
Lexical Analysis by Finite Automata

4DV006 – Compiler Construction

Dr Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

Slides are available in Moodle

26 oktober 2014

The Software Technology Group

Lexical Analysis by Finite Automata 1(23)

Frontend Overview

lexical
analysissource

program token
sequence

syntax
analysis

parse
tree

semantical
analysis

Compiler Frontend

Symbol Table

abstract
syntax
tree

I Lexical Analysis: Identify atomic language constructs.
Each type of construct is represented by a token.
(e.g. 3.14 7→ FLOAT, if 7→ IF, a 7→ ID).

I Syntax Analysis: Checks if the token sequence is correct with respect
to the language specification.

I Semantical Analysis: Checks type relations + consistency rules.
(e.g. if type(lhs) = type(rhs) in an assignment lhs = rhs).

Each step involves a transformation from a program representation to another.

Lexical analysis The Software Technology Group

Lexical Analysis by Finite Automata 2(23)

Lexical Analysis Overview

Scanner/Tokanizer
(finite automata)

}

} else {
x = x + 1;

x = x - 1;

if (x > 1) {

lexical specification
(regular expressions)

IF, LP, ID, RelOp, RP, LB
ID, ASSGN, ID, AddOp, ID, SC
RB, ELSE, LB,
ID, ASSGN, ID, AddOp, ID, SC
RB

I Input program representation: Character sequence

I Output program representation: Token sequence

I Analysis specification: Regular expressions

I Recognizing (abstract) machine: Finite Automata

I Implementation: Finite Automata

Lexical analysis The Software Technology Group

Lexical Analysis by Finite Automata 3(23)

Lexical Analysis Specification

Token Patterns Action
WS (blank|tab|newline)+ skip
...
IF if genToken();

...
RelOp < | <= | = | >= | > genToken(); addAttr();

...
ID [a− zA− Z][a− zA− Z1− 9]∗ genToken(); updateSymTab();

...

I In theory: (p1|p2|...|pn)∗, where pi are the above patterns, defines all lexically
correct programs. ⇒ the set of lexically correct programs is a regular
language.

I In practice: we recognize each pattern individually.

I This type of specification is input to AntLR in Practical Assignment 1.

Lexical analysis The Software Technology Group

Lexical Analysis by Finite Automata 4(23)

An AntLR Lexical Specification

I AntLR is a compiler generator tool

I It reads a specification and generates a parser.
(Actually, it generates Java classes implementing a parser.)

I It will be used in the practical assignment

I Below: A very simple lexical specification

ID : (’a’..’z’|’A’..’Z’)+ ;

INT : ’0’..’9’+ ;

NEWLINE:’\r’? ’\n’ ;

WS : (’ ’|’\t’)+ {skip();} ;

MULT: ’*’;

ASSIGN: ’=’;

PLUS: ’+’;

MINUS: ’-’;

Lexical analysis The Software Technology Group

Lexical Analysis by Finite Automata 5(23)

String recognition using Finite Automata

A finite automaton is an abstract machine that can be used to identify strings
specified by regular expressions.

0 3 b

a

initial
state

final
state

1

2

a

b

b

b

4

I The above finite automata recognizes the pattern (a|b)ba∗b.

I Every input character (a or b) causes a transition from one state to another.

I A string is accepted if we end up in a final state once every character been
processed.

I No possible transition ⇒ rejection ⇒ the string is not part of the language.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 6(23)

Finite Automata (FA)

I A finite automata M is a quintuple M = {Q,Σ, δ, q0,F} where

I Q is a finite set of states,
I Σ is the input alphabet,
I σ : Q × Σ 7→ Q is the transition function,
I q0 ∈ Q is the initial state,
I F is the set of final states.

I The graph corresponding to a given FA is called the transition graph.

I Notice: We can have many final states but only one initial state.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 7(23)

Two kinds of Automata

We have to kinds of finite automata:

1. Deterministic FA (DFA):

I at most one possible transition for each input
I no ε− transitions

2. Nondeterministic FA (NFA): If not DFA, then NFA.

An ε− transition indicates that we are in two states at the same time.

The following slides show one example of each type.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 8(23)

NFA accepting (a|b)∗abb

M = {Q,Σ, δ, q0,F} δ a b
Q = {0, 1, 2, 3} 0 {0, 1} {0}
Σ = {a, b} 1 ∅ {2}
q0 = 0 2 ∅ {3}
F = {3} 3 ∅ ∅

Notice

I Multiple transitions
possible for one input.

