Linnaeus University

Mathematics
Hans Frisk

Exam in Discrete Mathematics, 1MA462, 7,5 hp
Friday 24th of May 2019, Time 08.00-13.00.

Note: To obtain maximal points a complete solution, presented in such a way that calculations and reasoning are easy to follow, is demanded. If nothing else is given you can assume that all graphs are connected, undirected, loopfree and not multigraphs.
Aid: Sheet with formulas and concepts.

1. 15 votes were lost in an election. They belonged to three political parties, A , B and C. Based on previous elections we can assume

$$
\begin{equation*}
2 \leq x_{A} \leq 4, \quad 5 \leq x_{B} \leq 8, \quad 3 \leq x_{C} \leq 5 \tag{1}
\end{equation*}
$$

Here x_{A}, x_{B} and x_{C} denote the number of votes to the three parties, $x_{A}+x_{B}+x_{C}=15$. In how many ways can the 15 votes be distributed to the three parties with these restrictions?
a) Solve the problem with inclusion-exclusion.
b) Solve the problem with generating function.
2. The minimum number of colors needed for a proper coloring of a graph G is called the chromatic number and is denoted $\chi(G)$. Give the following chromatic numbers.
a) $\chi\left(K_{12}\right)$
b) $\chi\left(K_{15,30}\right)$
c) $\chi\left(C_{17}\right)$
3. Two tasks about Hamilton cycles.
a) Draw a Hamilton cycle in $Q_{3} . Q_{3}$ is the planar graph with 8 vertices where all regions have degree 4 and all vertices have degree 3 .
b) A theorem tells us that if a graph G has v vertices and $\operatorname{deg}(x)+\operatorname{deg}(y) \geq v$ for all non-adjacent pairs of vertices x and y then G has a Hamilton cycle. Draw a graph with 6 vertices and where $\operatorname{deg}(x)+\operatorname{deg}(y) \geq 5$ without a Hamilton cycle. Again x and y is any pair of non-adjacent vertices. Non-adjacent vertices have no edge in common.
4. How many regions have a planar graph with six vertices which is 3 -regular, that is all vertices have degree 3 ? Draw such a graph.
5. The degree sequence for a graph is a list of the degrees for the vertices. For example the path P_{4} has the degree sequence $2,2,1,1$.
a) Draw a connected graph with five vertices and with four different degrees.
b) Can the v numbers in the degree sequence for a connected graph with v vertices be distinct? With distinct we mean that no two numbers are equal to each other. Motivate your answer.
6. a) A Hasse diagram is shown below. Unfortunately the labels at the vertices are missing. Give suggestions of what they can be. The relation is the subset relation, that is $A \mathcal{R} B$ if and only if $A \subseteq B$, on the set of all subsets of four elements $\{1,2,3,4\}$.

b) An equivalence relation on the integers \mathbb{Z} is:
$a \mathcal{R} b$ if and only if $a \equiv b(\bmod 3), a, b \in \mathbb{Z}$.
Show that the relation is transitive and give the equivalence classes.
7. A spanning tree T to a connected graph G is a subgraph of G which is a tree and contains all the vertices of G. Let, from now on, $G=K_{3,3}$, see figure below.
a) Draw three non-isomorphic spanning trees in $K_{3,3}$

b) Let us now also include isomorphic trees. How many spanning trees are there then in total in $K_{3,3}$?

Good Luck!

