
CCMT

CCMT

Behavioral Emulation
for Scalable Design-Space Exploration

of Algorithms and Architectures

Nalini Kumar (PhD Candidate),

Carlo Pascoe, Chris Hajas, Herman Lam, Greg Stitt, and Alan George

PSAAP II Center for Compressible Multiphase Turbulence (CCMT)

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville FL, USA

E-MuCoCoS 2016 (Co-located with ISC), Frankfurt, Germany

CCMT
| 22016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

Á The Big PictureςModeling and Simulation for Co-design

Á Our M&S approach ςBehavioral Emulation

ς Overview and Workflow of Behavioral Emulation

Á Modeling

ς What are we modeling? What are the independent parameters?

ς Building the models and model representations!

ς Measurements (what does our data look like?)

Á Simulation

ς Step 1: Combining the models together

ς Step 2: Validation (not leave one out!) of individual block models

Á Prediction: Finally what we wanted all along!

ς Design Space Exploration

ς Probabilistic simulations

Á Conclusions & Future Directions

CCMT
| 32016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

Á The Big PictureςModeling and Simulation for Co-design

Á Our M&S approach ςBehavioral Emulation

ς Overview and Workflow of Behavioral Emulation

Á Modeling

ς What are we modeling? What are the independent parameters?

ς Building the models and model representations!

ς Measurements (what does our data look like?)

Á Simulation

ς Combining the models together

ς Validation

Á Prediction: Finally what we wanted all along!

ς Design Space Exploration

ς Probabilistic simulations

Á Conclusions & Future Directions

CCMT
| 42016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

The Big Picture

Â CCMT Center Goals:

Â To radically advance the field of Compressible Multiphase Turbulence (CMT)

Â To advance predictive simulation science on current and near-future computing
platforms with uncertainty budget as backbone

Â To advance a co-design strategy that combines exascaleemulation, exascale
algorithms, exascaleCS

CMT-nek simulations

CCMT
| 52016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Our Co-design Problem

Â Our challenge is to develop a scalable high-performance software

Â What are the most likely productive execution models?

Â What is the measurable benefit of switching from MPI -only to MPI+X?

Â Will it be considerable effort to optimize key kernels for each platform?

Â How can we better decompose the app to maximize the benefit from next -
gen architectures and technologies (especially memories)?

Â Also, pareto-optimization for high performance and low energy

Â We donôt have the devices for experimentation

Â Need simulation and emulation to help analyze different design
tradeoffs ïalgorithm and architecture design space exploration (DSE)

cycles of
^

CCMT
| 62016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Motivation: Large CMT-nek Design Space

Parametric Options ïminimal changes to inputs & BE methods

Á h-refinement vs p-refinement of CMT-nek

Á Number of computational particles per cell

Á Order of accuracy of Euler-Lagrange interpolation/back-coupling

Algorithmic Options ïrequire building models for new algorithms

Á Shock capturing methodology (hyperviscosity vs p-refinement)

Á Euler-to-Lagrange interpolation algorithm (accuracy vs efficiency)

Á Lagrange-to-Euler back-coupling algorithm

Á Crystal router vs other data-communication for computational particles

Á Immersed boundary vs immersed interface vs ghost fluid

Architectural Options ïrequire models for each algorithm/arch. pair

Á GPU-CPU implementation of Lagrangian particles

Á GPU-CPU workload partition

Other Design Space Options

Á Domain partitioning (pencil vs sheets vs blocks)

Á Focusing computational power to where needed

Developed in collaboration with CMT -nek development team

CCMT
| 72016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Our M&S Approach ςBehavioral Emulation

Â How may we study Exascalebefore the age of Exascale?

Â Analytical studies ïsystems are too complicated

Â Software simulation ïsimulations are too slow at scale

Â Functional emulation ïsystems too massive and complex

Â Prototype device ïfuture technology, does not exist

Â Prototype system ïfuture technology, does not exist

Â Many pros and cons with various methods

Â We believe behavioral emulation is most promising in terms of balance of DSE
goals (accuracy, speed, and scalability, as well as versatility)

Â Scope and contribution of this paper:

Â Develop methods and confidence in BE

Â Prototype and validate BEO models and simulation framework which is
essential before optimizing framework for speed and scale

Â Gain insight into abstraction and representation of application behavior

Â Demonstrate the use of BE for early design space exploration

CCMT
| 82016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

Á The Big PictureςModeling and Simulation for Co-design

Á Our M&S approach ςBehavioral Emulation

ς Overview and Workflow of Behavioral Emulation

Á Modeling

ς What are we modeling? What are the independent parameters?

ς Building the models and model representations!

