Home exam

T1. Find eigenvalues and eigenfunctions to the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+\lambda y=0, \quad y(0)=0, y(2)=0 \tag{1}
\end{equation*}
$$

Transfer the differential equation to self-adjoint form. How is the orthogonality relation looking like?

T2. Determine the solution to the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\frac{3}{2 t} x^{\prime}(t)+x(t)=0 \tag{2}
\end{equation*}
$$

,$t>0$, which is bounded when $t \rightarrow 0^{+}$.
T3. Solve the Laplace equation for a cylinder. (This could be the heat equation for a stationary state). You can assume radial symmetry, i.e. no dependence on the angle. Thus

$$
\begin{aligned}
\Delta u(r, z) & =0 \\
u(2, z) & =0, \quad 0<z<4 \\
u(r, 0) & =0, u(r, 4)=2, \quad 0<r<2
\end{aligned}
$$

The answer shall be given as a series. You do not have to calculate the coefficients in the expansion but you have to explain how to determine them. A spectral theorem can be assumed. Hint: Use cylinder coordinates. The solution can not be periodic in the z-coordinate. The solution must be bounded at $r=0$.

N1. Calculate the coefficients in problem T3 and plot the sum with 10,20,30 terms.

N2. There are two eigenvalues below 4 to the SL-problem

$$
\begin{equation*}
-y^{\prime \prime}(x)-\frac{5}{1+x^{2}} y(x)=\lambda y \tag{3}
\end{equation*}
$$

,$y(\pi)=y(2 \pi)=0$. Find them and plot the corresponding eigenfunctions. You can put $y^{\prime}(0)=1$ an run the initial-value problem for different values of λ and see when you fit the BC at the right endpoint.

