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Outline  

Á The Big PictureςModeling and Simulation for Co-design

Á Our M&S approach ςBehavioral Emulation

ς Overview and Workflow of Behavioral Emulation

Á Modeling 

ς What are we modeling? What are the independent parameters?

ς Building the models and model representations!

ς Measurements (what does our data look like?)

Á Simulation 

ς Step 1: Combining the models together 

ς Step 2: Validation (not leave one out!) of individual block models

Á Prediction: Finally what we wanted all along!

ς Design Space Exploration

ς Probabilistic simulations

Á Conclusions & Future Directions
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The Big Picture 

Â CCMT Center Goals:

Â To radically advance the field of Compressible Multiphase Turbulence (CMT) 

Â To advance predictive simulation science on current and near-future computing 
platforms with uncertainty budget as backbone

Â To advance a co-design strategy that combines exascaleemulation, exascale
algorithms, exascaleCS

CMT-nek simulations
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Our Co-design Problem

Â Our challenge is to develop a scalable high-performance software

Â What are the most likely productive execution models?

Â What is the measurable benefit of switching from MPI -only to MPI+X?

Â Will it be considerable effort to optimize key kernels for each platform?

Â How can we better decompose the app to maximize the benefit from next -
gen architectures and technologies (especially memories)?

Â Also, pareto-optimization for high performance and low energy

Â We donôt have the devices for experimentation

Â Need simulation and emulation to help analyze different design 
tradeoffs ïalgorithm and architecture design space exploration (DSE)

cycles of
^
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Motivation: Large CMT-nek Design Space

Parametric Options ïminimal changes to inputs & BE methods

Á h-refinement vs p-refinement of CMT-nek

Á Number of computational particles per cell

Á Order of accuracy of Euler-Lagrange interpolation/back-coupling

Algorithmic Options ïrequire building models for new algorithms

Á Shock capturing methodology (hyperviscosity vs p-refinement)

Á Euler-to-Lagrange interpolation algorithm (accuracy vs efficiency)

Á Lagrange-to-Euler back-coupling algorithm

Á Crystal router vs other data-communication for computational particles

Á Immersed boundary vs immersed interface vs ghost fluid

Architectural Options ïrequire models for each algorithm/arch. pair

Á GPU-CPU implementation of Lagrangian particles

Á GPU-CPU workload partition

Other Design Space Options

Á Domain partitioning (pencil vs sheets vs blocks)

Á Focusing computational power to where needed

Developed in collaboration with CMT -nek development team
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Our M&S Approach ςBehavioral Emulation

Â How may we study Exascalebefore the age of Exascale?

Â Analytical studies ïsystems are too complicated

Â Software simulation ïsimulations are too slow at scale

Â Functional emulation ïsystems too massive and complex

Â Prototype device ïfuture technology, does not exist

Â Prototype system ïfuture technology, does not exist

Â Many pros and cons with various methods

Â We believe behavioral emulation is most promising in terms of balance of DSE 
goals (accuracy, speed, and scalability, as well as versatility)

Â Scope and contribution of this paper:

Â Develop methods and confidence in BE 

Â Prototype and validate BEO models and simulation framework which is 
essential before optimizing framework for speed and scale

Â Gain insight into abstraction and representation of application behavior

Â Demonstrate the use of BE for early design space exploration 
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Key Features of Behavioral Emulation (BE)

Â Component-based simulation

Â Fundamental constructs called BE Objects (BEOs) act as surrogates

Â BEOs characterize & represent behavior of app, device, node, & system objects as 
fabrics of interconnected ArchBEOs(with AppBEOs)

Â Multi-scale simulation

Â Hierarchical method based upon experimentation, abstraction, exploration

Â Multi-objective simulation

Â Performance, power, reliability, and other environmental factors

Â Our challenge is to develop a scalable high-performance software

N. Kumar, A. George, H. Lam, G. Stitt, S. Hammond, ñUnderstanding Performance and Reliability Trade-offs for Extreme-scale 

Systems using Behavioral Emulationò, Workshop on Modeling & Simulation of Systems and Applications (ModSim 2015)
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Co-Design Using Behavioral Emulation

UQ 

team

* BEO ïBehavioral Emulation Object

CMT-nek

team

CS team

CS team

CMT-nek

team

UQ team

Coarse -grained

Simulation Platforms
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Application Models: AppBEOs

Â Representation of applications that simulator can understand

Â AppBEOsare list of instructions processed by ProcBEOs

Â Small and simple description allows easy development

Â Developer does not need to worry about creating working application code

Â Intermediate format is compiled separately for each simulation platform

AppBEO (high -level description)

// Define group as nodes 0-3

VAR commGrp=0:3

// Broadcast matrix A 

(dataSize=64*64/2) to group

Bcast(int32,2048,0,commGrp)

// Barrier sync

Barrier(commGrp)

// Scatter 1/4 of matrix B 

(dataSize=(64*64)/(4*2)) to each node

Scatter(int32,512,0,commGrp)

// Perform dot product of vector size 64 

of int32

DotProduct(int32,64)

// Gather solutions from matrices 

(dataSize=(64*64)/(4*2))

Gather(int32,512,commGrp)

Done

Intermediate format

send 1 1 129971 1

recv 4

send 2 2 129971 1

recv 8

send 13 1 381 1

recv 12

send 16 1 32420 1

recv 17

send 18 2 32420 1

recv 19

send 20 3 32420 1

recv 21

advt 5753856 

Human Readable Intermediate Format (debug mode)