ς Measurements (what does our data look like?)

Á Simulation

ς Combining the models together

ς Validation

Á Prediction: Finally what we wanted all along!

ς Design Space Exploration

ς Probabilistic simulations

Á Conclusions & Future Directions

CCMT
| 92016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Key Features of Behavioral Emulation (BE)

Â Component-based simulation

Â Fundamental constructs called BE Objects (BEOs) act as surrogates

Â BEOs characterize & represent behavior of app, device, node, & system objects as
fabrics of interconnected ArchBEOs(with AppBEOs)

Â Multi-scale simulation

Â Hierarchical method based upon experimentation, abstraction, exploration

Â Multi-objective simulation

Â Performance, power, reliability, and other environmental factors

Â Our challenge is to develop a scalable high-performance software

N. Kumar, A. George, H. Lam, G. Stitt, S. Hammond, ñUnderstanding Performance and Reliability Trade-offs for Extreme-scale

Systems using Behavioral Emulationò, Workshop on Modeling & Simulation of Systems and Applications (ModSim 2015)

CCMT
| 102016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Co-Design Using Behavioral Emulation

UQ

team

* BEO ïBehavioral Emulation Object

CMT-nek

team

CS team

CS team

CMT-nek

team

UQ team

Coarse -grained

Simulation Platforms

CCMT
| 112016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

Á The Big PictureςModeling and Simulation for Co-design

Á Our M&S approach ςBehavioral Emulation

ς Overview and Workflow of Behavioral Emulation

Á Modeling

ς What are we modeling? What are the independent parameters?

ς Building the models and model representations!

ς Measurements (what does our data look like?)

Á Simulation

ς Combining the models together

ς Validation

Á Prediction: Finally what we wanted all along!

ς Design Space Exploration

ς Probabilistic simulations

Á Conclusions & Future Directions

CCMT
| 122016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Application Models: AppBEOs

Â Representation of applications that simulator can understand

Â AppBEOsare list of instructions processed by ProcBEOs

Â Small and simple description allows easy development

Â Developer does not need to worry about creating working application code

Â Intermediate format is compiled separately for each simulation platform

AppBEO (high -level description)

// Define group as nodes 0-3

VAR commGrp=0:3

// Broadcast matrix A

(dataSize=64*64/2) to group

Bcast(int32,2048,0,commGrp)

// Barrier sync

Barrier(commGrp)

// Scatter 1/4 of matrix B

(dataSize=(64*64)/(4*2)) to each node

Scatter(int32,512,0,commGrp)

// Perform dot product of vector size 64

of int32

DotProduct(int32,64)

// Gather solutions from matrices

(dataSize=(64*64)/(4*2))

Gather(int32,512,commGrp)

Done

Intermediate format

send 1 1 129971 1

recv 4

send 2 2 129971 1

recv 8

send 13 1 381 1

recv 12

send 16 1 32420 1

recv 17

send 18 2 32420 1

recv 19

send 20 3 32420 1

recv 21

advt 5753856

Human Readable Intermediate Format (debug mode)

// Bcast(int32,2048,0,commGrp)

send 1 1 129971 1 Send broadcast to node 1

recv 4 Receive acknowledgement for broadcast from node

1

send 2 2 129971 1 Send broadcast to node 2

recv 8 Receive acknowledgement for broadcast from node

2

// Barrier(commGrp)

send 13 1 381 1 Send barrier to node 1

recv 12 Received barrier from node 0

// Scatter(int32,512,0,commGrp)

send 16 1 32420 1 Scatter from master to node 1

recv 17 Receive acknowledgement for scatter from 1

send 18 2 32420 1 Scatter from master to node 2

recv 19 Receive acknowledgement for scatter from 2

send 20 3 32420 1 Scatter from master to node 3

recv 21 Receive acknowledgement for scatter from 3

// DotProduct(int32,64)

advt 5753856 Advance timer for compute time in dot product

CCMT
| 132016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Device Case Study: TILE-Gx36

Â Many-core processor from Tilera (then EZchip, now Mellanox)

Â 36 64-bit cores or tiles with local L1 and shared L2 caches

Â 6x6 2D mesh interconnect called iMesh

Â Non-blocking switches

Â One out of five networks is user accessible (User Dynamic Network)

*Spectral Element Solver

CCMT
| 142016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

if (init) {

clock= clock+t_init }

if (mem_init){é}

if(compute_dot_product){é}

if(scatter){é}

...

if (init) {

clock= clock+t_init }

if (mem_init){é}

if(compute_dot_product){é}

if(scatter){é}

...

data size Time (ns)

