of the communication laws is defined by the ApplyLc function
that is typed as follows:

ApplyLe - M x ¥ — M
ApplyLC (mi—>desa U) = Mj—des’

ApplyLc applies the set of communication laws Lo to message m; . ges, given the
current state of the application environment o. For the resulting message m;_ ges-

holds:

Yy € des’ :
(yedes) N (Vice Lo : (VY co€le(Miges, o) : co(y) = false))

246 Formal Specification of the Reference Architecture

That is, the message m;_. 4.5 Will be transmitted to all addressees of the original
message that are not constrained by any of the communication laws.

MessageBufferingIn collects messages from the deployment context and puts them
in the input buffer of the environment. MessageBufferingln is typed as follows:

MessageBuf feringIn : M x M — M
MessageBuf feringIn(m;;, win) = win/
For the input buffer holds: win' = pin U {m,;}.

MessageDelivering delivers the messages of the input buffer to the appropriate
agents. MessageDelivering is typed as:

MessageDelivering : M x ¥ — M x M
MessageDelivering(pin, o) = (m;;, pin’)

Message m,; ; originating from agent a; is delivered to agent a;, the addressee of the
message. The message is removed from the input buffer, i.e. pin’ = pin\ {m;;}.

MessageReceiving; accepts messages and puts them in the agent’s inbox. Mes-
sageReceiving is typed as:

MessageReceiving; : M x M — M

MessageReceiving;(m; ;, win;) = win
The received message m;; is added to the inbox pin;, i.e. win; = pin; U{m;;}.
Finally, MessageDecoding; selects a message from the agent’s inbox and decodes
the message according to the given communication language. MessageDecoding is
typed as follows:

MessageDecoding;(M — M) x A — M x Ddec

MessageDecoding;(Select M sg(pin), L) = (pin',md;)
The function SelectMsg(pin) = m;; selects a message from the agent’s inbox.
For the application-specific definition of Select M sg, see variation mechanism CC8
(section 4.5.3.3). The decoded message data of the selected message is passed to

the Communicating component that will process it. After message decoding the
message is removed from the inbox, i.e. pin’ = pin\{m;}.

Appendix B

A Framework for Situated
Multiagent Systems

This appendix gives an overview of an object-oriented framework that supports the
main functionalities of the reference architecture for situated multiagent systems
described in chapter 4. The overview consists of four parts. Part B.1 presents the
main packages of the framework and discusses the two main parts of the framework:
agent and application environment. Part B.2 zooms in on decision making with
a free-flow tree, and part B.3 explains how simultaneous actions are supported
in the framework. Finally, part B.4 shows how the framework is applied to an
experimental robot application. For a detailed documentation of the framework,
we refer to [92, 229].

B.1 General Overview of the Framework

A framework consists of a core (also called frozen-spot) that is common to all
applications derived from the framework, and hot-spots that represent the variable
parts which allow a framework to be adapted to a particular application [37,
73]. Fig. B.1 shows a general overview of the packages of the framework for
situated multiagent systems. The Agent and Application Environment packages
encapsulate the core of the framework and provide factories to create agents and
the application environment. The Shared package encapsulates helper classes for
Agent and Application Environment.

Developing an application with a software environment starts with the imple-
mentation of the various hot spots of the Agent and Application Environment
package (we discuss the hot spots below). SystemCreator then integrates the hot
spots with the framework core to build the entire application. SystemCreator
creates the application environment and populates it with the application agents.

247

248 A Framework for Situated Multiagent Systems

SituatedMAS

System

SystemCreator SystemManager

Application
Environment

]

Shared Agent

KEY E package E class

Figure B.1: General overview of the framework

SystemCreator returns an instance of SystemManager that is used to control the
execution of the application. SystemManager allows the user to start the applica-
tion, to suspend and resume the execution, and to terminate the application.

To develop an application with agents deployed in a physical environment,
only the hot spots of the Agent package have to be implemented and integrated
with the framework core (Agent package). The integrated software can directly
be deployed on the physical machines. To enable the agents to interact with the
physical environment, the software has to be connected to sensors and actuators.

B.1.1 Overview of the Agent Package

Fig. B.2 shows a general overview of the Agent package. The package is divided
in several sub-packages, we briefly explain each of the sub-packages in turn.

KnowledgeIntegration encapsulates the agent’s internal state that is modelled as
a collection of knowledge objects (KnowledgeObject). Besides basic support for
adding and removing knowledge objects, KnowledgeIntegration provides various
additional features such as support to update the state with a given set of knowl-

B.1 General Overview of the Framework 249

Agent
P o Knowledge | _ ‘
‘ ntegration |
| N |
| | |
[Agent | L ‘
} Scheduler 7‘ | }
|
			v
Decision o o N .			
Making < > Communication Perception			
N N			
“			
Agent o |
Factories AgentFacade

KEY E package —— > <<import >>

Figure B.2: General overview of the Agent package

edge objects, selection of the knowledge objects of a particular type, registration
of an observer to notify changes of a selected type of knowledge objects, etc.

Perception enables the agent to sense the environment. Perception supports
selective perception, i.e. agents can sense the environment with a set of selected
foci (Focus), interpret representations with descriptions (Description), and filter
the resulting Percept with a set of selected filters (Filter). Perception interacts
with the environment via a set of sensors (Sensor). For agents situated in a soft-
ware environment, a sensor is an abstraction that provides an interface with the
application environment. Software agents receive the representation of a percep-
tion request via the AgentFacade. For agents situated in a physical environment,
a sensor is the physical device the agent uses to sense the surrounding world.

Communication deals with the communicative interactions of the agent. Agents
communicate according to well-defined protocols (Protocol). In addition to the

250 A Framework for Situated Multiagent Systems

various protocol steps specified in the reference architecture, the framework pro-
vides support for time-outs. The developer can associate a time duration to a
conversation, together with a reaction. When no activity has occurred in the
conversation for the specified time duration, the accompanying reaction will be
executed. For example, if an agent does not receive an answer to a request within
a particular time window it can repeat the request, it can discard the conversation,
or it can react in some other way. Messages are exchanged in ExternalMessage
format. An ExternalMessage encapsulates a message as a plain string. Internally
agents use AgentMessage to represent a message. Instances of AgentMessage
encode messages in terms of domain objects. The conversion of messages is han-
dled by the SLDecoderEncoder and is based on a domain Ontology. “SL” stands
for Semantic Language and is defined by FIPA [77]. For the implementation of
the SLDecoderEncoder, we reused a package of the Jade libraries [38]. Ontology
represents the common vocabulary agents use to communicate with one another.
Each concept that agents want to use as content of a message needs to be included
in their ontology. A concept is stored in the vocabulary as a tuple of the class of
the concept and an external name used to refer to the concept (Tuple<String,
Class>). For example, for agents in the Packet-World, the ontology is defined as:

Ontology ont = new Ontology();
ont.addToVocabularium(PacketRepresentation.class, "packet");
ont.addToVocabularium(PositionRepresentation.class, "position");

ont.addToVocabularium(Head.class, "head");

Communication is equipped with a Transceiver to exchange messages with other
agents. For agents situated in a software environment, the transceiver is an ab-
straction that provides an interface with the application environment. Software
agents receive incoming messages via the AgentFacade. For agents situated in
a physical environment, the transceiver is the physical device the agent uses to
communicate with other agents in their neighborhood.

DecisionMaking encapsulates a behavior-based action selection mechanism that
supports the notion of role (Role) and situated commitment (SituatedCommitment).
The framework offers the application developer the FreeFlow package to instanti-
ate free-flow trees. We elaborate on decision making with a free-flow tree in sec-
tion B.2. Decision making results in the selection of an Operator that is passed to
Execution. For agents situated in a software environment, the execution module
is an abstraction that converts the operator into an Influence that is invoked in
the application environment. For agents situated in a physical environment, the
execution module interfaces with the physical device the agent uses to act in the

B.1 General Overview of the Framework 251

environment, such as a switch or a motor.

AgentScheduler encapsulates the thread of the agent. AgentScheduler deter-
mines when the different modules (perception, decision making, and communica-
tion) get control. Decision making and communication can select foci and filters
that are used by perception to perceive the environment when it gets control.
Scheduling of the various activities can be customized according to the require-
ments at hand. The framework offers a default schema LTDSchedule (Look—
Talk—Do [202]) that extends AgentSchedule. LTDSchedule successively activates
perception, communication, decision making in an endless loop.

AgentFactories is a package that supports the creation of agents. AgentFactories
consists of two sub-packages: SoftwareAgentFactory and PhysicalAgentFactory
that can be used to create agents situated in a software environment and a physical

environment respectively. In particular, the PhysicalAgentFactory supports the

instantiation of robot software with the Lego-Mindstorms package [10].

Hot Spots. The hot spots of Agent can be divided in two groups: hot spots
related to the interaction of the agent with the environment, and hot spots related
to the agent’s behavior.

Hot spots related to the interaction with the environment are only applicable for
agents situated in a physical environment and include: Sensor, Transceiver, and
Execution. For a concrete application, these hot spots are instantiated as a means
to interface with the appropriate physical devices. For agents that live in a soft-
ware environment the core of the framework encapsulates general implementations
for sensor, transceiver and execution that are used for the interfacing with the ap-
plication environment. We illustrate hot spots related to the interaction with the
environment for a robot in section B.4.

Hot spots related to the behavior of the agent determine how an agent perceives the
environment, how it selects actions, and how it communicates with other agents.
The hot spots include: KnowledeObject, Focus, Description, Percept, Filter,
DecisionMaking, Role, SituatedCommitment, Operator, Ontology, Protocol,
and AgentSchedule. We illustrate a number of instances of these hot spots in
section B.2.

B.1.2 Overview of the Application Environment Package

Fig. B.3 shows a general overview of the application environment package. We
briefly look at the various sub-packages.

EnvironmentFacade shields the internals of the application environment to agents.
The facade provides an interface to agents to sense the application environment,

252 A Framework for Situated Multiagent Systems

Application Environment
Environment EnvironmentFacade @~ -———————— |
Factories ‘
\ \ \
I I I
| | |
Synchronizer < — — — Collector Commun_lcatlon Representation
Service Generator
\ \ \
I I I
| I I
I I
I I
Reactor —~——————— | T
[
T [
I [
| L,
Effector = State <~ — — - Dynamics

KEY E package —— > <<import >>

Figure B.3: General overview of the Application Environment package

to invoke influences, and to send messages. EnvironmentFacade dispatches the
various activities for processing to the appropriate modules.

State encapsulates the actual state of the application environment. The state
of the application environment includes a representation of the topology of the
environment, state of static and dynamic objects, external state of agents (e.g.,
identities and positions), and state of environmental properties that represent
system-wide characteristics. An example of an environmental property in the
Packet-World is a gradient field that guides agents to a battery charger. State in
the framework is set up as a collection of Item objects and a collection of Relation
objects. Item is an abstraction for elements in the application environment, with
StaticItem and DynamicItem as specializations. The state of a StaticItem is
invariable over time, state of a DynamicItem may change over time. Relation rep-
resents a relation between two or more Item objects. An example of a Relation

B.1 General Overview of the Framework 253

in the Packet-World is an agent that holds a packet. The framework supports
various methods to observe and manipulate Item and Relation objects.

Dynamics encapsulates a collection of ongoing activities (OngoingActity). An on-
going activity defines the behavior of a DynamicItem taking into account the cur-
rent state of the application environment. Ongoing activities can be created at sys-
tem startup and exist for the full lifetime of the application, or they can be created
and destroyed dynamically at runtime. An example of an ongoing activity in the
Packet-World is the maintenance process of digital pheromones. OngoingActity
is supplied with an OngoingActivitySchedule that encapsulates a thread to ex-
ecute the ongoing activity. Developers can extend OngoingActivitySchedule to
define application-specific behavior for ongoing activities.

RepresentationGenerator is an active module that generates representations
(Representation) of the state of the application environment for agents. Repre-
sentations are generated according to representation requests and the applicable
perception laws that govern what the agents can observe. A concrete perception
law is defined as a subclass of PerceptionLaw and must implement the method:

public abstract Representation enforce(AgentId observer,
Representation representation, Vector<Focus> foci, State state);

A concrete perception law puts application specific restrictions on the representa-
tion generated for an observer, given the set of selected foci and the current state
of the application environment. The following example illustrates a perceptual law
for the Packet-World:

public Representation enforce(AgentId observer,
Representation representation, Vector<Focus> foci, State state) {
Representation repr = copy(representation);
Position observerpos = ((GridState)state).getPosition(observer);
if (containsVisualFocus(foci)) then
for (int i=0; i<((GridStateRepresentation)repr).nbItems(); i++){
ItemRepresentation item = repr.getItem(i);
Position itempos = item.getPosition(i);
if (item.isVisible()
&& ((GridState)state).obstacleBetween(observerpos, itempos))
then removeltem(representation, item);

}

return representation;

}

This law removes all the visible items in a representation that are out of the view

254 A Framework for Situated Multiagent Systems

of an observer due to an obstacle.

RepresentationGenerator applies the perception laws in a strict sequence.
The definition of the ordering is a responsibility of the developer.

CommunicationService is an active module that handles message transport through
the environment. Messages are delivered first-in-first-out. The application devel-
oper can define communication laws that enforce domain specific constraints on
the transport of messages. A concrete communication law is defined as a subclass
of CommunicationLaw and must implement the method:

public abstract ExternalMessage enforce(AgentId sender,
ExternalMessage message, State state);

A typical example is a communication law that restricts the delivering of messages
to a specific distance from the sender:

public ExternalMessage enforce(AgentId sender,
ExternalMessage message, State state) {
ExternalMessage msg = copy(message) ;
for (int i=0; i<msg.nbAddressees(); i++){
if (! ((GridState)state).withinComRange (sender,msg.addressee(i)))
then removeAddressee(message,msg.addressee(i));
return message;

}

This laws drops all addressees of the message that are not within communication
range of the sender.

