Finding eigenvalues numerically

1. Find numerically the two lowest eigenvalues to the problem

$$
-y^{\prime \prime}-\frac{5}{1+x^{2}} y=\lambda y
$$

when $y(\pi)=y(2 \pi)=0$. This problem is on Liouville normal form. Lecture 12 is about the procedure to obtain this form for the Sturm-Liouville problems.
Start by solving the ODE for $\lambda=4$ and initial values $y(\pi)=0, y^{\prime}(\pi)=1$. Note, now you have to use NDSolve. Plot the solution from π to 2π. Counting the number of zeros of $y(x)$ inside the interval you can now tell how many eigenvalues there are below $\lambda=4$ (see lecture 9). It also illuminating to make a parametric plot (use ParametricPlot) in the (y^{\prime}, y)-plane. $\pi \leq x \leq 2 \pi$ is the parameter and you start in (1,0). Can a curve like this one go through the origin $(0,0)$?
A quick estimate of the two eigenvalues can now be obtained by repeating the plots for some lower λ values and observing what happens at the right end. When $y(2 \pi)=0$ you have found an eigenvalue!
2. Section 11.3 is about non-homogeneous boundary value problems. Consider the problem 11.3.2

$$
-y^{\prime \prime}=2 y+x
$$

$y(0)=y^{\prime}(1)=0$. Find the exact solution by paper and pen and by DSolve. Usually we have to live with series solutions. Find eigenfunctions $y_{n}(x)$ and eigenvalues λ_{n} to $-y^{\prime \prime}$ and the given boundary conditions. Normalize the eigenfunctions $y_{n}(x)$ so

$$
\int_{0}^{1} y_{n}(x)^{2} d x=1
$$

Now it is time to expand the inhomogeneous term x in the basis $y_{n}(x)$,

$$
x=\sum_{n=1}^{\infty} c_{n} y_{n}(x)
$$

The Fourier coefficient c_{j} is obtained by multiplying both sides with $y_{j}(x)$ and integrating from 0 to 1 . The series expansion for the solution to the problem is

$$
y(x)=\sum_{n=1}^{\infty} b_{n} y_{n}(x)
$$

and the coefficients are $b_{n}=c_{n} /\left(\lambda_{n}-2\right)$. See section 11.3 for the details. In practice you have to truncate the infinte sum at some $n=N$. Try $N=10,20$ and 30 and compare with exact solution.