8 487.47

16 917.48

32 1,781.68

64 3,509.27

128 6,965.78

256 13,877.84

512 27,703.63

1024 55,401.93

Pseudo-code for ProcBEO

TILE-Gx36 training data
(testbedbenchmarking) for
dot-product parameters:
data_size,int64, local mem

execution_time = f()execution_time = f()

Predicted
execution

time

Predicted
execution

timeTrain interpolation model

Radial Basis Function

K-Nearest Neighbor Kriging

Table Lookup

Interpolation techniques

Example: ProcBEO for TILE-Gx36*

ÁMimic behavior of TILE-GX36 device
ςRead and decode AppBEOinstructions

ς Resolve computes (determine performance)

ς Update local clock

ς Assign communication instructions to CommBEO

ΧLinear Interpolator

Model

Exceeds

error

threshold?

data size Time (ns)

100 5,455.77

200 10,855.59

300 16,255.47

700 37,915.54Test data
(different than training data)

Iteratively refine &
calibrate model

D. Rudolph and G. Stitt. òAn interpolation-based approach to multi-parameter performance modeling for heterogeneous systemsò.

In IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP), July 2015

CCMT
| 152016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

ProcBEO Calibration (Tile-Gx36)

2D Matrix Multiply
(MxN and NxN)

Gradient calculation of one pixel
x-gradient computation time = 931ns

y-gradient computation time = 952ns

Dot product (int32) and Loop Overhead

0

20

40

60

80

100

120

4 8 16 32 64 128 256 512 1024 2048

E
xe

c
u

ti
o

n
 t
im

e
 (

u
s
)

Vector size

dot product loop overhead

E
x
e

c
u
tio

n
 tim

e
 (s

)

Â Example data from Tilera testbed

Â Data have varying dimension

Â Zero-dimensional: Pixel Gradient

Â One-dimensional: Dot Product

Â Multi-dimensional: Matrix Multiply

CCMT
| 162016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Â Mimic Tilera iMesh network behavior

Â Topology, routing policy, arbitration, etc.

Topology: 2D mesh

Routing policy: dim - order

Routing policy: cut - through

X- dir latency: testbed data

Y- dir latency: testbed data

Arbitration: round - robin

...

Topology: 2D mesh

Routing policy: dim - order

Routing policy: cut - through

X- dir latency: testbed data

Y- dir latency: testbed data

Arbitration: round - robin

...

Network configuration parameters
for TILE-Gx36 iMesh

Time (ns) Throughput (Mbps)

Neighbors 20.5 3,117.355

Side-to-Side 24.5 2,608.717

Corners 30 2,129.44

iMeshone-way latencies and throughput

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching time

TILE-Gx36 iMeshbenchmarking data

if (input_buffer !=empty) {

read_event ;

if(output_buffer !=full) {

forward(x_dir , y_dir);

}

}

...

if (input_buffer !=empty) {

read_event ;

if(output_buffer !=full) {

forward(x_dir , y_dir);

}

}

...

Pseudo-code for CommBEO

Example: CommBEO for iMesh

CCMT
| 172016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

CommBEO Calibration (iMesh)

Round-trip latency

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching Time

Å Topology:2D mesh
Å Mesh size:6x6
Å Routing policy: dim-order
Å Routing policy: store and forward
Å Arbitration: round-robin

Network configuration parameters

0

20

40

60

80

100

120

140
E

xe
cu

ti
o

n
 t
im

e
 (

u
s)

transfer size (32-bit words)

Â CommBEOsrequire both quantitative and qualitative parameter values

Â Qualitative parameters (left) are used to mimic movement of packets in
network

Â Quantitative parameters (right) help in estimating communication time

Â Some Quantitative parameters are functions of independent variables (e.g., latency)

Â Others are fixed information about the network (e.g., hop time)

Hop Time: 1ns

CCMT
| 182016 Workshop on E-MuCoCoS(Co-located with ISC), Frankfurt, Germany, June 23, 2016

Additional notes on Modeling Data

Â Potentially some factors to
account for in collecting source
data to build BE models

Â Vulcan & Cab are two large
machines at LLNL

Â Observations:

Â Vulcan is much more consistent
than Cab for each of these cases

Â Vulcan has less variation across
different allocations compared to
Cab for 10 random node
allocations (0.106% vs 2.66%)
(Not plotted on right)

Â Issues manifest on a per-machine
basis; needs

Â Careful benchmarking practices

Â UQ input to improve models

Temporal difference over 1 hour (Rank 0)

Spatial difference across 512 MPI ranks (1 timestep)

Temporal difference over 1 minute (Rank 0)

Red: Cab

Blue: Vulcan