Synchronizer determines the type of synchronization of simultaneous actions. Si-
multaneous actions are actions that happen together and that can have a combined
effect in the application environment. An example of simultaneous actions in the
Packet—World are two agents that push the same packet in different directions. As
a result, the packet moves according to the resultant of the two actions. Ferber and
Miiller have introduced a model for simultaneous actions in which all the agents of
the multiagent system act at one global pace, i.e. the agents are globally synchro-
nized [76]. In this model, the environment combines the influences of all agents in
each cycle to deduce a new state of the environment. In [203, 207, 205], we have
introduced a model for regional synchronization. With regional synchronization
agents form synchronized groups—regions—on the basis of their actual locality.
Different regions can act asynchronously, while agents act synchronously within
their region. Regional synchronization complies with the basic characteristic of
locality of situated agents. We elaborate on support for simultaneous action in
section B.3.

B.2 Decision Making with a Free-Flow Tree 255

The framework includes support for three types of synchronization: (1) NoSyn-
chronization, i.e. agents act asynchronously which implies that there is no sup-
port for simultaneous actions; (2) GlobalSynchronization, all agents act at a
global pace—i.e. the Ferber—Miiller model; and (3) RegionalSynchronization,
i.e. agents act simultaneously based on their actual locality.

Collector is an active module that collects the influences (Influence) invoked
by agents. Collector uses a Synchronizer to determine the sets of synchro-
nized agents. If no synchronization is provided, the collector directly passes the
influences to the reactor. With global synchronization, the collector collects the
influences of all agents in the system before it passes the complete set to the re-
actor. With regional synchronization, the collector passes sets of influences per
region to the reactor. Collector encapsulates its own thread, so that it can exe-
cute influences in parallel with other activities in the application environment.

Reactor and Effector. Reactor is responsible for processing sets of synchronized
influences. The reactor calculates the effects of the influences according to current
state of the application environment and the action laws of the multiagent system.
This results in a set of effects (Effect). Effector is responsible for executing the
effects of the influences resulting in state changes in the application environment.
We elaborate on interaction in the application environment with the Collector-
Reactor-Effector chain in section B.3.

EnvironmentFactory is a package that supports developers with the creation of
an application environment for the multiagent system. EnvironmentFactory cre-
ates the internals of the application environment, it initializes the state of the
environment with items and relations between items, it integrates the laws for
perception, action, and communication, and it allows the developer to specify a
synchronization approach for the application.

Hot Spots. The hot spots of the application environment include: State with
StaticItem, DynamicItem and Relation, OngoingActivity, Representation,
Influence, and Effect. Besides, PereceptionLaw, ActionLaw, and Communica-
tionLaw are hot spots that have to be defined for the application at hand. Finally,
Synchronizer is a hot spot of the application environment for which the developer
can simply select one of the available synchronizers.

B.2 Decision Making with a Free-Flow Tree

In this section, we explain in detail how free-flow trees extended with roles and
situated commitments are supported by the framework. For an in dept discussion
of free-flow trees we refer to chapter 3, section 3.4.3.2.

Fig. B.4 shows the main classes of the FreeFlow package of the framework.

256 A Framework for Situated Multiagent Systems

A free-flow tree consists of three types of tree elements (TreeElement): Node,

FreeFlow
Addition Activity
Function
Stimulus 1
1 1
*|
0 —>| ThreeElement Link
Situated 1 parent *
Commitment
1 child *

FreeFlow FreeFlowTree Node Combination
Decision Function
11 0.1 0.* 1
1.4

ActionNode || ActivityNode Role O

-——> !mplements — association
interface
KEY inheritance bidirectional

package class interface relation association

Figure B.4: Overview of the Free-flow package

Stimulus, and SituatedCommitment. Tree elements are connected through links
(Link). A tree element receives an amount of activity (represented by Activity)
of its parent elements and can inject activity in its child elements. Each link has
a weight factor that determines how much of the injected activity is passed along
that link. Stimulus has no parent elements but calculates its activity based on the
internal state of the agent. SituatedCommitment is connected with a non-empty
set of nodes that represents its source roles, and one particular node that repre-
sents its goal role. A situated commitment can be triggered by two conditions:
one that activates the commitment and one that deactivates it. In the activated
state, the commitment combines the activity receive from its source roles with an

B.2 Decision Making with a Free-Flow Tree 257

AdditionFunction and injects the resulting activity in its goal role. Node is fur-
ther specialized in ActivityNode and ActionNode. An ActivityNode is a regular
node of the tree, an ActionNode is a leave node of the tree that is associated with
an operator. Each Node has a CombinationFunction that determines how the
activity received from its parent nodes is combined. Activity nodes that represent
top nodes of a role have to implement the Role interface that associates an explicit
name with the role. A FreeFlowTree represents the system node and is the entry
point for FreeFlowDecision that implements the action selection algorithm.

Hot Spots. To build a concrete free-flow tree a number of hot spots have
to be implemented. In particular, Activity, Stimulus, SituatedCommitment,
AdditionFunction and CombinationFunction, ActionNode, Role, and Link are
hot spots. The framework supports the developer with various basic implemen-
tations for most of these hot spots. BasicActivity is a subclass of Activity
that represents a basic representation of activity by means of a double value.
More advanced implementations have to be defined by the developer. The frame-
work supports the definition of simple stimuli (SimpleStimulus) as well as multi-
directional stimuli (VectorStimuli). A situated commitment has to be defined
as a subclass of SituatedCommitment and requires the definition of an activation
condition, a deactivation condition, and the definition of the outcome of the sit-
uated commitment when it is activated. This latter requires the definition of a
concrete AdditionFunction. As an example, we illustrate the definition of the
situated commitment Charging of a Packet-World agent:

public class Charging extends SituatedCommitment {
private int toCharge;
private int charged;
public Charging(ActivityNode goalRole, Vector<ActivityNode>
sourceRoles, int toCharge, int charged) {
super ("charging", goalRole, sourceRoles);
this.toCharge = toCharge;
this.charged = charged;
}
public boolean activationCondition(KnowledgeIntegration knowledge) {
if (knowledge.getEnergylLevel() < toCharge)
return true;
else
return false;

}

public Activity calculateActivity(KnowledgeIntegration knowledge) {
if (isActivated()) {
PositiveActivitiesAddtionFunction addFunction =

258 A Framework for Situated Multiagent Systems

new PositiveActivitiesAdditionFunction(sourceRoles.size()));
return addFunction.calculateActivation(this);
else
return new BasicActivity(0);

}
.

For each Node a CombinationFunction has to be defined. The framework sup-
ports various basic functions, including AddFunction, MultiplyFunction, and
MaximumFunction. ActionNode is a hot spot, for each action node of the tree
a subclass of ActionNode has to be defined. Such subclass must implement the
method getOperator(). This method returns the operator that is executed by
the agent if that particular node is selected for execution. Each Link in the tree
has to be assigned a weight factor, except if the weight factor has the default value
of 1. Finally, a subclass of FreeFlowDecision must be defined. This subclass
must implement the abstract method createFreeFlowTree () that constructs the
application specific free-flow tree.

The framework’s cookbook [229] provides examples of the various hot spots to
support the developer with the instantiation of a free-flow tree. Still, designing a
free-flow tree for a non-trivial agent remains a complex matter. In [185], we have
described a modeling language and design process to support the design of free-
flow trees with roles and situated commitments. At the highest level, roles and
their interdependencies are caught into high level role models. These role models
are used as a basis for designing a skeleton of the free-flow architecture. Next,
statechart-based models are defined for the basic roles [95]. These statecharts
allow to refine the skeleton tree. The resulting free-flow tree design provides a
detailed description to instantiate the various hot spots of the framework. Yet,
determining the various combination functions and the values of the weight—factors
of links remain a tricky job.

B.3 Simultaneous Actions in the Environment

An interesting feature provided by the framework is support for simultaneous ac-
tions. Support for simultaneous actions enables to simulate the effects of actions
that are conceptually executed at the same time, but physically are performed
separated in time, e.g., on a single or sequential processor system. In this section,
we first explain the notion of simultaneous actions. Then, we show how simulta-
neous actions are supported in the framework. We illustrate the explanation with
examples from the Packet-World.

B.3 Simultaneous Actions in the Environment 259

B.3.1 Simultaneous Actions

In the literature, several researchers refer to simultaneously performed actions.
Some examples: Allen and Ferguson [17] discuss “actions that interfere with each
other” and that can have “additional synergistic effects”. Boutilier and Brafman
[46] mention “concurrent actions with a positive or negative interacting effect”.
Griffiths, Luck and d’Iverno [84] introduce the notions of “joint action that a
group of agents perform together” and “concurrent actions, i.e. a set of actions
performed at the same time”. Joint actions and concurrent actions are based on
the concepts of “strong and weak parallelism” introduced Kinny [113]. In [138],
Michel, Gouaich, and Ferber introduce the notions of weak and strong interactions
that are related to simultaneous actions.

We denote simultaneous actions as actions that happen together and that can
have a combined result. To calculate the effects of simultaneously performed ac-
tions that physically are performed separated in time, the actions are reified as
influences [74]. Support for simultaneous actions requires two mechanisms: first,
a mechanism is needed that determines which influences are treated as being ex-
ecuted together; second, a mechanism is needed that ensures that the combined
outcome of simultaneously performed influences is in accordance with the domain
that is modelled.

Determining Simultaneity. Simultaneity of influences is determined by a syn-
chronization mechanism. Two possible mechanisms for synchronization are global
synchronization and regional synchronization. With global synchronization, all
agents in the multiagent system act simultaneously. Global synchronization is
simple to implement, but the mechanism imposes centralized control. Regional
synchronization offers more fine-grained synchronization. With regional synchro-
nization, the composition of groups of synchronized agents—regions—depends on
the actual locality of the agents and dynamically changes when agents enter or
leave each others locality. Support for regional synchronization can be imple-
mented as a service of the application environment [203, 59]. Alternatively, the
agents can take care for the formation of regions themselves, providing a fully
decentralized solution for synchronization. [207, 205] discuss a decentralized algo-
rithm for regional synchronization in detail and provides a proof of correctness.

Imposing Domain Constraints. Domain constraints are imposed through a
set of action laws. Action laws determine the effects of a set of synchronized in-
fluences on the state of the application environment. As such, action laws impose
constrains on the implications of agents’ (inter)actions. Fig. B.5 shows an example
of simultaneous actions in the Packet-World. In the depicted situation, agents 3
can pass packets to agent 4 that can directly deliver the packets at the destination.
Such packet transfer only succeeds when the two agents act together, i.e. agent 3
has to pass the packet while agent 4 simultaneously accepts the packet. To model

260 A Framework for Situated Multiagent Systems

[|
N i
:

Figure B.5: Example of simultaneous actions in the Packet-World

the packet transfer, an action law is defined. This definition includes:

1. The set of influences. This set consists of two influences: PassInfluence
and AcceptInfluence.

2. The preconditions. The packet transfer only succeeds if: (i) both agents have
enough energy to execute the transfer, (ii) the locations of the agents match
with a chain, (iii) the tail holds a packet and the head does not.

3. The effects. Applying the law properly reduces the energy level of both
agents, and the packet is transferred from tail to head.

Notice that agent 2 and 5 also form a chain to transfer packets. In this chain
however, packets are passed indirectly via the environment, i.e., agent 5 can put
packets in between the two agents and agent 2 can pick the packets and deliver
them at the destination. Contrary to the synchronous collaboration between agent
3 and 4, this asynchronous collaboration does not involve any simultaneous ac-
tions [204].

B.3.2 Support for Simultaneous Actions in the Framework

Fig. B.6 shows the main classes of the framework involved in the execution of
simultaneous actions.

Collector collects the influences (Influence) invoked by the agents and stores

B.3 Simultaneous Actions in the Environment 261

NoSynchronizer Sychronizer Collector Influence
1 1 collects
4> 77777
1
1
Regional Global
Sychronization Synchronization Reactor Effector
1 1
1 [
. | executes
0.. \/
Lock ActionLaw Effect
sets produces
<-——! |==——= >
SharedLock ExclusiveLock
KEY UML

Figure B.6: Main classes of the framework involved in the execution of simultane-
ous actions

the influences in a buffer. Domain specific influences are defined as subclasses of
Influence. A simple example is StepInfluence that is defined as follows:

public class StepInfluence extends Influence {
private Direction direction;
public StepInfluence(AgentId agent, Direction direction){
super (agent) ;
setDirection(direction);

}
=

Synchronizer determines when influences are passed to the Reactor for execution.
With NoSychronizer influences are passed one by one; with GlobalSynchronizer
the set of influences of all agents is passed; with RegionalSynchronization the
influences are passed to the Reactor per region. To form regions, the frame-
work provides a default implementation for locality that is based on the default

262 A Framework for Situated Multiagent Systems

range of perception. In particular, a region in the framework consists of the set of
agents that are located within each other’s perceptual range, or within the percep-
tual range of those agents, and so on. Applied to the situation in Fig. B.5: with
NOSynchronizer all agents act asynchronously (in this case there is no support for
passing packets directly from one agent to another); with GlobalSynchronization
all agents act at one global pace; with RegionalSynchronization each agent act
simultaneously with the other agents within its region. If we assume a perceptual
range of two fields, than there are three regions: agents 3 and 4, agents 2 and
5, and agent 1 and 6. If in the depicted situation agent 1 makes a step towards
South-West it enters the region of agents 5 and 2, while the original region of agent
1 and 6 is than reduced to only agent 6.

