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PDE-introduction

In quantum physics the time independent Schrödinger equation in three
dimensions is

−~2

2m
∆Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z) (1)

Here Ψ(x, y, z) is called the wave function, E is the energy of the particle
with mass m, ~ is Planck’s constant and V (x, y, z) is the potential energy.
Going from a classical (Newtonian) description of a system to a quantum
mechanical the functions are replaced by operators. In the Schrödinger equa-
tion kinetic energy corresponds to the operator −~2

2m ∆.

Sometimes the potential, V , can in a region K to a good approximation be
given by

V (x, y, z) = 0, inside K

V (x, y, z) = ∞, outside K.

Then the Schrödinger equation turns into the Helmholtz equation

∆Ψ(x, y, z) + k2Ψ(x, y, z) = 0 (2)

in K. Here k2 = 2mE/~2. The boundary condition is Ψ = 0 at ∂K and
then it turns out that only certain k2-values are possible. See my notes on
the square for an example. For a circular disc these eigenvalues are given
by zeros of Bessel functions (see chapter 5) and we will solve this problem
at the end of the course.

For more complicated geometries only numerical solutions exist. An example
in two dimensions is Helmholtz equation inside a domain D with ∂D given
by

u = cos φ + λcos 2φ,

v = sin φ + λsin 2φ.

Here 0 ≤ φ < 2π and the parameter λ lies between 0 and 1
2 . λ = 0 is the

circle, λ = 0.5 a cardioid (heart shape). Except for the circle only numerical
solutions exist. The domain D is a mapping of the unit disc, x2 + y2 ≤ 1, in
the following way

u = x + λ(x2 − y2),
v = y + λ2xy.

In the (x, y) coordinates Helmholtz equation becomes

1
1 + 4λx + 4λ2(x2 + y2)

∆Ψ(x, y) = −k2Ψ(x, y), (3)
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that is a more complicated operator than ∆ but a niceer geometry (circle).
On the other hand with the (u, v) coordinates we have a simple operator, ∆,
but a more complicated geometry. There is no free lunch!

Now some words about PDE’s generally. The Laplace operator appears
very often in the PDEs. The reason is that in the derivations a divergence of
a gradient of a scalar field φ is taken, ∆φ = ∇ · ∇φ. There are three classes
of linear PDE:

Hyperbolic. The classical example is the wave equation

1
c2

∂2u

∂t2
−∆u = 0 (4)

For derivation see appendix B in chapter 10. u denotes a displacement
(amplitude) for example for a drum skin. c is the propagation speed of the
wave.

Parabolic. For example the heat equation,

1
a

∂u

∂t
−∆u = f(x, y, z, t). (5)

u is the temperature, a thermal diffusivity and f is a source of heat.

Elliptic. Laplace equation
∆u = 0 (6)

belongs to this class. u can be the electric potential. If charges are present a
source term, ρ(x, y, z), is included in the right hand side and we get Poisson
equation.

∆u = −ρ (7)

Example of a PDE problem: A boiling spherical potatoe with radius R. The
PDE is the heat equation above, without any source term. The boundary
value (BV) is

u(r, t) = 100, | r |= R (8)

and for the initial value (IV) we take

u(r, 0) = 20, | r |≤ R (9)

Observe, this is a mathematical model not the reality.

As for ODEs non-linear problems can appear in PDEs and they are also
difficult to handle. An example is in fluid mechanics where an operator
acting on the velocity field u(x, y, z, t) has the following expression

∂u
∂t

+ (u · ∇)u (10)

in a famous PDE called Navier-Stokes equation. Can you see where the
non-linearity comes from? In this course we work with linear PDEs and that
means that a linear combination of two solutions is again a solution.

When dealing with a PDE problem some important questions arise:
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i)Does a solution exist? A hard question generally. A construction of a
solution needed.
ii)Is the solution unique? That depends on the BV and IV.
iii)Which are the properties of the solution? For example, how will
the solution behave for very large times.
iv)How can we construct a solution? There are a lot of methods
and theories like: Integral transforms, Integral equations, Conformal maps,
Green functions and Distribution theory. In this course we will say some-
thing about Green functions but the other techniques will be studied in
other courses. We will mainly be occupied with Fouriers method or the
method of separation of variables. The idea is to assume that the function
u(x, y, z) in the PDE can be decomposed into a product of functions, one
for each coordinate like u(x, y, z) = X(x) · Y (y) · Z(z) in a rectangular box
or u(x, y) = u(r, θ) = f(r) · g(θ) on a circular disc. This ansatz works well
for simple geometries like square, box, disc and sphere and leads to a couple
of ODE’s to solve. These problems are studied in chapter 11.

A PDE problem is said to be well-posed if
∗ Solution exists
∗ The solution is unique
∗ The solution is continous with respect to variation of physical parameters
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