I Transition to ∅ ⇒
rejection.

Corresponding transition graph

0 1 2 3start

a

b

a b b

An NFA accepts (or recognizes) an input string x iff there is some path from start to

final such that the edge labels along this path spell out x .

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 9(23)

DFA accepting (a|b)∗abb

M = {Q,Σ, δ, q0,F} δ a b
Q = {0, 1, 2, 3} 0 1 0
Σ = {a, b} 1 1 2
q0 = 0 2 1 3
F = {3} 3 1 0

Notice

I Only one possible transition
for each input.

I No transition possible ⇒
rejection.

Corresponding transition graph

0 1 2 3start a b b

a

b

a
a

b

A DFA accepts an input string x iff, after reading x , we are in a final state.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 10(23)

DFA simulation algorithm (Algorithm 1)

Item Description
q0 Initial state
F Set of final states
nextChar() Returns next symbol from the input string, stops with EOF.
move(q, c) Returns the state to which their is a transition from q given input c.

q := q0;
c := nextChar();
while c 6= EOF do

q := move(q, c);
c := nextChar();

end while
if q ∈ F then

return “Accepted”;
else

return “Rejected”;
end if

move(state,next) --> new_state

switch (state) {

case 0:

if (next=a) return 1;

else return 0;

case 1:

if (next=a) return 1;

else return 2;

case 2:

if (next=a) return 1;

else return 3;

...

Thus, implementing string recognition for a given DFA is straight forward.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 11(23)

Summary: Finite Automata

Known Theoretical Results

I Kleene’s Theorem: A language is recognized by a FA iff it is regular
⇒ For each regular expression their is a corresponding finite automata.

I For each NFA, there is a corresponding DFA.

I Given FA accepting strings defined by RE r , and an input string x .

Simulation requires

I NFA: Memory O(|r |) and time O(|r | × |x |)
I DFA: Memory O(2|r|) and time O(|x |)

where |r | is the number of symbols and operators in r .

Conclusion

I NFA’s are easier to construct given an arbitrary regular expression.

I DFA simulation is both easier and faster.

I Hence, we construct an NFA, convert it into an DFA,
and use the resulting DFA for simulation.

Finita Automata: Theory The Software Technology Group

Lexical Analysis by Finite Automata 12(23)

A Recipe for Scanner Construction

1. Identify what tokens ti you are interested in.

2. For each token ti , write a matching regular expression ri .

3. Convert the regular expressions r1, r2, ..., rn to an NFA:s N1,N2, . . . ,Nn

using Algorithm 2

4. Put together the NFA:s N1,N2, . . . ,Nn to a single NFA which final
accepting states F corresponds to the above identified lexeme groups gi .

5. Convert the NFA to a DFA using Algorithm 3.

The steps 3-5 are briefly presented in the following slides.

They are more thoroughly presented in the book by Aho, Ullman, and Sethi.

Finita Automata: Derivation The Software Technology Group

Lexical Analysis by Finite Automata 13(23)

Example: Identifying INT, ID, and IF

Step 1 and 2: Lexical Specification

Token Sample Patterns Patterns
IF if if

INT 0, 78, 1367, 0067 d+

ID max, a , value33 l(l |d)∗

where d and l are character classes defined as:

I d = [0− 9]

I l = [a− zA− Z]

Example available on course home page (see Reading Instructions)

Finita Automata: Derivation The Software Technology Group

Lexical Analysis by Finite Automata 14(23)

Step 3: RegExp → NFA (Algorithm 2)
Input: A regular expression r over an alphabet Σ
Output: An NFA N accepting L(r)

r

e

r = ab

r = a|b

r = a*

start

a b

a

b

e
a

e

e

rule A

rule B

rule C e = epsilon

I It is basically a top-down approach where each regular subexpression
is replaced by a part of an NFA.

I The construction is straight forward but the result is often an ugly NFA
that needs to be rewritten.

More information? See subsection “Construction of NFA from Regular Expression” in

the book by Aho, Ullman, and Sethi.

Finita Automata: Derivation The Software Technology Group

Lexical Analysis by Finite Automata 15(23)

Alrorithm 2: (a|b)∗abb

i f
(a|b)*abb

i f

i f

0 1 2 3 4 5 6

(a|b)* a b b

(a|b)
e

e
e a b b

e

e

a
b

e
e

e a b b

e = epsilon
Rule A

(repeated)

Rule C

Rule B

Finita Automata: Derivation The Software Technology Group

Lexical Analysis by Finite Automata 16(23)

Step 4: Adding NFA:s

Two possible, and equivalent, alternatives:

.....