Reactor receives sets of influences from the Collector and calculates the effects
(Effect), i.e., state changes in the application environment. Therefore, the re-
actor uses the sets of action laws (ActionLaw). The ordering in which laws are
applied depends on the number of influences involved in the law. The law with the
highest number of influences is applied first, then the law with the second high-
est number is applied, and so on. For laws with an equal number of influences,
laws are applied in random order. Domain specific action laws have to be defined
as subclasses of ActionLaw. This definition requires the implementation of four
methods:

public <T extends Influence> Vector<Class<T>> getInfluenceTypes();
public boolean checkConditions(Vector<Influence> influences);
public Vector<Effect> getEffects(Vector<Influence> influences);
public Vector<Lock> getLocks();

The method getInfluenceTypes() returns a vector of influence types, one for
each influence involved in the law. This method allows the reactor to check whether
the law is applicable or not. For TransferPacketLaw that models the rules for
agents to transfer a packet, getInfluenceTypes() is defined as follows:

public <T extends Influence> Vector<Class<T>> getInfluenceTypes(){
Vector<Class<T>> infs = new Vector<Class<T>>();
infs.add((Class<T>)PassInfluence.class);
infs.add((Class<T>)AcceptInfluence.class);
return infs;

}

The method checkConditions() verifies whether the necessary conditions hold
to apply the law. For TransferPacketLaw the conditions are:

public boolean checkConditions((Vector<Influence> infs)){

B.3 Simultaneous Actions in the Environment 263

//the agents must have energy
passAgent = (AgentState)getState().getItem(infs[1].getAgent());
if (passAgent.getEnergylLevel() <= 0)

return false;

//passAgent must hold a packet, acceptAgent not
boolean hold = false;
for (Relation rel : getState().getRelations(HoldRelation.class)) {
if (rel.containsItem(passAgent)) {
hold = true;
break;

}
}

=

The method getEffects () returns the effects induced by the law. An application
specific effect has to be defined as a subclass of Effect. A simple example is
AddRelationEffect that is used to add a relation in the state of the application
environment. Such relation is used to link the agent with the packet it accepts
during a packet transfer:

public class AddRelationEffect extends Effect {

public AddRelationEffect(GridState state, Relation relation){
super (state) ;
setRelation(relation);

}

public void execute(){
state.addRelation(relation);

}

=

Finally, each action law has to implement the method getLocks(). This method
returns the locks on the state elements used by the law. Locks (Lock) avoid con-
flicts between action laws. To ensure that all simultaneously performed influences
are applied in the same circumstances, the action laws produce the effects of influ-
ences from the same state of the application environment. However, applying a law
may induce constraints on state elements. For example, assume that StepLaw han-
dles the movement of a single agent. If agent 6 in Fig. B.5 makes a step to South
than agent 1 can no longer step to North. To avoid a conflict between the applica-
tion of the law for both agents, the first application of StepLaw puts a lock on the
field the agent moves to. During the execution of the law for the other influence

264 A Framework for Situated Multiagent Systems

of the region, the reactor uses the lock to check whether the StepLaw is appli-
cable or not. The framework supports two types of basic locks: ExclusiveLock
and SharedLock. An ExclusiveLock on a state element of the application envi-
ronment excludes other laws to access the locked element. A SharedLock allows
other laws to put a shared lock on the element, however, it excludes a possible
ExclusiveLock.

Effector is responsible to apply the effects induced by the action laws. Each
Effect implements the method execute() that actually performs the effects to
the state of the application environment, see the AddRelationEffect above.

Hot Spots. Much of the complexity to deal with simultaneous actions is hidden by
the framework core. If the application requires support for simultaneous actions,
the developer has to select a particular type of synchronization. This selection has
to be specified in the EnvironmentFactory definition. Furthermore, the developer
has to define application specific instances for Influence, ActionLaw, Lock, and
Effect, as illustrated above.

B.4 Applying the Framework to an Experimental
Robot Application

As a validation, we have used the framework to develop an experimental ware-
house application in which two Lego-Mindstorms robots collaborate to organize
the supply of products. In this section we give an overview of application. First,
we introduce the application based on a simulation, and we explain the setup of
the physical system with robots and the environment. Then we show how we
have instantiated the framework to develop the application software. We limit the
discussion to the agent software.

B.4.1 Robot Application

Fig. B.7 shows a schematical overview of the robot application.

The environment consists of two zones: the corridor on the left side in which
a non-mobile crane robot can manoeuvre, and the rectangular factory flour on
the right side in which a mobile robot can move around. The colored packets on
the right side of the factory floor represent products. The circle represents the
delivering point for products. The task of the robots is to guarantee a stream of
products from supply to drainage.

We have developed the robots with the Lego-Mindstorms packet [10]. Besides
building blocks to construct robots, Lego-Mindstorms offers a programmable mi-
crocomputer called Robotic Command eXplorer (RCX) to program a robot. To
enable the robot to interact with the environment, various sensors (light, pressure,

B.4 Applying the Framework to an Experimental Robot Application 265

Drainage

. Supply

(=

Figure B.7: Simulation of the robot application

etc.) and actuators (switches, motors, etc.) are available that can be connected
to the RCX. Furthermore, the RCX is equipped with an infrared serial communi-
cation interface that enables a developer to program the microcomputer. We have
used the LeJOS (Lego Java Operating System), as a replacement firmware for the
Lego Mindstorms RCX. LeJOS is a reduced Java Virtual Machine that fits within
the 32kb on the RCX, and that allows to program a Lego robot with Java [11].

Figure B.8: A robot carrying a packet

266 A Framework for Situated Multiagent Systems

Fig. B.8 shows one of the robots. Robots are equipped with various sensors to
monitor the environment, and they have two grasp arms to pick up packets. The
robots can communicate with a local computer via infrared communication.

Fig. B.9 shows environment with the two robots in action. The robots use light
sensors to follow the paths that are marked by black lines.

a

Figure B.9: The environment with the robots in action

B.4.2 Applying the Framework

Due to memory limitations of the RCX, it was not possible to execute the robot
control software directly on the robot hardware. Therefore the robot software is
divided in two collaborating programs: one program running on the RCX of the
robot that monitors the environment and executes actions, and a second program
running on a local computer that selects actions. Fig. B.10 shows how the robot
software is deployed on the various hardware units. The agents use LTDSchedule as
scheduling schema. LTDSchedule is a predefined scheduling schema in the frame-
work that successively activates perception, communication, decision making in an
endless loop. Perception transforms the data sensed by InfraredSensor into a
percept (WAStatePercept). Periodically, the RCX sends an infrared message with
the current status of the robot (position, hold packet or not) to the agent program
on the computer. Infrared communication is handled by IRTower and IRPort
on the host computer and the RCX respectively. The decision making mod-

B.4 Applying the Framework to an Experimental Robot Application

267

IRPort

[N

Robot
Execution

deployment

infrared

IRPort

— I

Robot
Execution

Host Computer
Communicaton _
Medium 1‘
CraneAgent | MobileAgent |
f f
— — | — —1 |
Communication - — — — — > WATranceiver Communication — — — — — > WATranceiver
T = =
[LTD] LTD
Schedule Schedule
— 1 — o
" . L CraneAgent . . L MobileAgent
Perception DecisionMaking Perception DecisionMaking
I I I I
— — — — A
Infrared WAEXxecution Infrared WAEXxecution
Sensor Sensor
O | = |
l— — > IRTower | _ | l— — 3 IRTower |
RCX RCX

KEY

7

node

<=

communication

Figure B.10: Deployment of the robot software

E package ——— <<import>>

ules (CraneAgentDecisionMaking and MobileAgentDecisionMaking) take care
for action selection. The action selection mechanisms of the MobileAgent continu-
ously executes a sequence of three roles: LookForPacket, ReturnToCorridor, and
PassPacket. When the MobileAgent arrives with a new packet at the corridor,
the CraneAgent executes AcceptPacket, it delivers the packet (DeliverPacket) at
the destination, and subsequently waits for the next packet (Wait). WAExecution

sends the selected actions to the RCX via the IRTower.

The decision making

modules however, produce high-level actions, such as “drive to the corridor” and

268 A Framework for Situated Multiagent Systems

“put packet on the destination”. When RobotExecution receives such an action,
it translates the actions into low-level actions to steer the actuators.

When the MobileAgent arrives with a packet at the corridor, it has to pass
the packet to the CraneAgent. To coordinate this interaction, the agents use a
PassPacketProtocol that is handled by the Communication module. The subse-
quent steps of this protocol are depicted in Fig. B.11. When the MobileAgent

>
‘ PassPacketProtocol /

PassPacket AcceptsPacket

™ 1: [at corridor] packetReady €
MobileAgent
2: [ready to accepf] rel Packet
3: [packet rel d] packetRel d

4: [packet accepted] packetPassed

Figure B.11: Protocol to coordinate the transfer of a packet

arrives at the corridor it informs the CraneAgent that it has arrived with a
packet for delivering. The CraneAgent drives towards the packet and as soon
as it is in the correct position, it informs the MobileAgent to release the packet.
When the MobileAgent has released the packet it informs the CraneAgent. This
latter then brings the packet to the delivering location. To communicate with
one another, robots use WATransceiver that transmits the messages via a simple
CommunicationMedium.

Simulation of the Robot Application. We also developed a simulation of the
robot application (see Fig. B.7). In the simulated environment, the agents step
on a grid. Products are represented by packets, and the drainage by a deliver-
ing point, similar as in the Packet-World. For the simulation, we were able to
fully reuse the implementations of the agents, including the hot spots for percep-
tion, decision making, and the communication protocol for coordinating the packet
transfer. The software agents also use the same scheduling schema as the robots.
InfraRedSensor, WAExecution, and WATransceiver were no longer necessary for
the agents in the software environment. The functionality for interfacing with the

B.4 Applying the Framework to an Experimental Robot Application 269

software environment is managed by the framework core.

270 A Framework for Situated Multiagent Systems

List of Publications Danny Weyns

Articles in international reviewed journals

1. D. Weyns, A. Omicini, and J. Odell, Environment: First-class abstraction in
multiagent systems, Special Issue on Environments in Multiagent Systems,
Journal on Autonomous Agents and Multiagent Systems, 14(1), 2007 (to

appear).

2. H.V.D. Parunak, and D. Weyns, Environments in multiagent systems, Guest
Editorial, Special Issue on Environments in Multiagent Systems, Journal on
Autonomous Agents and Multiagent Systems, 14(1), 2007 (to appear).

3. K. Schelfthout, D. Weyns, T. Holvoet, Middleware that enables protocol-
based coordination applied in automatic guided vehicle control, IEEE Dis-
tributed Systems on Line, 7(3), August, 2006.

4. D. Weyns, and T. Holvoet, On the role of environments in multiagent sys-
tems, Informatica 29 (4), pp. 409-421, 2005.

5. D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet, Environ-
ments in multiagent systems, The Knowledge Engineering Review 20 (2),
pp. 127-141, June, 2005.

6. D. Weyns, E. Truyen, and P. Verbaeten, Serialization of Distributed Threads
in Java, Parallel and Distributed Computing Practices 6 (1), pp. 81-98, July,
2005.

7. D. Weyns, and T. Holvoet, On environments in multi-agent systems, AgentLink
Newsletter 16 , pp. 18-19, December, 2004.

8. D. Weyns, E. Steegmans, and T. Holvoet, Towards active perception in
situated multi-agent systems, Applied Artificial Intelligence 18 (9-10), pp.
867-883, October, 2004.

9. D. Weyns, and T. Holvoet, A formal model for situated multi-agent systems,
Fundamenta Informaticae 63 (2-3), pp. 125-158, November, 2004.

Edited Volumes

1. H.V.D. Parunak, and D. Weyns, Environments in Multiagent Systems (eds.),
Special Issue on Environments in Multiagent Systems, Journal on Autonomous
Agents and Multiagent Systems, 14(1), 2007 (to appear).

2. D. Weyns, and T. Holvoet, (eds.), Multiagent Systems and Software Ar-
chitecture, Proceedings of the Special Track on Multiagent Systems and
Software Architecture at Net.ObjectDays, 2006.

3. D. Weyns, H.V.D Parunak and F. Michel, (eds.), Environments for Mul-
tiagent Systems III, Post-proceedings of the Third International Workshop
on Environments for Multiagent Systems, Springer-Verlag, Lecture Notes in
Computer Science Series, 2007, (to appear).

4. D. Weyns, H.V.D. Parunak and F. Michel, (eds.), Environments for Mul-
tiagent Systems II, Post-proceedings of the Second International Workshop
on Environments for Multiagent Systems, Springer-Verlag, Lecture Notes in
Computer Science Series, Vol. 3830, 2006.

5. D. Weyns, H.V.D. Parunak and F. Michel, (eds.), Environments for Mul-
tiagent Systems, Post-proceedings of the First International Workshop on
Environments for Multiagent Systems, Springer-Verlag, Lecture Notes in
Computer Science Series, Vol. 3374, 2005.

Contributions at international conferences, published in pro-
ceedings

1. D. Weyns, and T. Holvoet, Multiagent systems and software architecture,
Proceedings of the Special Track on Multiagent Systems and Software Ar-
chitecture at Net.ObjectDays, 2006.

2. N. Boucké, D. Weyns, and T. Holvoet, Experiences with Theme/UML for
architectural design of a multiagent system, Proceedings of the Special Track
on Multiagent Systems and Software Architecture at Net.ObjectDays, 2006.

3. D. Weyns, and T. Holvoet, On the connection between multiagent sys-
tems and software architecture, Invited contribution at the 7th International
Workshop on Engineering Societies of the Agents World, 2006 (to appear).

4. D. Weyns, N. Boucké, and T. Holvoet, Gradient field-based task assign-
ment in an AGV transportation system, Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems, (Stone, P. and
Weiss, G., eds.), pp. 842-849, 2006.

5. D. Weyns, and T. Holvoet, Multiagent systems as software architecture:
Another perspective on software engineering with multiagent systems, Pro-
ceedings of the 5th International Conference on Autonomous Agents and
Multiagent Systems, (Stone, P. and Weiss, G., eds.), pp. 1344-1347, 2006.

6. D. Weyns, and T. Holvoet, A reference architecture for situated multiagent
systems, Proceedings of the 3th International Workshop on Environments
for Multiagent Systems, (Weyns, D. and Parunak, V. and Michel, F.), pp.
120-170, 2006.

10.

11.

12.

13.

14.

D. Weyns and T. Holvoet, Architectural design of an industrial AGV trans-
portation system with a multiagent system approach, Software Architecture
Technology User Network Workshop, SATURN, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, USA, 2006 (to appear).

N. Boucké, D. Weyns, K. Schelfthout, and T. Holvoet, Applying the ATAM
to an architecture for decentralized control of a transportation system, Pro-
ceedings of the 2nd International Conference on Quality of Software Ar-
chitecture, Vasteras, Sweden, Lecture Notes in Computer Science, 2006 (to

appear).

D. Weyns, A. Helleboogh, and T. Holvoet, The Packet-World: A testbed
for investigating situated multiagent systems, Software Agent-Based Ap-
plications, Platforms, and Development Kits, (Unland, R. and Klush, M.
and Calisti, M., eds.), Whitestein Series in Software Agent Technologies,
Birkhauser Verlag, Basel - Boston - Berlin, September, pp. 383-408, 2005.

