Some more problems on lectures 1-8 with help of Mathematica

1. It is possible to solve first order PDE with Mathematica. See pdf file at webpage for the course. Note how to write partial derivatives, like $\mathrm{D}[\mathrm{u}[\mathrm{x}, \mathrm{y}], \mathrm{x}]$ for partial derivative of $\mathrm{u}(\mathrm{x}, \mathrm{y})$ with respect to x .Solve

$$
\begin{equation*}
2 \frac{\partial u}{\partial x_{1}}-\frac{\partial u}{\partial x_{2}}=0 \tag{1}
\end{equation*}
$$

when $u\left(x_{1}, 0\right)=e^{-x_{1}^{2}}$.
2. If a square has side length π the eigenvalue problem $\left(\Delta+k^{2}\right) \psi=0$ has with Dirichlet boundary conditions(that means $\psi=0$ on the boundary) the following solution

$$
\begin{array}{r}
k^{2}=m^{2}+n^{2} \\
\psi_{m n}(x, y)=A_{m n} \sin (m x) \sin (n y) \tag{3}
\end{array}
$$

Here m and n are positive integers and $A_{m n}$ a constant that is normally fixed by the normalization condition

$$
\begin{equation*}
\iint_{D} \psi_{m n}^{2} d x d y=1 \tag{4}
\end{equation*}
$$

The domain of integration D is the square $0 \leq x \leq \pi, 0 \leq y \leq \pi$. Plot like in lecture 3

$$
\begin{equation*}
u(x, y, v)=\cos (v) \psi_{m n}(x, y)+\sin (v) \psi_{n m}(x, y) \tag{5}
\end{equation*}
$$

for some $m \neq n$ and v. The parameter v lies between 0 and π.
3. Consider the ODE

$$
4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0
$$

Is $x=0$ a regular singular point? Solve the problem with Mathematica (use DSolve) and plot the regular solution $y_{1}(x)$ for $x>0$. Do it also with paper and pen and use Frobenius method and compare. The second solution is hard to find so try instead ansatz $y_{2}(x)=y_{1}(x) w(x)$. Put it into the ODE and solve the new ODE for w.
4. This week we will start with eigenvalue problems for differential operators. Start with

$$
-y^{\prime \prime}(x)=\lambda y(x)
$$

and boundary condition $y(0)=0$. We assume here that $\lambda>0$. The function is now determined up to a multiplication by a constant. Put this constant equal to 1 and plot the function as function of x for some λ values in the region $[0.5,10]$. Plot also $y(\pi)$ as function of λ in the whole interval. If the second boundary condition is $y(\pi)=0$ which λ values are now allowed in the region? These are the eigenvalues to this eiegenvalue problem with boundary condition $y(\pi)=y(0)=0$