.....

.....

.....

a

b
c

.....

.....

.....a

b

c
e

e

e

+ + =a b cf f

f

f

f

i

if

or

e = epsilon

f

f

f

ii

i

The new NFA accepts all the strings accepted by the three NFAs.

Finita Automata: Derivation The Software Technology Group

Lexical Analysis by Finite Automata 17(23)

NFA ⇒ DFA (Preparation)

Now, assume that we have a single NFA recognizing all tokens we are
interested in.

NFA ⇒ DFA (Basic Idea)

I Basic idea: Set of NFA states ⇒ new DFA state

I Worst case: N NFA states ⇒ 2N DFA states
(Usually not the case)

I Algorithm outline:

1. DFA state 0 = all ε - equivalent states of NFA 0
2. Which states can be reached from DFA 0 on input x , y , z , . . . ?
⇒ new DFA states 1, 2, 3, . . .

3. Repeat (2) with DFA states 1, 2, 3,. . . until no more DFA states are
created.

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 18(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3}

{2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1

{2,1,3}2

1 {1,2,3,4}

{2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4}

{2,4,1,3}1 {2,5,1,3}3

2 {1,2,3}

{2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1

{2,5,1,3}3

2 {1,2,3}

{2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3}

{2,4,1,3}1 {2,1,3}2

3 {1,2,3,5}

{2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5}

{2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Example: (a|b)∗abb

NFA

0 2 3 41 5 6a

e

b

a bbe e

e

DFA Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 19(23)

Step 5: NFA → DFA (Algorithm 3)

Operation Description
closure(s) States reachable from s on ε-transitions - s included
move(T , a) ε-equivalent states reachable from state set T after input a
δDFA, QDFA transition table and set of states for the DFA to be constructed

add closure(q0) as an unmarked state to QDFA

while there is an unmarked state T in QDFA do
mark T
for each input symbol a do

U := move(T , a)
if U /∈ QDFA then

add U as an unmarked state to QDFA

end if
δDFA[T , a] := U

end for
end while

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 20(23)

DFA for (a|b)∗abb
Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

Result

DFA a b
0 1 2 start
1 1 3
2 1 2
3 1 4
4 1 2 final

0

1

2

3

4

a
a

b

b

b

b

a

a a b
init

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 21(23)

DFA for (a|b)∗abb
Construction

DFA NFA a b
0 {0,1,3} {2,4,1,3}1 {2,1,3}2

1 {1,2,3,4} {2,4,1,3}1 {2,5,1,3}3

2 {1,2,3} {2,4,1,3}1 {2,1,3}2

3 {1,2,3,5} {2,4,1,3}1 {2,6,1,3}4

4 {1,2,3,6} {2,4,1,3}1 {2,1,3}2

Result

DFA a b
0 1 2 start
1 1 3
2 1 2
3 1 4
4 1 2 final

0

1

2

3

4

a
a

b

b

b

b

a

a a b
init

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 21(23)

Scanner Summary

Scanner Construction:

1. Identify relevant (token,RegExp) pairs

2. Convert all RegExp:s to a single NFA

3. Convert the NFA to a DFA

4. Implement a scanner for the DFA

Notice: The steps 2-4 can be written as algorithms
⇒ A scanner can be generated for given set of RegExp:s

⇒ This is what happens inside AntLR.

NFA-to-DFA The Software Technology Group

Lexical Analysis by Finite Automata 22(23)

Written assignment (WA1)
Construct a DFA accepting signed integers and decimals.

Item Valid Expressions Erroneous Expressions
Integers 34, 0, −12346 02, +67, −0

Floats 3.14, 0.02, −12.23, .47, -0.2 02.45, 23. , +2.1

Notice: We accept .47 for 0.47 but not 23. for 23.0.

I Use the algorithms presented at this lecture.

1. Identify relevant RegExps rint , rfloat (No Algorithm!)
2. Convert rint , rfloat to NFAs Nint and Nfloat

3. Add Nint and Nfloat to a single NFA recognizing both ints and floats
4. Convert the NFA to a DFA

I Act like a machine that executes the algorithms without thinking
⇒ No clever rewritings in between the steps.

I More information available at the course web site.

Deadline: 2014-11-16

Good Luck!
Written Assignment 1 The Software Technology Group

Lexical Analysis by Finite Automata 23(23)

	Lexical analysis
	Finita Automata: Theory
	Finita Automata: Derivation
	NFA-to-DFA
	Written Assignment 1

