Questions and Answers on Relations. The numbers refer to 6:th edition of Rosen's book.

8.1.1f
$a R b$ iff $1 \mathrm{~cm}(a, b)=2 . A=\{0,1,2,3,4\}$ and $B=\{0,1,2,3\}$
Student: How to think?
Teacher: No 3's and 4's can be in the $\operatorname{lcm}(a, b)=2$ relation. So $(1,2),(2,1),(2,2)$ are the only possibilities.

8.1.3e

S: Why transitive when only $(1,1),(2,2),(3,3),(4,4)$ is in the relation?
T: According to definition of transitivity we have to say that the relation is transitive.
8.1 .7 e
$x R y$ iff x is a multiple of y. The set is Z, the intergers.
S: Why not antisymmetric? And in d, how to think?
T: Often it is something tricky about zero or negative numbers. Here the latter. For example $2 R(-2)$ and $(-2) R 2$ so R is not antisymmetric. In $d x R y$ iff $x-y$ is an integer times 7. A standard example of an equivalence relation! Try to show transitivity (hardest part),
xRy -> $x-y=k * 7$
$y R z ~->~ y-z=1 * 7$
Is $\mathrm{x}-\mathrm{z}$ a multiple of 7 ? (Here k and 1 are integers)
8.1.41

How many of the 16 different relations on $\{0,1\}$ contain the pair $(0,1)$?
S: Don't understand!
$\mathbf{T}: A=\{0,1\}$. AxA has 4 elements. Thus $2^{\wedge} 4=16$ relations on A. Include or not include in R. To choices for each element. $2 * 2 * 2 * 2=16$. Half of them includes $(0,1)$.
8.3.9a
$R=\{(a, b) \mid a>b\}$ is the relation on $A . A=\{1,2,3, \ldots ., 99,100\}$. How many ones in the $0-1$ matrix?

T: Matrix M is $100 x 100$. Element $M _a b=1$ if $a R b$ otherwise 0 .. First row in M contain 991 's, second row 98 etc. So in total $1+2+3+\ldots .+98+99=50 * 99=4950$ nonzero entries.

8.3.7

Determine from 0-1matrix wheater a relation is transitive, symmetric..
S: How do you see in the matrix if a relation is transitive?
T: See section 8.4 for the details and also my lectures. For small sets you can draw the digraph and check the various possibilities.
8.3.15

Find the matrices for $\operatorname{RoR}=\mathrm{R}^{2}, \mathrm{R}^{3}$ etc

S: I get 2 in the matrix multiplication. I interpret them as 1. Right?
T: Right! Called Coolean product and you can stop when you get $1^{*} 1$. Think of air flights.
If you can travel from C (openhagen) to M (ilan) with one stop at P (aris). C R P and PRM. Then C R ${ }^{2} \mathrm{M}$.
8.5.3b

The relation on functions from Z to Z is $f g R$ iff $f(0)=g(0)$ or $f(1)=g(1)$. Is this an equivalence relation?

T: 3 things to check. Reflexive? Symmetric? Transitive?
The relation in b is symmetric and reflexive but not transitive.
Take 3 functions f, g and h where
$f(0)=g(0)=1$ och $h(0)=2$
$f(1)=3$ och $g(1)=h(1)=4$.
fRg and gRh but f is not related to h . Then R is not transitive.
8.5.15
$(a, b) R(c, d)$ iff $a+d=b+c$. Show it is an equivalence relation. A is here the set of pairs of positive integers.

T: Transitivity is the hardest part. (a,b)R(c,d) and (c,d)R(e,f) so $a+d=b+c$ and $c+f=d+e$. Add the 2 equations. Is $\mathrm{a}+\mathrm{f}=\mathrm{b}+\mathrm{e}$?

8.6.3b

$\mathbf{T}: a$ is smaller or equal to b. This is not a poset. Two different persons can have the same length.

8.6.19

Find the lexicographic ordering of bit strings $0,01,11,001,010,011,0001$ and 0101 based on the ordering $0<1$.

S: Why comes 01 before 010 ?
T: Replace $0->\mathrm{a}$ and $1->\mathrm{b}$. ab comes before aba in a dictionary.