D. Weyns, K. Schelfthout, and T. Holvoet, Exploiting a virtual environ-
ment in a real-world application, Environments for Multiagent Systems II
(Weyns, D. and Parunak, V. and Michel, F., eds.), vol 3830, Lecture Notes
in Computer Science, pp. 218-234, 2006

D. Weyns, G. Vizzari, and T. Holvoet, Environments for situated multiagent
systems: Beyond infrastructure, Environments for Multi-Agent Systems II
(Weyns, D. and Parunak, V. and Michel, F., eds.), vol 3830, Lecture Notes
in Computer Science, pp. 1-17, 2006

D. Weyns, K. Schelfthout, and T. Holvoet, Architectural design of a dis-
tributed application with autonomic quality requirements, Proceedings De-
sign and Evolution of Autonomic application Software (Garlan, D. and Litoui,
M. and Mller, H. and Mylopoulos, J. and Smith, D. and Wong, K., eds.),
pp. 52-59, 2005

D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux, Towards adaptive
role selection for behavior-based agents, Adaptive Agents and Multi-Agent
Systems III: Adaptation and Multi-Agent Learning (Kudenko, D. and Kaza-
kov, D. and Alonso, E., eds.), vol 3394, Lecture Notes in Computer Science,
pp. 295-314, 2005

D. Weyns, E. Steegmans, and T. Holvoet, Integrating free-flow architectures
with role models based on statecharts, Software Engineering for Multi-Agent
Systems III: Research Issues and Practical Applications (Choren, R. and
Garcia, A. and Lucena, C. et al., eds.), vol 3390, Lecture Notes in Computer
Science, pp. 104-120, 2005

15

16.

17.

18.

19.

20.

21.

22.

23.

. D. Weyns, G. Vizzari, and T. Holvoet, Environments for multiagent systems:
Beyond infrastructure, Environments for Multiagent Systems (Weyns, D.
and Parunak, V. and Michel, F., eds.), pp. 101-117, 2005

D. Weyns, H. Parunak, F. Michel, T. Holvoet, and J. Ferber, Environments
for multi-agent systems, state-of-the-art and research challenges, Environ-
ments for multi-agent systems (Weyns, D. and Parunak, H.V.D. and Michel,
F., eds.), vol 3374, Lecture Notes in Computer Science, pp. 1-48, 2005

D. Weyns, K. Schelfthout, and T. Holvoet, Exploiting a virtual environment
in a real-world application, Environments for Multiagent Systems (Weyns,
D. and Parunak, V. and Michel, F., eds.), pp. 21-36, 2005

D. Weyns, N. Boucké, T. Holvoet, and W. Schols, Gradient field-based task
assignment in an AGV transportation system, Proceedings of Third Euro-
pean Workshop on Multiagent Systems (Gleizes, M.P. and Kaminka, G. and
Now, A. and Ossowski, S. and Tuyls, K. and Verbeeck, K., eds.), pp. 447-459,
2005

D. Weyns, and T. Holvoet, From reactive robotics to situated multiagent
systems: a historical perspective on the role of the environment in multia-
gent systems, Sixth International Workshop on Engineering Societies in the
Agents World (Dikenelli, O. and Gleizes, M.P. and Ricci, A., eds.), pp. 31-56,
2005

D. Weyns, K. Schelfthout, T. Holvoet, T. Lefever, and J. Wielemans, Architec-
ture-centric development of an AGV transportation system, Multi-Agent
Systems and Applications IV (Pechoucek, M. and Petta, P. and Varga, L.Z.,
eds.), vol 3690, Lecture Notes in Computer Science, pp. 640-645, 2005

D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever, Decentralized con-
trol of E’GV transportation systems, Autonomous Agents and Multiagent
Systems, Industry Track (Pechoucek, M. and Steiner, D. and Thompson, S.,
eds.), pp. 67-74, 2005

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers, A design process for
adaptive behavior of situated agents, Agent-Oriented Software Engineering
V (Odell, J. and Giorgini, P. and Mller, J.P.; eds.), vol 3382, Lecture Notes
in Computer Science, pp. 109-125, 2005

K. Schelfthout, D. Weyns, and T. Holvoet, Middleware for protocol-based co-
ordination in dynamic networks, Proceedings of the 3rd international work-
shop on Middleware for pervasive and ad-hoc computing (Terzis, S. and
Donsez, D., eds.), pp. 1-8, 2005

24

25.

26.

27.

28.

29.

30.

31.

32.

T. Holvoet, D. Weyns, K. Schelfthout, and T. Lefever, Decentralized control
of autonomous guided vehicles scalable warehouse systems, The IEE Seminar
on Autonomous Agents, ISSN 0537-9989, pp. 11-18, 2005

A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers, Extending time man-
agement support for multi-agent systems, Multi-Agent and Multi-Agent-
Based Simulation: Joint Workshop MABS 2004, New York, NY, USA,
July 19, 2004, Revised Selected Papers (Davidsson, P. and Logan, B. and
Takadama, K., eds.), vol 3415, Lecture Notes in Computer Science, pp. 37-
48, 2005

A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers, Towards time man-
agement adaptability in multi-agent systems, Adaptive Agents and Multi-
Agent Systems III: Adaptation and Multi-Agent Learning (Kudenko, D. and
Kazakov, D. and Alonso, E., eds.), vol 3394, Lecture Notes in Computer Sci-
ence, pp. 88-105, 2005

D. Weyns, E. Steegmans, and T. Holvoet, Protocol-based communication for
situated agents, Proceedings of the Sixteenth Belgium-Netherlands Confer-
nce on Artificial Intelligence (Verbrugge, R. and Taatgen, N. and Schomaker,
L., eds.), pp. 303-304, 2004

D. Weyns, E. Steegmans, and T. Holvoet, Towards commitments for situated
agents, IEEE Special Track on Agents and Roles, SMC’2004 Conference
Proceedings (Thissen, W. and Wieringa, P. and Pantic, M. and Ludema,
M., eds.), pp. 5479-5485, 2004

D. Weyns, E. Steegmans, and T. Holvoet, Protocol based communication for
situated multi-agent systems, Proceedings of The Third International Joint
Conference on Autonomous Agents and Multi Agent Systems (Jennings, N.
and Sierra, C. and Sonenberg, L. and Tambe, M., eds.), pp. 118-126, 2004

D. Weyns, and T. Holvoet, Situated multi-agent systems for developing self-
managing distributed applications, Proceedings of the Doctoral Mentoring
Symposium, Third International Joint Conference on Autonomous Agents
and Multiagent Systems, 2004 (Kaminka, G., ed.), pp. 25-26, 2004

D. Weyns, E. Steegmans, and T. Holvoet, Combining adaptive behavior
and role modeling with state charts, Proceedings of the Third International
Workshop on Software Engineering for Large-Scale Multi-Agent Systems
(Choren, R. and Garcia, A. and Lucena, C. and Griss, M. and Kung, D.
and Minsky, N. and Romanovsky, A., eds.), pp. 81-90, 2004

D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux, A role based model
for adaptive agents, Proceedings of the AISB 2004, Fourth Symposium on
Adaptive Agents and Multi-Agent Systems, pp. 75-86, 2004

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

. D. Weyns, and T. Holvoet, A colored Petri net for regional synchronization
in situated multiagent systems, Proceedings of the First International Work-
shop on Coordination and Petri Nets (Ciancarini, P. and Bocchi, L., eds.),
pp- 65-86, 2004

D. Weyns, A. Helleboogh, E. Steegmans, T. De Wolf, K. Mertens, N. Boucké,
and T. Holvoet, Agents are not part of the problem, agents can solve the
problem, Proceedings of the OOPSLA Workshop on Agent-Oriented Method-
ologies, 2004 (Gonzales-Perez, C., ed.), pp. 101-112, 2004

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers, Designing roles for
situated agents, The fifth international workshop on agent-oriented software
engineering (Odell, J. and Giorgini, P. and Muller, J.P.; eds.), pp. 17-32,
2004

A. Helleboogh, T. Holvoet, and D. Weyns, Time management adaptability
in multi-agent systems, Proceedings of the AISB 2004 Fourth Symposium
on Adaptive Agents and Multi-Agent Systems (Kudenko, D. and Alonso, E.
and Kazakov, D., eds.), pp. 20-30, 2004

A. Helleboogh, T. Holvoet, and D. Weyns, Time management support for
simulating multi-agent systems, Joint workshop on multi-agent and multi-
agent-based simulation (Davidsson, P. and Gasser, L. and Logan, B. and
Takadama, K., eds.), pp. 31-40, 2004

N. Boucké, D. Weyns, T. Holvoet, and K. Mertens, Decentralized allocation
of tasks with delayed commencement, EUMAS’04 Proceedings (Chiara, G.
and Giorgini, P. and van der Hoek, W., eds.), pp. 57-68, 2004

D. Weyns, and T. Holvoet, Regional synchronization for simultaneous actions
in situated multi-agent systems, Multi-Agent Systems and Applications III
(Marik, V. and Mller, J. and Pechoucek, M., eds.), vol. 2691, Lecture Notes
in Computer Science, Lecture Notes in Computer Science, pp. 497-511, 2003

D. Weyns, E. Truyen, and P. Verbaeten, Serialization of distributed execution-
state in Java, Objects, Components, Architectures, Services, and Applica-
tions for a Networked World (Aksit, M. and Mezini, M. and Unland, R.,
eds.), vol 2591, Lecture Notes in Computer Science, pp. 41-61, 2003

D. Weyns, and T. Holvoet, Model for situated multi-agent systems with
regional synchronization, Concurrent Engineering, Enhanced Interoperable
Systems (Jardim-Goncalvas, R. and Cha, J. and Steiger-Garcao, A., eds.),
pp. 177-188, 2003

D. Weyns, and T. Holvoet, Synchronous versus asynchronous collaboration
in situated multi-agent systems, Proceedings of the Second International

Joint Conference on Autonomous Agents and Multiagent Systems (Rosen-
schein, J. and Sandholm, T. and Wooldridge, M. and Yokoo, M., eds.), pp.
1156-1158, 2003

43. D. Weyns, and T. Holvoet, Model for simultaneous actions in situated multi-
agent systems, Multiagent System Technologies (Schillo, M. and Klusch, M.
and Muller, J. and Tianfield, H., eds.), vol 2831, Lecture Notes in Computer
Science, pp. 105-119, 2003

44. D. Weyns, E. Steegmans, and T. Holvoet, A model for active perception in
situated multi-agent systems, Proceedings of the First European Workshop
on Multi-Agent Systems (d’Iverno, M. and Sierra, C. and Zambonelli, F.,
eds.), pp. 1-15, 2003

45. D. Weyns, E. Truyen, and P. Verbaeten, Serialization of a Distributed Execution-
state in Java, Hauptkonferenz Net.ObjectDays 2002 (Aksit, M. and Mezini,
M., eds.), pp. 55-72, 2002

46. D. Weyns, E. Truyen, and P. Verbaeten, Distributed Threads in Java, Infor-
matica (Grigoras, D., ed.), pp. 94-109, 2002

47. D. Weyns, and T. Holvoet, Look, talk and do: a synchronization scheme
for situated multi-agent systems, Proceedings of UKMAS ’02 (McBurney, P.
and Wooldridge, M., eds.), pp. 1-8, 2002

48. D. Weyns, and T. Holvoet, A colored Petri-net for a multi-agent application,
Proceedings of MOCA’02 (Moldt, D., ed.), vol 561, DAIMI PB, pp. 121-141,
2002

49. K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D.
Weyns, Agent Implementation Patterns, Proceedings of the OOPSLA 2002
Workshop on Agent-Oriented Methodologies (Debenham, J. and Henderson-
Sellers, B. and Jennings, N. and Odell, J., eds.), pp. 119-130, 2002

Contributions at international conferences, not published or
only as abstract

1. D. Weyns, and T. Holvoet, The Packet-World as a case to study Social-
ity in Multi-Agent Systems, Autonomous Agents and Multi-Agent Systems,
AAMAS 2002, Bolgona, Italy, July 15-19, 2002, Universite di Bologna and
Universite di Modena e Reggio Emilia

2. T. Holvoet and D. Weyns, Environments in Multiagent Systems, Tutorial
at the Eighth European Agent Systems Summer School, EASSS, Annecy,
France, 2006.

Technical reports

1. W. Schols, N. Boucké, D. Weyns, and T. Holvoet, Gradient field based order
assignment in AGV systems, Department of Computer Science, K.U.Leuven,
Report CW 425, Leuven, Belgium, September, 2005

2. N. Boucké, T. Holvoet, T. Lefever, R. Sempels, K. Schelfthout, D. Weyns,
and J. Wielemans, Applying the architecture tradeoff analysis method (ATAM)
to an industrial multi-agent system application, Department of Computer
Science, K.U.Leuven, Report CW 431, Leuven, Belgium, December, 2005

Curriculum vitae

Danny Weyns was born in Aarschot (Belgium) on September 30, 1958. After
he received the degree of Industrieel Ingenieur from the Hoger Instituut Kem-
pen in 1980, he worked as a lector at the Hogeschool voor Wetenschap en Kunst
in Brussels. In 2001, Danny received a Master’s degree in Informatics (Aanvul-
lende Opleiding Toegepaste Informatica) from the K.U. Leuven. He graduated
summa cum laude with the thesis “Serialization of Distributed Execution State in
Java” under the supervision of Prof. Pierre Verbaeten. The same year, he started
working as a research assistant in the DistriNet (Distributed systems and com-
puter Networks) research group at the Department of Computer Science at the
K.U.Leuven. From 2004-2006, he participated in a joint IWT project with Egemin
on the development of a decentralized control architecture for automated guided
vehicles. Danny was co-organizer of the series of workshops on environments in
multiagent systems that were held in New York 2004, Utrecht 2005, and Hakodate
2006. He was also the chair of the AgentLink technical forum group on environ-
ments in multiagent systems in 2005 in Ljubljana and Budapest. Danny served
on the Program Commitee of various international conferences, and he performed
review work for several journals.

Een architectuur-gebaseerde aanpak
voor software ontwikkeling met
gesitueerde multiagent systemen

Nederlandse samenvatting

Beknopte samenvatting

De ontwikkeling en het beheer van hedendaagse gedistribueerde software toepassingen
is moeilijk. Drie belangrijke redenen voor de toenemende complexiteit zijn: (1) be-
langhebbenden van de software hebben verschillende, vaak tegenstrijdige, kwaliteitsvereis-
ten voor de systemen; (2) de software systemen dienen om te gaan met voortdurende
wijzigingen in hun omgeving; (3) activiteit in de systemen is inherent lokaal, globale
controle is moeilijk te verwezenlijken of helemaal uitgesloten.

