Kemisk potential ~Gibbs fri enerci per molekyl
Kittel: detiniera pranatar Hel molecter SAMMA SA tt SomT FRI enerd

jAmriktsvillkoret:
sforsta Entropl
Vi vill inte rakna par varme baders. entropi

Fri enerci F ar minimal

$$
\begin{aligned}
& d F=0 \Leftrightarrow i j \text { jarikb }
\end{aligned}
$$

Anlalet partiklar Tr bovarad

$$
\frac{\partial N_{1}=-d N_{2}}{\left.\frac{\partial F_{1}}{\partial N_{1}}\right|_{T}=\left.\frac{\partial F_{2}}{\partial N_{2}}\right|_{T}} \quad \frac{\partial\left(T_{,}, N\right)=\left.\frac{\partial F}{\partial N}\right|_{T, V}}{j \overline{A M V i k T} \mu_{1}=\mu_{2} \text { kemisk potmll }}
$$

Elektriska potentinlae PA joner och pr elerterve - Kemoeloktriskx potertinler inom elertrokemi (battriere) - "Ferminiva" i balvedar pn-buercimera F.R eGentliben kemiska poterickes

Omman detinjerar total enerci som en lillstands funktion av extensiva parametrar $U\left(S, V, N_{1}, N_{2} \ldots N_{m}\right)$
da far man om $\left.S \rightarrow \lambda S, V_{i \rightarrow \lambda}\right) V_{,} N_{i} \rightarrow N_{i}$ att aren $U \rightarrow \lambda U$

$$
\begin{aligned}
& =(X+\&) U\left(S, V_{1}, N_{1}, N_{2} \ldots N_{m}\right) \\
& G=U-T S+p N=\sum_{i=1}^{m} \mu_{i} N_{i}
\end{aligned}
$$

Tillampring pA fas over camonge reden viss T och p timus
det jamrikt tore antalen partikliae i de olika faperma
Gibbs fri energi AR Lika
ide olika faserma
GAR en Kontia funktion art
Men rid (${ }^{\text {o ord }}$ h ingoms)) $/$ s overeranap
AP Y inte kontinu $\begin{array}{lll}4 & 1 & \\ 5 & 1\end{array}$

