## Linnaeus University

Mathematics

Hans Frisk

## Problems

1. Prove by induction that $3^{n}<n$ ! when the integer $n \geq 7$.
2. Prove that L-shaped figures, like the one below, tile the checkerboards of size $2^{n} \times 2^{n}$ if one square is excluded. The squares of the board and the L-figure have the same size. You can of course rotate the L-figures. It is possible to do it for any choice of excluded square. See example 14 on page 348 in 8 :th edition. For $n=1$ you need only one L-figure. For $n=2$ you exclude one square in one of the four 2 times 2 boxes. How to put then the first figure? Use induction!

3. $f(n+1)=f(n)-f(n-1), \quad n \geq 1$. If $f(0)=f(1)=1$ calculate $f(2), f(3), f(4)$ and $f(5)$.
4. How many bit strings of length seven either begin with 00 or end with 010 ?
5. Prove that the Ramsey number $R(3,3)=6$. See page 3 in my lecture 5 .
6. Find the number of integer solutions to

$$
x_{1}+x_{2}+x_{3}=3
$$

when the integers $x_{i} \geq 0, i=1,2,3$. Use stick and $+\operatorname{sign}$ method!
7. Find the coefficient of $x^{3} y^{2} z^{5}$ in

$$
(x+y+z)^{10} .
$$

8. A particle moves from $(0,0)$ to $(7,4)$. Allowed motion is
$R:(x, y) \rightarrow(x+1, y)$
$U:(x, y) \rightarrow(x, y+1)$
$D:(x, y) \rightarrow(x+1, y+1)$
How many paths are there? Hint: use the sum rule over the number of diagonal moves D.

## Answers or hints

1. $7!-3^{7}=2853>0$. Assume for some $n=k$ that $3^{k}<k$ !. Since $(k+1)!=(k+1) \times k!$ and $3^{k+1}=3 \times 3^{k}$ and furthermore $(k+1)>3$ the inequality must hold also for $n=k+1$.
2. Consider the $2^{n} \times 2^{n}$ board. Exclude one square in one of the four $2^{n-1} \times 2^{n-1}$ boxes. Put your first $L$ at the center in such a way that now one box is excluded in each of the four $2^{n-1} \times 2^{n-1}$ boxes. Time to use induction for each of the four boxes.
3. The recurrence relation gives the sequence $1,1,0,-1,-1,0,1,1, \cdots$.
4. $2^{5}+2^{4}-2^{2}=44$. This is the inclusion-exclusion principle in its simplest form. We have to exclude the strings $00 \cdots 010$ once since we have counted them twice before.
5. $R(3,3)=6$ means that in any group of six people it is always possible to find a subgroup of three where all 3 are friends to each other (on Facebook for example) or strangers to each other. Consider the complete graph with 6 vertices, that is there is an edge between any pair of vertices. Now you color the edges with red pen (friends) or blue pen (strangers). Ramsey's number tells us that a red or blue triangle must appear in the graph. Condsider vertex 1, it is connected with five other vertices. Say three of the edges from 1 is red, say to vertex 3,4 and 5 . Consider now the edges between 3,4 and 5 . They can be all blue or otherwise at least one of them is red. Can you finish the proof now? Don't forget to consider the cases with $0,1,2,4$ and 5 red edges going out from vertex 1 .
6. $\binom{5}{2}=10$. Since we have so small numbers we can also use the sum rule. Three of the type $3+0+0$, six of the type $0+2+1$ and one $1+1+1.3+6+1=10$.
7. You can use the binomial theorem twice, first for $((x+y)+z)^{10}$ and then for $(x+y)^{5}$. We get $\binom{10}{5}\binom{5}{3}=\frac{10!}{5!3!2!}$. We can also think in the following way, ten letters can be permutated in 10 ! ways. However we have to divide with the number of permutations among the $x, y, z$.
8. $\frac{11!}{7!4!}+\frac{10!}{6!3!}+\frac{9!}{5!2!2!}+\frac{8!}{4!3!}+\frac{7!}{3!4!}=2241$. Here I have used the sum rule over the number of diagonal moves. Going from 0 D-moves to the left to 4 D-moves to the right.