// Bcast(int32,2048,0,commGrp)

send 1 1 129971 1       Send broadcast to node 1

recv 4               Receive acknowledgement for broadcast from node 

1

send 2 2 129971 1       Send broadcast to node 2

recv 8               Receive acknowledgement for broadcast from node 

2

// Barrier(commGrp)

send 13 1 381 1        Send barrier to node 1

recv 12               Received barrier from node 0

// Scatter(int32,512,0,commGrp)

send 16 1 32420 1       Scatter from master to node 1

recv 17               Receive acknowledgement for scatter from 1

send 18 2 32420 1       Scatter from master to node 2

recv 19               Receive acknowledgement for scatter from 2

send 20 3 32420 1       Scatter from master to node 3

recv 21               Receive acknowledgement for scatter from 3

// DotProduct(int32,64)

advt 5753856       Advance timer for compute time in dot product
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Device Case Study: TILE-Gx36

Â Many-core processor from Tilera (then EZchip, now Mellanox)

Â 36 64-bit cores or tiles with local L1 and shared L2 caches

Â 6x6 2D mesh interconnect called iMesh

Â Non-blocking switches

Â One out of five networks is user accessible (User Dynamic Network)

*Spectral Element Solver 
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if ( init ) {

clock= clock+t_init }

if ( mem_init ){é}

if( compute_dot_product ){é}

if(scatter){é}

... 

if ( init ) {

clock= clock+t_init }

if ( mem_init ){é}

if( compute_dot_product ){é}

if(scatter){é}

... 

data size Time (ns)

8 487.47

16 917.48

32 1,781.68

64 3,509.27

128 6,965.78

256 13,877.84

512 27,703.63

1024 55,401.93

Pseudo-code for ProcBEO

TILE-Gx36 training data 
(testbedbenchmarking) for 
dot-product parameters: 
data_size,int64, local mem

execution_time = f()execution_time = f()

Predicted 
execution 

time

Predicted 
execution 

timeTrain interpolation model

Radial Basis Function

K-Nearest Neighbor Kriging

Table Lookup

Interpolation techniques

Example: ProcBEO for TILE-Gx36*

ÁMimic behavior of TILE-GX36 device
ςRead and decode AppBEOinstructions

ς Resolve computes (determine performance)  

ς Update local clock

ς Assign communication instructions to CommBEO

ΧLinear Interpolator

Model

Exceeds

error 

threshold?

data size Time (ns)

100 5,455.77

200 10,855.59

300 16,255.47

700 37,915.54Test data 
(different than training data)

Iteratively refine & 
calibrate model

D. Rudolph and G. Stitt. òAn interpolation-based approach to multi-parameter performance modeling for heterogeneous systemsò. 

In IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP),  July 2015
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ProcBEO Calibration (Tile-Gx36)

2D Matrix Multiply 
(MxN and NxN) 

Gradient calculation of one pixel 
x-gradient computation time = 931ns

y-gradient computation time = 952ns 

Dot product (int32) and Loop Overhead
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Â Example data from Tilera testbed

Â Data have varying dimension

Â Zero-dimensional: Pixel Gradient

Â One-dimensional: Dot Product

Â Multi-dimensional: Matrix Multiply
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Â Mimic Tilera iMesh network behavior 

Â Topology, routing policy, arbitration, etc.

Topology: 2D mesh

Routing policy: dim - order

Routing policy: cut - through

X- dir latency: testbed data

Y- dir latency: testbed data

Arbitration: round - robin

... 

Topology: 2D mesh

Routing policy: dim - order

Routing policy: cut - through

X- dir latency: testbed data

Y- dir latency: testbed data

Arbitration: round - robin

... 

Network configuration parameters 
for TILE-Gx36 iMesh

Time (ns) Throughput (Mbps)

Neighbors 20.5 3,117.355

Side-to-Side 24.5 2,608.717

Corners 30 2,129.44

iMeshone-way latencies and throughput

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching time

TILE-Gx36 iMeshbenchmarking data

if ( input_buffer !=empty) {

read_event ;

if( output_buffer !=full) {

forward( x_dir , y_dir );

}

}

... 

if ( input_buffer !=empty) {

read_event ;

if( output_buffer !=full) {

forward( x_dir , y_dir );

}

}

... 

Pseudo-code for CommBEO

Example: CommBEO for iMesh
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CommBEO Calibration (iMesh)

Round-trip latency

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching Time

Å Topology:2D mesh
Å Mesh size:6x6
Å Routing policy: dim-order
Å Routing policy: store and forward
Å Arbitration: round-robin

Network configuration parameters
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Â CommBEOsrequire both quantitative and qualitative parameter values

Â Qualitative parameters (left) are used to mimic movement of packets in 
network 

Â Quantitative parameters (right) help in estimating communication time

Â Some Quantitative parameters are functions of independent variables (e.g., latency)

Â Others are fixed information about the network (e.g., hop time)

Hop Time: 1ns
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Additional notes on Modeling Data

Â Potentially some factors to 
account for in collecting source 
data to build BE models

Â Vulcan & Cab are two large 
machines at LLNL

Â Observations:

Â Vulcan is much more consistent 
than Cab for each of these cases

Â Vulcan has less variation across 
different allocations compared to 
Cab for 10 random node 
allocations (0.106% vs 2.66%) 
(Not plotted on right)

Â Issues manifest on a per-machine 
basis; needs

Â Careful benchmarking practices 

Â UQ input to improve models

Temporal difference over 1 hour (Rank 0)

Spatial difference across 512 MPI ranks (1 timestep) 

Temporal difference over 1 minute (Rank 0)

Red: Cab

Blue: Vulcan


