# Linnaeus University 

Mathematics

Hans Frisk

## Problems counting techniques II

1. Find the generating function, $G(x)$ for the following problem: In how many ways can 20 identical ballons be distributed to 4 children so that each child gets at least 3 ballons but no one gets more than 7 ballons. Express $G(x)$ on closed form. Explain how to proceed to solve the problem.
2. Some short combinatorial questions.
a) What is the sum of the n:th row in Pascal's triangle?
b) How many six letter strings can be formed by $2 U, 2 R$ and $2 D$ ?
c) How many non-negative integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}=13 ?
$$

d) Give on closed form the generating function for an infinite string of ones, that is
$1,1,1,1$,
e) In how may ways can you make a proper coloring of the graph below if you have 5 colors available? In such colorings vertices with an edge in common must have different colors.

3. Give the generating function for the sequence $1,0,1,1,1,1,1 \ldots$
4. This problem is from last week but this time you solve it with generating function. How many integer solutions are there to the problem

$$
x_{1}+x_{2}+x_{3}=28 \quad ?
$$

if $4 \leq x_{1} \leq 9, \quad 5 \leq x_{2} \leq 10, \quad 6 \leq x_{3} \leq 11 ?$
5. Determine the number of integer solutions to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20
$$

when $1 \leq x_{i} \leq 6, i=1,2,3,4,5$. That is, find the number of ways to get the sum 20 when throwing five dice. Use the generating function.

## Answers or hints

1. First we put the generating function on compact form.

$$
G(x)=\left(x^{3}+x^{4}+x^{5}+x^{6}+x^{7}\right)^{4}=x^{12}\left(1+x+x^{2}+x^{3}+x^{4}\right)^{4}=x^{12}\left(\frac{1-x^{5}}{1-x}\right)^{4}
$$

Then we unzip it. That is, we use binomial theorem and table to expand the expressions.

$$
G(x)=x^{12}\left(1-4 x^{5}+6 x^{10} \cdots+x^{20}\right)\left(1+\binom{4}{1} x+\binom{5}{2} x^{2}+\binom{6}{3} x^{3} \cdots+\binom{11}{8} x^{8} \cdots\right)
$$

Now it is time to determine the coefficient in front of $x^{20}$. It is $\binom{11}{8}-4\binom{6}{3}$.
2. (a) $2^{n}=(1+1)^{n}$.
(b) $\frac{6!}{2!\cdot 2!\cdot 2!}=\binom{6}{2}\binom{4}{2}\binom{2}{2}=90$.
(c) $\binom{15}{13}=\binom{15}{2} .13$ sticks and 2 plus signs.
(d) $\frac{1}{1-x}$. The geometric series.
(e) $5 \cdot 4^{3} \cdot 3=960$.
3. $1+x^{2}+x^{3}+\cdots=1+x^{2}\left(\frac{1}{1-x}\right)=\frac{1-x+x^{2}}{1-x}$.
4. First we put the generating function on compact form.

$$
G(x)=\left(x^{4} \cdots+x^{9}\right)\left(x^{5} \cdots+x^{10}\right)\left(x^{6} \cdots+x^{11}\right)=x^{15}\left(1+x \cdots+x^{5}\right)^{3}=x^{15}\left(\frac{1-x^{6}}{1-x}\right)^{3}
$$

Then we use table and binomial theorem so we can expand $G(x)$ again.

$$
G(x)=x^{15}\left(1-3 x^{6}+3 x^{12}-x^{18}\right)\left(1+\binom{3}{1} x+\binom{4}{2} x^{2} \cdots+\binom{9}{7} x^{7} \cdots+\binom{15}{13} x^{13}+\cdots\right)
$$

The coefficient in front of $x^{28}$ is $\binom{15}{13}-3\binom{9}{7}+3\binom{3}{1}$.
5. Same procedure as in previous problems.

$$
\begin{gathered}
G(x)=\left(x+x^{2}+\cdots+x^{6}\right)^{5}=x^{5}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{5}=x^{5}\left(\frac{1-x^{6}}{1-x}\right)^{5} \\
G(x)=x^{5}\left(1-5 x^{6}+10 x^{12}-10 x^{18}+5 x^{24}-x^{30}\right)\left(1 \cdots+\binom{7}{3} x^{3} \cdots+\binom{13}{9} x^{9} \cdots+\binom{19}{15} x^{15} \cdots\right)
\end{gathered}
$$

The coefficient in front of $x^{20}$ is $\binom{19}{15}-5\binom{13}{9}+10\binom{7}{3}=651$. Sum 20 occurs in $\frac{651}{6^{5}} \approx 8.4$ percent of the cases.