In deze thesis stellen we een aanpak voor om dergelijke complexe systemen te ont-
wikkelen. Deze aanpak integreert gesitueerde multiagent systemen als software archi-
tectuur in een algemeen software ontwikkelingsproces. Sleutelaspecten van de aanpak
zijn architectuur-gebaseerde software ontwikkeling, zelfbeheer en decentrale controle.
Architectuur-gebaseerde software ontwikkeling zet de belanghebbenden van een software
systeem aan om expliciet om te gaan met tegenstrijdige kwaliteitsdoelen. Zelfbeheer
laat toe dat een software systeem zelfstandig omgaat met voortdurende wijzigingen in
de omgeving. Decentrale controle biedt een antwoord op de inherente localiteit van ac-
tiviteit. In een systeem waar globale controle geen optie is, dient de vereiste functionaliteit
gerealiseerd te worden door samenwerkende deelsystemen.

Tijdens ons onderzoek hebben we een geavanceerd model ontwikkeld voor gesitueerde
multiagent systemen. Dit model integreert gesitueerde agenten en de omgeving als ex-
pliciete ontwerpabstracties in een gesitueerd multiagent systeem. Het model voorziet in
een aantal geavanceerde mechanismen voor adaptief gedrag. Deze mechanismen laten
toe dat gesitueerde agenten zich snel kunnen aanpassen aan wijzigende omstandigheden
in het systeem. Agenten kunnen het systeem verlaten of nieuwe agenten kunnen wor-
den toegevoegd zonder de rest van het systeem te verstoren. Controle in een gesitueerd
multiagent systeem is gedecentraliseerd, de agenten werken samen om de systeemfunc-
tionaliteit te realiseren.

Uit ervaring met het ontwikkelen van verschillende gesitueerde multiagent systeem
applicaties hebben we een referentiearchitectuur ontwikkeld voor gesitueerde multiagent
systemen. Deze referentiearchitectuur mapt het geavanceerde model voor gesitueerde
multiagent systemen op een abstracte systeemdecompositie. De referentiearchitectuur
kan worden toegepast bij de ontwikkeling van nieuwe toepassingen met soortgelijke ken-
merken en vereisten.

Tijdens ons onderzoek hebben we een gesitueerd multiagent systeem toegepast in
een industrieel transportsysteem met automatisch bestuurde voertuigen. Het ontwerp
en de evaluatie van de software architectuur van deze applicatie hebben in belangrijke
mate bijgedragen tot de ontwikkeling van de referentiearchitectuur. De succesvolle ont-
wikkeling van deze complexe toepassing toont aan hoe multiagent systemen als software
architectuur kunnen geintegreerd worden in een algemeen software ontwikkelingsproces.

1 Inleiding

De ontwikkeling en het beheer van hedendaagse gedistribueerde software toepassin-
gen is moeilijk. Drie belangrijke redenen voor de toenemende complexiteit vormen
het startpunt van dit onderzoek. Een eerste reden is de toenemende vraag naar de
kwaliteit van de software [3, 20]. Belanghebbenden van de software (projectleiders,
gebruikers, architecten, programmeurs, e.d.) hebben verschillende, vaak tegen-
strijdige, kwaliteitsvereisten voor de systemen (gebruiksvriendelijkheid, veiligheid,
aanpasbaarheid e.d.). Het vinden van de juiste balans tussen de vereisten, en de
ontwikkeling van software die voldoet aan de belangrijkste vereisten is een moei-
lijke opdracht voor de software ontwikkelaars.

Een tweede belangrijke reden waarom de ontwikkeling en het beheer van gedis-
tribueerde toepassingen moeilijk is zijn de voortdurende wijzigingen en dynamiek
waaraan software systemen onderhevig zijn. Voorbeelden zijn voortdurend wijzi-
gende belastingen, veranderingen in de beschikbaarheid van diensten, en wijzigin-
gen in de topologie van het netwerk [25, 19, 43].

Naast de complexiteit als gevolg van de kwaliteitsvereisten en de dynamische
uitvoeringsomgeving wordt een belangrijke familie van gedistribueerde applicaties
gekenmerkt door lokaliteit van activiteit. In dergelijke applicaties is globale toe-
gang tot hulpbronnen en diensten moeilijk te bereiken of zelfs uitgesloten. Voor-
beeld applicaties zijn geautomatiseerde transportsystemen, mobiele netwerken, en
draadloze sensornetwerken.

In ons onderzoek stellen we een architectuur-gebaseerde aanpak voor om derge-
lijk complexe systemen te ontwikkelen. Architectuur—in het bijzonder software
architectuur—is cruciaal voor het beheersen van complexiteit en het bereiken van
de belangrijke kwaliteitsvereisten. De voorgestelde aanpak beoogt de ontwikkeling
van systemen die in staat zijn zelfstandig om te gaan met de dynamische uitvoerings-
omstandigheden. Centraal in de aanpak zijn gesitueerde multiagent systemen.
Tijdens ons onderzoek hebben we een geavanceerd model ontwikkeld voor gesitueer-
de multiagent systemen. Dit model integreert gesitueerde agenten en de omgeving
als expliciete ontwerpabstracties in een gesitueerd multiagent systeem. Het model
voorziet in een aantal geavanceerde mechanismen voor adaptief gedrag. Deze
mechanismen laten toe dat gesitueerde agenten zich snel kunnen aanpassen aan
wijzigende omstandigheden in het systeem. Agenten kunnen het systeem verlaten
of nieuwe agenten kunnen worden toegevoegd zonder de rest van het systeem te
verstoren. Controle in een gesitueerd multiagent systeem is gedecentraliseerd, de
agenten werken samen om de systeemfunctionaliteit te realiseren.

Uit ervaring met het ontwikkelen van verschillende gesitueerde multiagent sys-
teem applicaties hebben we een referentiearchitectuur ontwikkeld voor gesitueerde
multiagent systemen. Deze referentiearchitectuur beeldt het geavanceerde model
voor gesitueerde multiagent systemen af op een abstracte systeemdecompositie. De
referentiearchitectuur is beschreven aan de hand van verschillende invalshoeken.
De referentiearchitectuur integreert een aantal patronen die hergebruikt kunnen

worden tijdens de ontwikkeling van nieuwe toepassingen.

Tijdens ons onderzoek hebben we een gesitueerd multiagent systeem toegepast
in een industrieel transportsysteem met automatisch bestuurde voertuigen. Het
ontwerp en de evaluatie van de software architectuur van deze applicatie hebben in
belangrijke mate bijgedragen tot de ontwikkeling van de referentiearchitectuur. De
succesvolle ontwikkeling van deze complexe toepassing toont aan hoe multiagent
systemen als software architectuur kunnen geintegreerd worden in een algemeen
software ontwikkelingsproces.

Overzicht. De rest van deze samenvatting is als volgt samengesteld. In sec-
tie 2 geven we een beknopt overzicht van architectuur-gebaseerde software ontwik-
keling. Sectie 3 introduceert het model voor gesitueerde multiagent systemen
dat we ontwikkeld hebben in ons onderzoek. In sectie 4 geven we een overzicht
van de referentiearchitectuur voor gesitueerde multiagent systemen. Sectie 5 be-
spreekt hoe we gesitueerde multiagent systemen hebben toegepast in een AGV
transportsysteem. In sectie 6 tenslotte vatten we de belangrijkste bijdragen van
ons onderzoek samen.

2 Architectuur-gebaseerde aanpak voor software
ontwikkeling

Deze sectie geeft een korte beschrijving van een cyclus voor architectuur-gebaseerde
software ontwikkeling die gebaseerd is op [16, 3]. De aanpak biedt een context
waarin multiagent systemen verder gebruikt zullen worden. De ontwikkelingscy-
clus plaatst het ontwerp van software architectuur centraal, zie Fig. 1.

De ontwikkelingscyclus bestaat uit twee fasen: de ontwikkeling van het basis-
systeem en de afwerking van het finale software product. De ontwikkeling van
het basissysteem is een iteratief proces waarbij het ontwerp van de architectuur
(Architectural Design) itereert met vereistenanalyse (Requirements Engineering)
en de ontwikkeling van het basissysteem (Develop Core System).

De ontwikkeling van de architectuur bestaat uit drie subfasen: het ontwerp van
de software architectuur (Design Software Architecture), de documentatie van de
architectuur (Document Software Architecture), en de evaluatie van de architec-
tuur (Evaluate Software Architecture). Het ontwerp van de software architectuur
is gebaseerd op architecturale beslissingen. Tijdens het ontwerp past de architect
gekende tactieken en patronen toe om de belangrijste kwaliteitsvereisten te reali-
seren. Een referentiearchitectuur bestaat uit een aantal geintegreerde patronen die
hun nut bewezen hebben voor een familie van applicaties. Deze patronen kunnen
een architect helpen tijdens de ontwikkeling van een software architectuur voor een
systeem met gelijkaardige kenmerken en vereisten als de systemen waarvan de re-
ferentiearchitectuur is afgeleid. In ons onderzoek hebben wij gebruik gemaakt van

Domain

Modeling

Requirements

Engineering
Phase 1
Architectural
Design
Develop
Core System
Design
—» Software
Architecture
A
Document
Sofware . .
Architecture Deve!op Dellver.FlnaI
¢ Version Version
Evaluate
Sofware
Architecture Y
Incorporate Phase 2
Feedback

Figuur 1: Architectuur-gebaseerde software ontwikkeling

de Attribute Driven Design methode [7, 3] (ADD) als basis voor het ontwikkelen
van software architectuur met een referentiearchitectuur.

Een software architectuur wordt beschreven aan de hand van views [12]. In ons
onderzoek maken wij gebruik van verschillende viewtypes [8] voor de documentatie
van software architectuur, inclusief een module viewtype (beschrijft implementatie
eenheden), een component-en-connector viewtype (beschrijft runtime eenheden),
en een allocatie viewtype (beschrijft de relatie tussen software elementen en de
ontwikkelings- en uitvoeringsomgeving).

Een software architectuur vormt de basis van een software systeem en bepaalt
daarom in belangrijke mate de kwaliteit van het systeem. Een tijdige evaluatie
van de software architectuur vermijdt moeilijkheden achteraf. In ons onderzoek
hebben wij de Architecture Tradeoff Analysis methode [9] (ATAM) toegepast voor
de evaluatie van software architectuur.

3 Model voor gesitueerde multiagent systemen

Gesitueerde multiagent systemen zijn gebaseerd op de principes van reactieve
agenten die ontwikkeld zijn in het midden van de jaren tachtig. Reactieve agenten
zijn ontwikkeld als reactie op de beperkingen van cognitieve agenten. Redeneren
over kennis en het plannen van acties is tijdrovend met als gevolg dat cognitieve
agenten niet kunnen reageren op snelle veranderingen in de omgeving. Reactieve
agenten koppelen waarneming rechtstreeks aan actie. Dit resulteert in efficiénte
beslissingsmechanismen en snelle reactie in dynamische omgevingen.

Historisch kunnen een aantal families van gesitueerde agentsystemen onder-
scheiden worden. In de eerste generatie werden enkel systemen beschouwd met
één agent. De aandacht hierbij was vooral gericht op de beslissingsarchitectuur
van de agenten. Baanbrekende voorbeelden zijn de subsumption architectuur [5]
en de agent netwerk architectuur [13] (ANA). In de tweede generatie werden sys-
temen beschouwd met meerdere agenten. Een belangrijke familie zijn multiagent
sys-temen die gebaseerd zijn op stigmergy waarbij agenten met mekaar commu-
niceren door het manipuleren van de omgeving, belangrijke voorbeelden zijn syn-
thetic ecosystems [6, 17] en computational fields [15] (Co-Fields). Een tweede
familie zijn gesitueerde multiagent systemen waarbij de nadruk gelegd werd op
de architectuur van de multiagent systemen, voorbeelden zijn multilayered mul-
tiagent situated systems [2] (MMASS) en block-like representation of interactive
components [10] (BRIC).

Ondanks het feit dat gesitueerde agent systemen met succes zijn toegepast in de
praktijk, blijven een aantal zaken open voor verder onderzoek. Enkele belangrijke
uitdagingen zijn:

e Architecturen voor gesitueerde agenten leggen de nadruk op het actie-selectie
mechanisme. Andere aspecten zoals waarneming en communicatie dienen te
worden geintegreerd in de agentarchitectuur.

e Gesitueerde agenten werken samen door indirecte interactie via de omge-
ving. Om rechtstreekse samenwerking mogelijk te maken dienen gesitueerde
agenten uitgebreid te worden met sociale vaardigheden.

e De omgeving waarin de agenten zijn gesitueerd wordt typisch beschouwd als
herbruikbare infrastructuur. Dit beperkt de rol van de omgeving in multi-
agent systemen. Om het potentieel van de omgeving tot zijn recht te laten
dient de omgeving beschouwd te worden als een expliciete bouwsteen die
creatief kan worden aangewend worden in het ontwerp van een multiagent
systeem.

Ons onderzoek sluit aan bij vooraanstaand onderzoek in het domein en draagt bij
tot de realisatie van de bovengenoemde uitdagingen. In de volgende subsecties
geven we een overzicht van een geavanceerd model voor gesitueerde multiagent
systemen dat we ontwikkeld hebben tijdens ons onderzoek.

3.1 De omgeving als een expliciete bouwsteen in multiagent systemen 5

3.1 De omgeving als een expliciete bouwsteen in multiagent
systemen

Traditioneel kunnen drie verschillende niveaus van ondersteuning onderscheiden
worden die door de omgeving aangeboden worden:

o Het basisniveau geeft de agenten toegang tot hulpbronnen die extern zijn
aan het multiagent systeem.

e Het abstractieniveau zorgt ervoor dat de laagniveau details van externe hulp-
bronnen worden afgeschermd voor de agenten.

e Het interactie-bemiddelingsniveau laat toe dat de omgeving de toegang tot
hulpmiddelen en de interactie tussen agenten regelt.

