Linnaeus University

Mathematics

Hans Frisk

Problems graph theory III

1. How many edges in a full binary tree with 1000 internal vertices?
2. Which complete bipartite graphs, $K_{m, n}$ are trees?
3. Five short questions on graphs and trees:
a) What is the chromatic number for $K_{4,3}$?
b) Draw a full, rooted, binary tree with 8 leaves.
c) Find a Hamilton cycle in K_{5}.
d) For which n have Q_{n} an Euler circuit?
e) Draw the non-isomorphic simple graphs with 4 vertices and 2 edges.
4. Draw all non-isomorphic trees with five vertices. Note trees are simple connected graphs.
5. A tree in which each non-leaf vertex has a constant number of branches n, that is the same degree n, is called a n-Cayley tree. Below you are asked to draw some of them. Draw only non-isomorphic trees. Support your findings with mathematics!
(a) Draw the 2-Cayley tree(s) with 4 vertices.
(b) Draw the 5 -Cayley tree(s) with 6 vertices.
(c) Draw the 3-Cayley tree(s) with 10 vertices.
6. The eccentricity of a vertex in an unrooted tree is the length of the longest simple path beginning at this vertex. A vertex is called a center if no other vertex in the tree has smaller eccentricity than this vetex. Find every vertex that is a center in the tree below. A path is simple if it does not contain the same edge more than once.

7. Why exactly five Platonic solids (PS)? A PS is a planar graph where all regions have the same degree m and all verices have the same degree n. For example the tetrahedron has $m=n=3$. So $2 e=m r=n v$. Using Euler's formula we get

$$
0<2=r-e+v=\frac{2 e}{m}-e+\frac{2 e}{n} .
$$

For which m, n is this inequality fulfilled?
8. The complete bipartite graphs are denoted $K_{m, n}$ where m and n are positive integers. For illustration $K_{2,4}$ is shown below.

(a) Find a Hamilton cycle in $K_{3,3}$.
(b) How many edges has $K_{30,35}$?
(c) How many proper colorings of $K_{3,3}$ are there if 4 colors are available? Hint: here you have to use the sum rule. Sum over 3,2 and 1 color on the upper vertices.
9. Consider simple planar graphs with 6 vertices and 7 edges. How many regions do they have? Determine the possible degrees of the regions. Draw three non-isomorphic graphs of this type.
10. Ten short questions from the whole course
a) Give the number of non-negative integer solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}=14$.
b) Give a Hasse diagram for a totally ordered set (TOS) with five elements. For every pair a and b in a TOS we have $a R b$ or $b R a$.
c) Show in a Venn diagram the set $A \cap \bar{B} . A$ and B are two different non-empty sets with an intersection. \bar{B} denotes the complement to set B.
d) Give the generating function for the sequence $1,5,10,10,5,1,0,0,0,0,0 \cdots$.
e) In which complete graphs, $K_{n}(n \geq 3)$, can we find an Euler circuit?
f) In which complete bipartite graphs can we find a Hamilton cycle?
g) How many proper colorings can be made of the vertices in C_{3} if 5 colors are available?
h) How many bit strings of length seven are there?
i) Draw a tree with 3 internal vertices and 2 leaves.
j) How many functions are there from the set of bit strings of length 3 to the set of bit strings of length 1 ?
11. Seven short questions so the answers can also be short.
(a) What is the chromatic number for a tree?
(b) Which is the generating function for the finite sequence $1,4,6,4,1$?
(c) V is a poset with six elements. Draw a possible Hasse diagram if the poset is a lattice.
(d) How many reflexive relations are there on the set $V=\{a, b, c, d, e\}$?
(e) Draw two non-isomorphic simple graphs with 5 vertices and 4 edges.
(f) How many words (letter combinations) can be formed by the letters in the word rotator?
(g) How many non-negative integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=12 ?
$$

12. An interesting type of graphs is the fullerene graphs. They are planar and every vertex has degree 3 . The regions are pentagons and hexagons. With pentagons and hexagons we mean C_{5} and C_{6} cycles, respectively.
(a) If a fullerene, G, has 60 vertices, how many edges and regions are there in G ? How many of the regions are pentagons and how many are hexagons?
(b) Let p denote the number of pentagons and h the number of hexagons. Which values of p and h are possible in a fullerene graph?
(c) Draw the fullerene graph with 24 vertices. The drawing must be done without edge crossings since the graph is planar.
13. A spanning tree T to a graph G is a connected subgraph of G which is a tree and contains all the vertices in G. Let now $G=K_{4}$, see figure below.

a) Draw two non-isomorphic spanning trees in K_{4}.
b) Let us now also include isomorphic trees. How many spanning trees are there then in total in K_{4} ?

Answers or hints.

1. Then 1001 leaves and 2001 vertices so there are 2000 edges.
2. $e=m n=v-1=m+n-1$ so for which integers is $m n=m+n-1$? If one or both are 1 .
3. (a) 2 as for all bipartite graphs.
(b) 7 internal vertices and all of them get 2 children. $v=8+7=15$. KaryTree[15, 2] is the Mathematica command to plot it.
(c) Take the pentagon or the pentagram for example.
(d) Each vertex in Q_{n} has degree n and this number must be even.
(e) These graphs are not connected. They have two components. $4=2+2=3+1$. In the last case 3 are connected and one disconnected vertex.
4. $e=4$ since they are trees. Use handshake thorem. In how many ways can we write $2 e=8$ using five digits? The degrees lie between 1 and 4 . There are 3 non-isomorphic trees. I give the degree sequence for them here $\{1,1,2,2,2\},\{1,1,1,2,3\},\{1,1,1,1,4\}$. The last one is called a star.
5. Handshake theorem again. $2 e=2(v-1)=2(L+I-1)=n I+L$. This gives the following relation between the number of leaves L and the number of internal vertices I : $L-2=(n-2) I$. Remember also that $v=L+I$.
(a) $L=I=2$.
(b) $I=1, L=5$. This is a star, $K_{1,5}$.
(c) $I=4, L=6, v=10, e=9$. Here opens up the possibility for non-isomorphic trees. I see two possibilities, the root get 6 grandchildren or the internals lie along a path.
6. The two vertices in the middle of the middle row have eccentricity 4 . They are centers.
7. See my notes.
8. (a) Since $n=m$ it is possible (easy) to find a HC.
(b) $30 \cdot 35=1050$ edges.
(c) 3 colors on the upper vertices: $C(4,3) \cdot 6=24$ ways to do a PC.

2 colors on the upper vertices: $C(4,2) \cdot 3 \cdot 2 \cdot 2^{3}=288$ ways to do a PC.
1 color on the upper vertices: $C(4,1) \cdot 3^{3}=108$ ways to do a PC.
In total 420 proper colorings.
9. $r=7-6+2=3$. It is like in a tree where you add two extra edges and create two new cycles. $2 e=14=\operatorname{deg} R_{1}+\operatorname{deg} R_{2}+\operatorname{deg} R_{3}$. Remember $v=6$ and the smallest degree for a region is 3 . I found 5 different graphs.
$5+5+4$. Take the square as the outer region and add two vertices on a diagonal and connect these vertices on the diagonal.
$6+4+4=6+5+3$. Take the hexagon as the outer region and add long or short diagonal, respectively.
$7+4+3$. Join a square with a triangle with one vertex in common.
$8+3+3$. Take two triangles with one vertex in common and join a degree vertex 1 to this graph.
10. See exam question 190611-2 in old exams folder.
11. See exam question 180608-1 in old exams folder.
12. See exam question 180608 - 6 in old exams folder.
13. See exam question 190829-6 in old exams folder.

