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First order PDE:s

"In contrast to ordinary differential equations, there is no unified theory
of partial differential equations. Some equations have their own theories,
while others have no theory at all. .....In this lecture we shall consider a
case in which there is a complete theory, namely the case of one first-order
equation" [1].

The simplest PDE we can think of in two dimensions (n = 2) is first-order,
linear and homogenous.

a1(x1, x2)
∂u

∂x1
+ a2(x1, x2)

∂u

∂x2
= 0 (1)

Here the coefficients a1 and a2 are known functions and we are looking for
functions u(x1, x2) which fulfil the equation. The right way to attack this
problem is to consider the following system of ODE:s.

x′1(t) = a1(x1, x2)
x′2(t) = a2(x1, x2) (2)

This equation is called the characteristic equation and the curves for the
solutions are called characteristics. The connection between the two equa-
tions above is the following. When we are looking for constants of motion,
u(x1, x2), along the flow (2) we are searching for functions for which du

dt = 0.
Using the chain rule and (2) we see that the constants of motion must fulfil
(1). In a physical system an example of a constant of motion can be the
kinetic plus potential energy (when friction can be neglected). So:

u(x1, x2) is a solution to (1) ⇔ u(x1, x2) constant along the solutions to (2).

For an initial-value problem, also called Cauchy problem, is u(x1, x2) speci-
fied along a curve γ in the plane

u(x1, x2) |γ= φ(x1, x2) (3)

where φ(x1, x2) is called the inititial condition. The figure below illustrates
that the Cauchy problem does not always have a solution for all times. (If
φ is not constant along the full curve γ and the flow is such that a charac-
teristic (dotted curve) cut γ also for some t > 0 we have a conflict.)
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Ex.1 Solve
2

∂u

∂x1
− ∂u

∂x2
= 0 (4)

when u(x1, 0) = e−x2
1 .

Ex.2.Solve
y
∂u

∂x
− x

∂u

∂y
= 0 (5)

when u(0, y) = cos(y2).

The same idea is used to solve the inhomogenous problem,

a1(x1, x2)
∂u

∂x1
+ a2(x1, x2)

∂u

∂x2
= b(x1, x2) (6)

,only difference is that now du
dt = b along the characteristics. The solution is
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therefore on the form

u(ḡ(x̄, t)) = φ(x̄) +
∫ t

0
b(ḡ(x̄, τ))dτ (7)

where ḡ(x̄, t) is the solution to the characteristic equation with ḡ(x̄, 0) = x̄
on γ (see figure below).
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ḡ(x̄, t)

Ex.3 Consider the equation

∂u

∂x1
+ 2

∂u

∂x2
= 1 (8)

when u(0, x2) = x2
2. What is u(1, 5)?

.
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