Green function, Liouville's normal form

1. Plot the solution to the initial value problem

$$
y^{\prime \prime}+\frac{e^{x}+e^{-x}}{2} y=0
$$

when $y(0)=0, y^{\prime}(0)=1$. But before that, think about how the solution will look like. When an eigenvalue problem is on Liouville's normal form (see lecture 12)

$$
-y^{\prime \prime}+q(x) y=\lambda y
$$

we can think of $\lambda-q(x)$ as an x dependent angular frequency squared, $\omega^{2}(x)=\lambda-q(x)$, when λ is sufficiently large.
2. Continuation of the problem 11.3.2 from last week.

$$
-y^{\prime \prime}=2 y+x
$$

$y(0)=y^{\prime}(1)=0$.
The Green function for this problem is

$$
G(x, s)=(\cos \sqrt{2} s \cdot \sin \sqrt{2} x+\tan \sqrt{2} \cdot \sin \sqrt{2} s \cdot \sin \sqrt{2} x) / \sqrt{2}
$$

for $x \leq s$ and

$$
G(x, s)=(\cos \sqrt{2} x \cdot \sin \sqrt{2} s+\tan \sqrt{2} \cdot \sin \sqrt{2} s \cdot \sin \sqrt{2} x) / \sqrt{2}
$$

for $x \geq s$. Use G to calculate $y(x) . y(x)=\int_{0}^{1} G(x, s) s d s$. Compare with exact solution. Remember you have to split the integral in two parts, one from 0 to x and another from x to 1 . Use command Integrate. Plot also the Green function for a fixed s, say $s=1 / 2$, and observe the corner at $x=s$.
3. The Green's function is designed to give the value of the non-homogeneous term $f(x)$ at point x. Therefore acting with the differential operator on G gives a spike (Dirac's delta-function) located at $s=x$. A unit step located at $x=0$ can be obtained by taking the limit $\epsilon \rightarrow 0^{+}$of the following function

$$
h(x, \epsilon)=\frac{1}{\pi} \arctan \frac{x}{\epsilon}
$$

Plot the function for some fixed small ϵ in a region around the origin. The derivative of a step is a spike! So plot also

$$
h^{\prime}(x, \epsilon)=\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+x^{2}}
$$

for some fixed small ϵ in a region around the origin. What is the area under the curves? Finally, calculate

$$
\int_{\infty}^{\infty} \frac{1}{\pi} \frac{\epsilon f(x)}{\epsilon^{2}+x^{2}} d x
$$

for some function f and check that the value comes closer and closer to $f(0)$ when ϵ decreases. Maybe you have to use NItegrate and truncate the integral.