De verschillende types van ondersteuning door de omgeving worden typisch aange-
boden in de vorm van herbruikbare infrastructuur. Een dergelijke infrastructuur
biedt ondersteuning voor een specifiek soort van coordinatie voor de agenten
(voorbeelden zijn digitale feromonen [6] en gradiéntvelden [14]). Andere func-
tionaliteiten van de omgeving worden meestal niet ondersteund. De gevolgen zijn
een beperkte flexibiliteit en het gebruik van ad-hoc oplossingen voor aspecten van
de omgeving die niet door de infrastructuur ondersteund worden.

Wij beschouwen de omgeving als een expliciete bouwsteen in multiagent sys-
temen. Fig. 2 geeft een overzicht van het model voor de omgeving. Het model is
opgebouwd uit twee basismodules: de externe hulpbronnen (deployment context)
en de toepassingsomgeving (application environment). De externe hulpbronnen
zijn gegeven voor een bepaald probleem. De toepassingsomgeving daarentegen is
het deel van de omgeving dat moet ontworpen worden voor een toepassing. We
bespreken bondig de verschillende submodules van de toepassingsomgeving.

De toestandsonderhoud module (State Maintenance) vervult een centrale rol
in de toepas-singsomgeving. Deze module biedt andere modules toegang tot de
toestand van de toepassingsomgeving. Deze toestand bestaat typisch uit een rep-
resentatie van externe hulpmiddelen (vb. de topologie van een netwerk) samen met
aanvullende toestand (vb. digitale feromonen gelokaliseerd in de knopen van een
netwerk).

De representatiegenerator module (Representation Generator) maakt selec-
tieve waarneming van de omgeving mogelijk. Om de omgeving selectief te ob-
serveren gebruikt een agent een set van foci. Een focus bepaalt in welk type
informatie de agent geinteresseerd is. Waarneming is onderworpen aan percep-
tiewetten (p-laws). Perceptiewetten leggen restricties op aan wat een agent kan
waarnemen gegeven een set van foci. Bijvoorbeeld, om redenen van efficiéntie kan
een ontwerper een perceptiewet introduceren die restricties oplegt aan het gebied
waarin een agent kan waarnemen.

3.1 De omgeving als een expliciete bouwsteen in multiagent systemen 6

Agent
set of foci A representation 4 Message influence
f Application Environment
state state
Representation
Generator state
4— p-laws c-laws a-laws
i ! |
A 4 . v A A
state Stat c icati
C e N e ommunication !
. Dynamics Maintenance Service Interaction
observation
A 'y Y
observed state
depl.context state state message influence
i state l
v A
Oberservation & Synchronization & Translation
Data Processing Data Processing
4 A A
low-level
resource data resource data interactions
A
Deployment Context
KEY |:| Functional Module > DataFlow ———- ﬁg:rr;:gvlronmem

Figuur 2: Model voor de omgeving

De observatie en data verwerkingsmodule (Observation & Data Processing)
biedt de functionaliteit aan om externe hulpbronnen te observeren. De informatie
afkomstig van de observatie wordt typisch verwerkt alvorens ze naar de represen-
tatiegenerator wordt doorgegeven. Een voorbeeld van een dergelijke verwerking is
de integratie van sensordata.

De interactie module (Interaction) is verantwoordelijk voor de verwerking van
acties uitgevoerd door de agenten. In ons onderzoek gebruiken we het influence—
reaction model voor acties geintroduceerd door Ferber [11]. Dit model maakt een
onderscheid tussen influences en reacties. Influences worden door agenten uit-
gevoerd en beogen een bepaalde toestandsverandering in de omgeving. Reacties
bepalen de effecten van de influences en zijn onder controle van de omgeving. In-

3.2 Model van een gesitueerde agent 7

fluences zijn onderhevig aan actiewetten (a-laws) die restricties opleggen aan de
activiteiten van agenten. Agenten kunnen influences uitvoeren die een verandering
beogen in de toestand van de toepassingsomgeving (bijvoorbeeld het droppen van
een digitaal feromoon) of influences die een verandering beogen in de toestand
van externe hulpbronnen. Het eerste type van influence wordt uitgevoerd door de
interactie module, het tweede type wordt doorgegeven aan de vertaler module
(Translation) die de influence omzet in laagniveau acties met de externe hulpbron-
nen.

De communicatiedienst module (Communication Service) verzorgt de uitwisse-
ling van berichten tussen agenten. Communicatie is onderworpen aan communi-
catiewetten (c-laws) die restricties opleggen aan de uitwisseling van boodschappen
tussen agenten. Een voorbeeld is een wet slechts berichten aflevert aan agenten die
zich binnen een bepaalde afstand van de zender bevinden. De communicatiedienst
geeft de berichten van agenten door aan de vertaler module die de berichten omzet
in laagniveau primitieven voor transmissie via een communicatie infrastructuur.

De synchronisatie en data verwerkingsmodule (Synchronization & Data Pro-
cessing) bewaakt welbepaalde externe hulpbronnen en zorgt ervoor dat de repre-
sentatie van deze hulpbronnen in de toestand van de toepassingsomgeving on-
derhouden wordt. Een voorbeeld is het onderhoud van de representatie van een
dynamische netwerk topologie in de toestand van de toepassingomgeving.

De dynamiek module (Dynamics) onderhoudt processen die onafhankelijk zijn
van agenten of externe hulpbronnen. Een typisch voorbeeld is de evaporatie van
digitale feromonen.

3.2 Model van een gesitueerde agent

Architecturen voor gesitueerde agenten leggen de nadruk op mechanismen voor
actie-selectie. Aspecten zoals waarneming en communicatie worden impliciet gein-
tegreerd of helemaal niet beschouwd. Wij hebben een model ontwikkeld voor
gesitueerde agenten waarin deze aspecten een expliciet onderdeel uitmaken van
de agentarchitectuur. Fig. 3 geeft een hoogniveau overzicht van het model voor
een gesitueerde agent. De modules stellen de basis functionaliteiten voor van een
agent. We geven een kort overzicht van de verschillende modules.

De kennisintegratie module (Knowledge Integration) omvat de kennis van de
agent en biedt andere modules toegang tot deze kennis. De kennis van een agent
bestaat uit twee delen. Gedeelde kennis verwijst naar een toestand die gedeeld
wordt door agenten; voorbeelden zijn representaties van elementen in de omgeving
en verbintenissen tussen agenten over tijdelijke samenwerkingen. Interne kennis
heeft betrekking op toestand die niet gedeeld wordt tussen agenten. Een voorbeeld
zijn interne parameters van een actie—selectie mechanisme.

3.2 Model van een gesitueerde agent 8

focus & filter selector

i current
knowledge

percept -
. Knowledge ¢ ” Decision

Perception . .
Integration ¢ Making

current
knowledge
A

focus & filter selector

Communication

Agent

representation
set of foci message influence
Environment

. > _ _ _ _ Agent-Environment
KEY |:| Functional Module | Data Flow Interface

Figuur 3: Agent model

De waarnemingsmodule (Perception) omvat de functionaliteit voor agenten
voor selectieve waarneming. Selectieve waarneming is gebaseerd op de selectie
van foci en filters. Foci worden gebruikt om welbepaalde informatie uit de omge-
ving waar te nemen. Filters worden gebruikt om uit de waarneming specifieke
informatie te filteren. De communicatiemodule en de module voor het nemen
van beslissingen gebruiken de waarnemingsmodule om de kennis van de agent in
overeenstemming te brengen met de actuele toestand in de omgeving.

De beslissingsmodule (Decision Making). Deze module selecteert influences en
voert deze uit in de omgeving. Een gesitueerde agent gebruikt een gedragsge-
baseerd (behavior-based) actie-selectie mechanisme voor het nemen van beslissin-
gen. Wij hebben gedragsgebaseerde actie-selectie mechanismen uitgebreid met de
noties rol en gesitueerde verbintenis. Een rol vertegenwoordigt een coherent deel
van het gedrag van een agent dat betekenis heeft in de context van een organisatie.
Een gesitueerde verbintenis is een engagement van een agent om een welbepaalde
rol te spelen. Het gesitueerd zijn van de verbintenis heeft betrekking op het feit
dat een dergelijke verbintenis typisch geassocieerd is met factoren in de omgeving
van de betrokken agent. Een gesitueerde verbintenis kan zowel verwijzen naar een
engagement in een samenwerking met een andere agent, als naar een verbintenis
ten opzichte van het gedrag van de agent zelf. Een voorbeeld van dit laatste is een

verbintenis van een agent om een vitale handeling te verrichten, zoals het zorgen
voor de nodige energievoorraad.

De communicatie module (Communication) biedt de functionaliteit aan voor
het uitwis-selen van berichten met andere agenten. Communicatie verloopt via een
gemeenschappelijke communicatietaal. Wij hebben een model voor communicatie
ontwikkeld voor gesitueerde agenten dat gebaseerd is op communicatieprotocollen.
Elk protocol beschrijft een set van protocolstappen. Een protocolstap beschrijft
hoe de agent zich zal gedragen in de communcatieve interactie. Communicatie is
de basis voor expliciete samenwerking tussen agenten.

4 Referentiearchitectuur voor gesitueerde multi-
agent systemen

Een referentiearchitectuur belichaamt de kennis en ervaring die is opgebouwd
uit de ontwikkeling van een aantal toepassingen met gelijkaardige kenmerken en
vereisten. Een referentiearchitectuur integreert een set van architecturale patro-
nen die hergebruikt kunnen worden bij de ontwikkeling van nieuwe soortgelijke
systemen [18, 3].

Wij hebben in ons onderzoek een referentiearchitectuur ontwikkeld voor ge-
situeerde multiagent systemen. Deze referentiearchitectuur is gebaseerd op de ont-
wikkeling van verschillende toepassingen, waaronder de pakjeswereld, een toepas-
sing voor het delen van bestanden in een netwerk, enkele eenvoudige robotappli-
caties, en een industrieel controle systeem voor automatisch bestuurde voertuigen.
Tijdens het ontwerp van deze toepassingen hebben we de verschillende mechanis-
men ontwikkeld voor gesitueerde multiagent systemen die we besproken hebben
in vorige sectie. De referentiearchitectuur integreert de verschillende functiona-
liteiten van agenten en de omgeving en beeldt deze functionaliteiten af op software
elementen en relaties tussen de elementen. De software elementen vormen samen
een abstracte systeemdecompositie die gebruikt kan worden om nieuwe soortgelijke
systemen te ontwerpen.

De documentatie van de referentiearchitectuur bestaat uit een aantal views
die de architectuur beschrijven vanuit verschillende standpunten. De module-
decompositie view toont hoe een gesitueerd multiagent systeem is opgebouwd uit
coherente implementatie eenheden. De gedeelde-data view beschrijft hoe het multi-
agent systeem is gestructureerd als een set van componenten die toegang hebben
tot datacomponenten. De samenwerkende-componenten view toont hoe compo-
nenten samenwerken om bepaalde systeemfunctionaliteit te realiseren. Tenslotte,
de communicerende-processen view toont het multiagent systeem als een set van
parallel werkende processen en hun interacties. Elke view bestaat uit een aantal
viewpakketten. FEen viewpakket beschrijft een welbepaald deel van de architec-
tuur. Naast de beschrijving van de elementen en hun onderlinge relaties voorziet

4.1 Basisvoorstelling communicerende processen 10

elk viewpakket een aantal variatie mechanismen en een motivatie voor het ont-
werp. Variatie mechanismen geven aan hoe de abstracte structuren van de referen-
tiearchitectuur kunnen toegepast worden om een concrete software architectuur te
ontwikklen.

Ter illustratie bespreken we een viewpakket uit de communicerende-processen
view. Dit viewpakket toont de belangrijkste processen en datacomponenten die
betrokken zijn in waarneming, interactie, en communicatie.

4.1 Basisvoorstelling communicerende processen

Fig. 4 toont de basisvoorstelling van de communicerende processen voor waarne-
ming, interactie, en communicatie.

4.2 Bespreking van de elementen

Dit viewpakket toont de belangrijkste processen en datacomponenten van een
gesitueerde agent en de toepassingsomgeving. We maken een onderscheid tussen
actieve processen (Active Process) die autonoom uitvoeren en reactieve processen
(Reactive Process) die geactiveerd worden door andere processen om een taak uit
te voeren.

De bespreking van de elementen is opgedeeld in vier delen. Achtereenvolgens
beschouwen we de communicerende processen voor waarneming, interactie, com-
municatie, en de onafhankelijke processen van de toepassingsomgeving.

Waarneming. Het Perception Process van de agent is een reactief proces dat
kan geactiveerd worden door het Decision Making Process en Communication
Process. Van zodra het perception process een aanvraag ontvangt, vraagt het
aan het Representation Generator Process om een waarneming uit te voeren.
Het representation generator process verzamelt de gevraagde toestand. Enerzijds
wordt de toestand van de State component opgehaald en indien nodig wordt het
Observation Process gevraagd om informatie van externe hulpbronnen te verza-
melen. Het verzamelen van de toestand is onderworpen aan wetten die mogelijk
beperkingen opleggen aan de waarneming. Zodra de informatie van externe hulp-
bronnen beschikbaar is geeft het observation process deze door aan het represen-
tion generator process. Vervolgens integreert het representation generator proces
de toestand van de toepassingsomgeving met de informatie van externe hulpbron-
nen en geeft het resultaat (representation) terug aan het perception process van
de agent. Het perception process zet de ontvangen representatie om in het juiste
formaat om de toestand van de agent bij te werken in de Current Knowledge
component. Tenslotte kan het process dat de waarneming had aangevraagd de
aangepaste kennis van de agent raadplegen.

Interactie. Het Decision Making Process is een actief proces van de agent
dat influences selecteert en uitvoert in de omgeving. Het Interaction Process

4.2 Bespreking van de elementen 11

read/write

knowledge
Current

Knowledge

update

read/write
knowledge

activate

Percepli < >
“E Process
(0] !
D activate
< -)
A Decision Making A |
Process)
receive message
generate return .
. " read/write send message
represenation representation . .
invoke influence knowledge
v read/write
T state read/write)
read state read/write
Representation state

Communication
Service Process

Interaction

Generator
Process

Process

invoke
operation
send

observe message

receive
message

maintain
dymanics

observed update

data

Application Environment

state [Appl.Env-DC
Translation
Process

DC-Appl.Env
Translation
Process

Observation
Process

Ongoing
Activity

Synchronization
Process

0 low-level deliver
observe context monitor context interaction low-level message
Deployment Context
KEY 8 Data Repository el REEEID ®—e Exposed Interface —» Message

Process Process

Figuur 4: Communicerende processen voor waarneming, interactie, en communi-
catie

verzamelt de influences van de agenten en zet deze om in operaties (operations).
De uitvoering van operaties is onderworpen aan actiewetten die beperkingen op-
leggen aan de activeiten van agenten in de omgeving. Operaties die een aanpassing
van de toestand van de omgeving beogen worden rechtstreeks uitgevoerd door het

4.3 Motivatie voor het ontwerp 12

interaction process. Operaties die een aanpassing van de toestand van externe
hulpbronnen beogen worden doorgestuurd naar het Appl.Env-DC Translation
Process. Dit proces zet de operaties om in laagniveau acties en voert die uit op
de externe hulpbronnen.

Communicatie. Het Communication Process is een actief proces dat verantwoor-
delijk is voor de uitwisseling van boodschappen met andere agenten. Een nieuw
bericht wordt doorgegeven aan het Communication Service Process dat de com-
municatiewetten toepast en vervolgens het bericht doorgeeft aan het Appl.Env-DC
Translation Process. Dit proces zet het bericht om in een laagniveau bood-
schap die verstuurd kan worden via de externe communicatie infrastructuur. Het
DC-Appl.Env Translation Process verzamelt inkomende boodschappen en zet
deze om in een gepast formaat voor de agenten. De boodschappen worden doorge-
geven aan het communication service process dat de berichten aflevert aan de
gepaste agenten.

Onafhankelijke processen in de toepassingsomgeving. Synchronization
Processes zijn actieve processen die de toestand van applicatie-specifieke hulp-
bronnen observeren en de representatie ervan in de toestand van de toepassings-
omgeving in overeenstemming houden. Ongoing Activities zijn actieve pro-
cessen die dynamiek in de applicatieomgeving representeren die onafhankelijk is
van agenten en externe hulpbronnen. Deze processen passen voortdurend de toe-
stand van de toepassingsomgeving aan overeenkomstig de vereisten van de appli-
catie.

4.3 Motivatie voor het ontwerp

Agenten beschikken over twee actieve processen, één voor het selecteren van in-
fluences en één voor communicatie. Deze aanpak laat toe dat beide processen in
parallel uitvoeren wat de efficiéntie van het nemen van beslissingen ten goede komt.
De communicatie tussen de twee processen gebeurt indirect via current knowledge
wat zorgt voor een goede ontkoppeling. Het perception process is reactief, een
agent zal enkel een aanvraag tot waarneming uitvoeren wanneer dit vereist is voor
het nemen van beslissingen.

De toepassingsomgeving beschikt over actieve processen voor het afthandelen
van waarneming, interactie, en communicatie. Het observation process is reactief,
dit proces verzamelt enkel informatie van externe hulpbronnen wanneer nodig. De
translation processen zijn eveneens reactief, deze processen bieden hun diensten
aan op vraag van andere processen. De synchronization processen en de ongoing
activities tenslotte zijn actieve processen die hun taken volbrengen onafhankelijk
van de rest van de activiteit in het systeem.

Doordat actieve processen in parallel kunnen uitvoeren wordt het mogelijk
verschillende opdrachten in het systeem tegelijk af te werken. Reactieve processen
daarentegen worden enkel geactiveerd wanneer nodig. Deze aanpak zorgt ervoor

13

dat de hulpbronnen in het systeem op een efficiénte manier gebruikt worden.

5 AGYV transportsysteem

Een automatisch bestuurd voertuig (Automatic Guided Vehicle, AGV) is een
volledig geautomatiseerd voertuig dat transportopdrachten kan uitvoeren in een in-
dustriéle omgeving. AGV transportsystemen met meerdere AGV’s worden geken-
merkt door voortdurende dynamiek. De stroom van taken die het systeem moet
verwerken is onregelmatig, AGV’s kunnen het systeem tijdelijk verlaten bijvoor-
beeld voor onderhoud, productiemachines hebben variable wachttijden, e.d. Tra-
ditioneel worden AGV transportsystemen bestuurd door een centraal controle sys-
teem. De belangrijkste voordelen van deze aanpak zijn de beschikbaarheid van een
centraal configuratiepunt en de voorspelbaarheid van het gedrag van het systeem.

In een project in samenwerking met Egemin hebben wij een inovatieve versie
ontwikkeld voor de AGV controle software [1]. In dit project hebben we een gede-
centraliseerd controle systeem ontwikkeld, gebaseerd op een gesitueerd multiagent
systeem. De bedoeling was te onderzoeken in hoeverre een decentraliseerde archi-
tectuur kan bijdragen tot het verhogen van de flexibiliteit en de openheid van het
systeem.

De succesvolle ontwikkeling van deze industriéle applicatie heeft in belang-
rijke mate bijgedragen tot de ontwikkeling van de referentiearchitectuur voor
gesitueerde multiagent systemen. In deze sectie geven we een hoogniveau overzicht
van het gesitueerde multiagent systeem voor het AGV transportsysteem.

5.1 Belangrijkste systeemvereisten

De belangrijkste functionaliteit van het systeem is het athandelen van transporten,
d.w.z. ladingen (zoals paletten) van de ene naar een andere plaats brengen. Het
afhandelen van een transport houdt de volgende deeltaken in:

1. Transporttoewijzing: transporten worden gegenereerd door klantsystemen
(typisch een warehouse management systeem) en dienen te worden toegewezen
aan AGV’s.

2. Routering: AGV’s dienen een efficiénte weg te vinden op de layout van de
fabrieksvloer, AGV’s mogen enkel langs voorgedefinieerde paden manoeuvre-
ren.

3. Verzamelen van verkeersinformatie: om efficiént naar een bestemming te rij-
den dienen de AGV’s rekening te houden met de wijzigende verkeerstoestand
in het systeem.

4. Vermijden van botsingen: vanzelfsprekend mogen AGV’s niet op hetzelfde
ogenblik een kruispunt oversteken; doch botsingen moeten ook vermeden

5.2 Gesitueerd multiagent systeem 14

worden wanneer twee AGV’s mekaar passeren in dicht bij elkaar gelegen
parallelle wegen.

5. Vermijden van deadlocks: AGV’s moeten ervoor zorgen dat er geen deadlock
situatie kan ontstaan.

Naast de functionele vereisten zijn er ook kwaliteitsvereisten. Belangrijke tra-
ditionele kwaliteitsvereisten zijn performantie, configureerbaarheid, en robustheid.
Daarnaast winnen flexibiliteit en openheid steeds meer aan belang. Flexibiliteit
laat toe dat het systeem opportuniteiten uitbuit, mogelijke problemen anticipeert,
e.d. Openheid zorgt ervoor dat het transportsysteem zelfstandig kan omgaan met
AGV’s die aan het systeem worden toegevoegd of die het systeem verlaten.

Het doel van het project met Egemin was te onderzoeken in hoeverre een
gedecentraliseerde architectuur gebaseerd op een gesitueerd multiagent systeem in
staat is te voldoen aan deze systeemvereisten.

5.2 Gesitueerd multiagent systeem

Fig. 5 geeft een hoogniveau model van het AGV transportation system.

AGV agent AGV agent Transport Agents

‘ \
‘ \
} Local Virtual Environment Virtual Local Virtual Environment I!'EOC?I V|rtua|t }
| Environment nvironmen ‘
‘ \
Object Places . Object Places . ObjectPlaces
Middleware E'nsor Middleware E'nsor Middleware
Wireless
Ethernet
AGV = AGV = Transport Base

Figuur 5: Hoogniveau model van het AGV transportsysteem

Agenten. We hebben twee types agenten geintroduceerd: AGV agenten en trans-
port agenten. De keuze om elke AGV te controleren door een AGV agent is vanzelf-
sprekend. Doordat transporten in onderhandeling dienen toegekend te worden aan
de meest geschikte AGV hebben we transport agenten geintroduceerd.

Een AGV agent is verantwoordelijk voor de controle van het AGV voertuig
waarmee het geassocieerd is. Aldus wordt een AGV een autonome entiteit die kan

5.2 Gesitueerd multiagent systeem 15

inspelen op opportuniteiten die zich voordoen in de omgeving, en die het systeem
kan verlaten en opnieuw betreden zonder de rest van het systeem te verstoren.

Een transport agent vertegenwoordigt een transport in het systeem. Deze agent
is verantwoordelijk voor de toewijzing van het transport aan een AGV agent, en de
interactie met de klant die de opdracht heeft gegeven. Transport agenten bevinden
zich op een transportbasis (transport base). Een transportbasis is een stationaire
computer die zich bevindt in de fabrieksruimte.

Beide types agenten hebben een gelijkaardige architectuur die overeenkomt
met de agentarchitectuur gedefinieerd in de referentiearchitectuur. De interne
structuur van de twee types agenten is echter verschillend overeenkomstig de taken
die beide types agenten dienen te vervullen.

Het toepassen van een gesitueerd multiagent systeem draagt als volgt bij tot
flexibiliteit en openheid van het systeem: (1) gesitueerde agenten handelen lokaal,
dit zorgt ervoor dat agenten hun gedrag beter kunnen aanpassen aan de veran-
deringen in de omgeving en dus beter kunnen inspelen op opportuniteiten—dit is
een belangrijk kenmerk voor flexibiliteit; (2) gesitueerde agenten zijn autonome
entiteiten die samenwerken met andere agenten in hun directe nabijheid; agenten
kunnen mekaars omgeving naar goeddunken betreden en verlaten—dit is een be-
langrijk kenmerk voor openheid.

Virtuele omgeving. (Virtual Environment) Om hun taken te vervullen dienen
AGV agenten en transport agent hun activiteiten te codrdineren. Codrdinatie
is nodig voor het toekennen van taken, het vermijden van botsingen, e.d. Wij
hebben voor een aanpak gekozen waarbij agenten hun activiteiten coérdineren via
de omgeving.

AGV’s zijn gesitueerd in de fysieke wereld. De omgeving van AGV’s biedt
echter weinig mogelijkheden voor codrdinatie. AGV’s kunnen slechts voortbewegen
over de voorgedefinieerde paden, ze kunnen ladingen oppikken en afzetten, en ze
kunnen communiceren via een draadloos netwerk. Om de mogelijkheden voor
codrdinatie uit te breiden hebben we een virtuele omgeving (virtual environment)
geintroduceerd. Deze virtuele omgeving biedt een medium voor de AGV agenten
en transport agenten om informatie uit te wisselen en hun gedrag te coordineren.
Bovendien schermt de virtuele omgeving laagniveau details af voor de agenten,
zoals communicatie over het draadloos netwerk en de fysieke besturing van de
AGYV voertuigen.

Doordat AGV agenten en transport agenten gedistribueerd zijn over verschil-
lende machines is de virtuele omgeving eveneens gedistribueerd over de AGV’s en
de transportbasis. Dit impliceert dat elke AGV en de transportbasis een lokale
virtuele omgeving (local virtual environment) voorzien. De toestand van deze
lokale virtuele omgevingen wordt consistent gehouden voor zover nodig. In het
AGYV transportsystem is er geen software entiteit die overeenkomt met de toepas-
singsomgeving zoals die is gedefinieerd in de referentiearchitectuur voor gesitueerde
multiagent systemen. In plaats daarvan zijn instanties van de lokale virtuele

5.2 Gesitueerd multiagent systeem 16

omgeving voorzien op elke machine in het AGV transportsysteem. De instanties
van de lokale virtuele omgeving verschillen voor de AGV’s en de transportbasis.
Bijvoorbeeld, de lokale virtuele omgeving op AGV’s voorziet in een hoogniveau
interface die AGV agenten toelaat de AGV machine te besturen. Dergelijke func-
tionaliteit wordt vanzelfsprekend niet aangeboden door de lokale virtuele omgeving
op de transportbasis.

Voor de synchronisatie van de toestand tussen naburige lokale virtuele omgevin-
gen wordt gebruik gemaakt van de ObjectPlaces middleware [21, 22, 23]. Object-
Places ondersteunt de cotrdinatie van knopen in een mobiel netwerk. De laag-
niveau controle van de AGV voertuigen wordt verzorgd door E'nsor!. We hebben
de E’nsor software volledig hergebruikt in het project. E’nsor is uitgerust met een
kaart van de omgeving die de paden waarover AGV’s kunnen rijden verdeelt in
segmenten en knopen. E’nsor biedt een interface aan om de AGV per segment
te sturen. Voorbeelden van instructies zijn: Move(segment) wat de AGV stu-
urt over het gegeven segment, en Pick(segment) wat de AGV stuurt over het
gegeven segment en vervolgens de AGV de opdracht geeft de lading daar op te ne-
men. De laagniveau controle van deze instructies worden door E’'nsor afgehandeld.
E’nsor biedt bovendien een interface aan waarmee de toestand van de machine kan
geinspecteerd worden; voorbeelden zijn de positie van de AGV en de status van
de batterij.

Coordinatie via de virtuele omgeving. We illustreren met enkele voorbeelden
hoe de agenten in het AGV transportsysteem de virtuele omgeving gebruiken voor
codrdinatie.

Routering. De lokale virtuele omgeving heeft een kaart met de paden waarover
AGV’s kunnen rijden. Deze kaart is uitgerust met informatie omtrent de afstand
tussen verschillende locaties in het systeem, vergelijkbaar met wegwijzers in het
verkeer. AGV agenten kunnen deze informatie gebruiken om het kortste pad naar
een bepaalde bestemming te vinden.

Transport toekenning. Doordat transporten op willekeurige tijdstippen ontstaan
is het efficiént toekennen van transporten aan AGV’s complex. Om met deze dy-
namiek om te gaan hebben we een veld-gebaseerde aanpak ontwikkeld voor het
toekennen van transporten aan AGV’s. In deze aanpak zenden transport agenten
velden uit in de virtuele omgeving die vrije AGV’s aantrekken. Om te vermij-
den dat meerdere AGV’s naar hetzelfde transport rijden, sturen de AGV agenten
velden uit die andere AGV’s afstoten. Elke AGV die op zoek is naar een transport
combineert de velden die het ontvangt en volgt vervolgens de gradiént van dit
gecombineerde veld hetwelk de AGV leidt naar een lading. Doordat AGV agenten
voortdurend de situatie herbekijken en de taaktoekenning maar definitief is bij het
opnemen van de lading onstaat een uiterst flexibele oplossing.

IE’nsor® is een acroniem voor Egemin Navigation System On Robot.

5.3 Evaluatie 17

Vermijden van botsingen. AGV agenten vermijden botsingen via cotrdinatie van
hun bewegingen in de virtule omgeving. AGV agenten reserveren het pad waarover
ze rijden in de lokale virtuele omgeving met omhullenden (hulls). Een omhullende
markeert het fysische gebied dat een AGV in beslag neemt. Een reeks van omhul-
lenden beschrijft het fysische gebied dat een AGV in beslag zal nemen tijdens
een beweging over een pad. Wanneer een gebied in de virtuele omgeving slechts
gemarkeerd is door één AGV dan kan deze meteen doorrijden. Doch wanneer de
omhullenden van meerdere AGV'’s overlappen dan geeft de lokale virtuele omgev-
ing voorrang aan de AGV met de hoogste prioriteit (er is een volledige ordening
op basis van transporten en AGV’s). Nadat een AGV een gereserveerd gebied is
gepasseerd zal het de markering in de omgeving verwijderen.

Deze voorbeelden tonen aan hoe de lokale virtuele omgeving bijdraagt tot
een flexibele coordinatie van de agenten in het AGV transportsysteem. Agen-
ten coodrdineren door het aanbrengen van markeringen in de lokale virtuele omge-
ving en het observeren van markeringen van andere agenten. Het afhandelen van
coordinatie tussen agenten in de omgeving zorgt voor een betere scheiding van
belangen en een betere beheersbaarheid van de complexiteit.

5.3 Evaluatie

Voor de evaluatie van de software architectuur van het AGV transportsysteem
hebben we een ATAM uitgevoerd [26, 30, 4]. Deze evaluatie was een uiterst leer-
rijke ervaring. Een belangrijk besluit uit de evaluatie was de tradeoff in een gede-
centraliseerd systeem (zoals het gesitueerde multiagent systeem) tussen flexibiliteit
en de vereiste bandbreedte voor communicatie. In vergelijking met de bestaande
gecentraliseerde aanpak biedt het gesitueerde multiagent systeem een flexibelere
oplossing, doch de toemenende kost voor communicatie die hiermee gepaard gaat
is significant. Testen na de ATAM hebben aangetoond dat het gebruik van de
beschikbare bandbreedte binnen de gestelde beperkingen blijft. Als een proof-
of-concept hebben we een demonstrator ontwikkeld met twee AGV’s die de bas-
isfunctionaliteit ondersteunt voor routering, het afhandelen van transporten, het
vermijden van botsingen, en het vermijden van deadlock. Fig. 6 toont een snap-
shot van de AGV’s in actie, tesamen met een samengesteld zicht (fusion view) op
de virtuele omgeving.

6 Conclusies

We sluiten deze samenvatting af met een overzicht van de bijdragen van ons on-
derzoek. Vooreerst hebben we een geavanceerd model ontwikkeld voor gesitueerde
multiagent systemen dat een belangrijke uitbreiding betekent op vooraanstaande
aanpakken in het domein van gesitueerde multiagent systemen. Ten tweede, uit
onze ervaring met het bouwen van verschillende toepassingen hebben we een ref-

18

L= FlsionProject - Fusion View
BRaade s Ak

S e Tniae

290 px, 74

scale 1 px ’”3‘3-257 mm
raster 665 mmy; 19.996 px

T
Xl

Figuur 6: Demonstrator met AGV’s in actie

erentiearchitectuur ontwikkeld voor gesitueerde multiagent systemen. Tenslotte
hebben we de toepasbaarheid van de architectuur-gebaseerde aanpak voor soft-
ware ontwikkeling met gesitueerde multiagent systemen gevalideerd in een com-
plexe industriéle applicatie. Concrete bijdragen zijn:

e We hebben een nieuw perspectief ontwikkeld op de rol van de omgeving
in multiagent systemen [34, 38, 42, 28, 33]. In het bijzonder hebben we
de omgeving gepromoveerd tot een expliciete bouwsteen die creatief kan
geéxploiteerd worden tijdens het ontwerp van een multiagent systeem.

e We hebben vooraanstaande aanpakken in gesitueerde multiagent systemen
uitgebreid met een geavanceerd model voor gesitueerde agenten [27, 41, 39,
24, 40]. Dit model biedt ondersteuning voor selectieve waarneming, sociaal
gedrag met rollen en gesitueerde verbintenissen en protocol-gebaseerde com-
municatie.

e Uit onze ervaring met het bouwen van applicaties met gesitueerde multi-
agent systemen hebben we een referentiearchitectuur ontwikkeld voor deze
systemen [32, 29, 31]. Deze referentiearchitectuur ondersteunt de ontwikke-
ling van nieuwe software architecturen voor toepassingen met gelijkaardige
kenmerken en vereisten. Om de haalbaarheid van de referentiearchitectuur

19

aan te tonen hebben we een raamwerk ontwikkeld dat de architectuur im-
plementeert en we hebben dit raamwerk toegepast voor de ontwikkeling van
een aantal prototype applicaties.

e We hebben een gesitueerd multiagent systeem toegepast in een complex in-
dustrieel transportsysteem voor AGV’s [37, 36, 35, 23]. De inzichten die
we verworven hebben uit dit project hebben in belangrijke mate bijgedra-
gen tot de ontwikkeling van de referentiearchitectuur. Het ontwerp van de
software architectuur van dit systeem, de ontwikkeling van de software en
de evaluatie van de applicatie tonen aan dat gesitueerde multiagent syste-
men kunnen toegepast worden in complexe applicaties waar flexibiliteit en
openheid belangrijke kwaliteitesvereisten zijn.

We hebben in dit onderzoek een architectuur-gebaseerde aanpak voorgesteld voor
software ontwikkeling met multiagent systemen. Het toepassen van deze aanpak in
een complexe industriéle toepassing heeft ons ervan overtuigd dat de integratie van
multiagent systemen als software architectuur in een algemeen software ontwikke-
lingsproces een sleutel is tot industriéle aanvaarding van multiagent systemen.

REFERENTIES 20

Referenties

[1]

EMC?: Egemin Modular Controls Concept, Project Supported by the In-
stitute for the Promotion of Innovation Through Science and Technology in
Flanders (IWTVlaanderen), (8/2006). http://emc2.egemin.com/.

S. Bandini, S. Manzoni, and C. Simone. Dealing with Space in Multiagent
Systems: A Model for Situated Multiagent Systems. In 1st International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM Press,
2002.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison Wesley Publishing Comp., 2003.

N. Boucke, D. Weyns, K. Schelfthout, and T. Holvoet. Applying the ATAM
to an Architecture for Decentralized Contol of a AGV Transportation System.
In 2nd International Conference on Quality of Software Architecture, QoSA,
Vasteras, Sweden, 2006. Springer.

R. Brooks. Achieving artificial intelligence through building robots. AI Memo
899, MIT Lab, 1986.

S. Brueckner. Return from the Ant, Synthetic Ecosystems for Manufacturing
Control. Ph.D Dissertation, Humboldt University, Berlin, Germany, 2000.

F. Buchmann and L. Bass. Introduction to the Attribute Driven Design
Method. In 28rd International Conference on Software Engineering, Toronto,
Ontario, Canada, 2001. IEEE Computer Society.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison Wesley Publishing Comp., 2002.

P. Clements, R. Kazman, and M. Klein. FEwvaluating Software Architectures:
Methods and Case Studies. Addison Wesley Publishing Comp., 2002.

J. Ferber. An Introduction to Distributed Artificial Intelligence. Addison-
Wesley, 1999.

J. Ferber and J. Muller. Influences and Reaction: a Model of Situated Multi-
agent Systems. 2nd International Conference on Multi-agent Systems, Japan,
AAAI Press, 1996.

P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42—
50, 1995.

REFERENTIES 21

[13]

[14]

[15]

[16]

[21]

[22]

P. Maes. Situated Agents can have Goals. Designing Autonomous Agents,
MIT Press, 1990.

M. Mamei and F. Zambonelli. Co-Fields: A Physically Inspired Approach to
Distributed Motion Coordination. IEEE Pervasive Computing, 3(2):52-61,
2004.

M. Mamei and F. Zambonelli. Field-based Coordination for Pervasive Multi-
agent Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

S. McConell. Rapid Development: Taming Wild Software Schedules. Mi-
crosoft Press, 1996.

H. V. D. Parunak and S. Brueckner. Concurrent Modeling of Alternative
Worlds with Polyagents. In 7th International Workshop on Multi-Agent-Based
Simulation, Hakodate, Japan, 2006.

P. Reed. Reference Architecture: The Best of Best Practices. The Rational
Edge, 2002. www-128.ibm.com/developerworks/rational/library/2774.html.

G. Roman, C. Julien, and J. Payton. A Formal Treatment of Context-
Awareness. 7th International Conference on Fundamental Approaches to Soft-
ware Engineering, 2004.

N. Rozanski and E. Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison Wesley Publishing
Comp., 2005.

K. Schelfthout and T. Holvoet. Views: Customizable abstractions for context-
aware applications in MANETSs. Software Engineering for Large-Scale Multi-
Agent Systems, St. Louis, USA, 2005.

K. Schelfthout, D. Weyns, and T. Holvoet. Middleware for Protocol-based
Coordination in Dynamic Networks. In 3rd International Workshop on Mid-
dleware for Pervasive and Ad-hoc Computing, Grenoble, France, 2005. ACM
Press.

K. Schelfthout, D. Weyns, and T. Holvoet. Middleware that Enables Protocol-
Based Coordination Applied in Automatic Guided Vehicle Control. IEEE
Distributed Systems Online, 7(8), 2006.

E. Steegmans, D. Weyns, T. Holvoet, and Y. Berbers. A Design Process for
Adaptive Behavior of Situated Agents. In Agent-Oriented Software Engineer-
ing V, 5th International Workshop, AOSE, New York, NY, USA, Lecture
Notes in Computer Science, Vol. 3382. Springer, 2004.

REFERENTIES 22

[25]

[30]

R. Want. System Challenges for Pervasive and Ubiquitous Computing (Intel).
Invited talk, International Conference on Software Engineeging, St. Louis,
USA, 2005.

D. Weyns, N. Boucke, and T. Holvoet. Gradient Field Based Transport As-
signment in AGV Systems. In 5th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS, Hakodate, Japan, 2006.

D. Weyns and T. Holvoet. Formal Model for Situated Multi-Agent Systems.
Fundamenta Informaticae, 63(1-2):125-158, 2004.

D. Weyns and T. Holvoet. On Environments in Multiagent Systems.
AgentLink Newsletter, 16:18-19, 2005.

D. Weyns and T. Holvoet. A Reference Architecture for Situated Multia-
gent Systems. In Environments for Multiagent Systems III, 3th International
Workshop, EJMAS, Hakodate, Japan, 2006, Lecture Notes in Computer Sci-
ence. Springer, 2006.

D. Weyns and T. Holvoet. Architectural Design of an Industrial AGV Trans-
portation System with a Multiagent System Approach. In Software Architec-
ture Technology User Network Workshop, SATURN, Pittsburg, USA, 2006.
Software Engineering Institute, Carnegie Mellon University.

D. Weyns and T. Holvoet. Multiagent systems and Software Architec-
ture. In Special Track on Multiagent Systems and Software Architecture,
Net.ObjectDays, Erfurt, Germany, 2006.

D. Weyns and T. Holvoet. Multiagent Systems and Software Architecture:
Another Perspective on Software Engineering with Multiagent Systems. In
5th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS, Hakodate, Japan, 2006.

D. Weyns, A. Omicini, and J. Odell. Environment as a First-Class Abstraction
in Multiagent Systems. Autonomous Agents and Multi-Agent Systems, 14(1),
2007.

D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Envi-
ronments for Multiagent Systems, State-of-the-art and Research Challenges.
Lecture Notes in Computer Science, Vol. 3374. Springer Verlag, 2005.

D. Weyns, K. Schelfthout, and T. Holvoet. Architectural design of a dis-
tributed application with autonomic quality requirements. In ICSE Work-
shop on design and evolution of autonomic application software, St. Louis,
Missouri, New York, NY, USA, 2005. ACM Press.

REFERENTIES 23

[36]

[37]

[43]

D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentralized control
of E’GV transportation systems. In 4th Joint Conference on Autonomous
Agents and Multiagent Systems, Industry Track, Utrecht, The Netherlands,
2005. ACM Press, New York, NY, USA.

D. Weyns, K. Schelfthout, T. Holvoet, T. Lefever, and J. Wielemans.
Architecture-centric development of an AGV transportation system. In Multi-
Agent Systems and Applications IV, Jth International Central and FEastern
European Conference on Multi-Agent Systems, CEEMAS, Budapest, Hun-
gary, Lecture Notes in Computer Science, Vol. 3690. Springer, 2005.

D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet. Environments
for Multiagent Systems. Knowledge Engineering Review, 20(2):127-141, 2005.

D. Weyns, E. Steegmans, and T. Holvoet. Integrating Free-Flow Architectures
with Role Models Based on Statecharts. In Software Engineering for Multi-
Agent Systems III, SELMAS, Lecture Notes in Computer Science, Vol. 3390.
Springer, 2004.

D. Weyns, E. Steegmans, and T. Holvoet. Protocol Based Communication
for Situated Multi-Agent Systems. In 3th Joint Conference on Autonomous
Agents and Multi-Agent Systems, New York, USA, 2004. IEEE Computer
Society.

D. Weyns, E. Steegmans, and T. Holvoet. Towards Active Perception in
Situated Multi-Agent Systems. Applied Artificial Intelligence, 18(9-10):867—
883, 2004.

D. Weyns, G. Vizzari, and T. Holvoet. Environments for situated multiagent
systems: Beyond Infrastructure. In Proceedings of the Second International
Workshop on Environments for Multi-Agent Systems, Utrecht, 2005, Lecture
Notes in Computer Science, Vol. 3380. Springer Verlag.

F. Zambonelli and H. V. D. Parunak. From Design to Intention: Signs of a
Revolution. 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Bologna, Italy, ACM Press, New York, 2002.

