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The Big Picture Modeling and Simulation for Gesign
Our M&S approack Behavioral Emulation
¢ Overview and Workflow of Behavioral Emulation
Modeling
¢ What are we modeling? What are the independent parameters?
¢ Building the models and model representations!
¢ Measurements (what does our data look like?)

A
A

p>X

A Simulation

¢ Stepl: Combining the models together
¢ Step 2: Validation (not leave one out!) of individual block models

A Prediction: Finally what we wanted all along!

¢ Design Space Exploration
¢ Probabilisticsimulations

A Conclusions & Future Directions

CCMT
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UFiiokih. The BigPicture

A CCMT Center Goals:

A To radically advance the field of Compressible Multiphase Turbulence (CMT)

To advance predictive simulation science on current and near-future [computing
platforms with uncertainty budget as backbone

>

To advance a co-design strategy that combines exascale emulation, exascale
algorithms, exascaleCS

velocity_mag
~7.752e+01

60

\
\

= 40

‘ 1 Ezn

71.996e-05

pressure
—8.945¢+04

| P I ; Compressi- 5
N A ity E
CMT-nek simulations
\"‘*2_9'1"6* Vorkshop on-EluCoCo$Calocated with ISC), Frankfurt, Germadyne 23, 2016 4




-5
UFioks Qur Cedesign Problem

A Our challenge is to develop a scalable high-performance software
What are the most likely productive execution models?

> >

What is the measurable benefit of switching from MPI-only to MPI1+X?

>

Will it be considerable effort to optimize key kernels for each platform?

>

How can we better decompose the app to maximize the benefit from next -
gen architectures and technologies (especially memories)?

A Also, pareto-optimization for high performance and low energy
A-We doné6ét have the devices for

g/cles of

A Neeoll\simulation and emulation to help analyze different design
tradeoffs T algorithm and architecture design space exploration (DSE)
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UFHski Motivation: Large CMInek Design Space

Parametric Options 1 minimal changes to inputs & BE methods
A h-refinement vs p-refinement of CMT-nek
A Number of computational particles per cell
A Order of accuracy of Euler-Lagrange interpolation/back-coupling

Algorithmic Options 1 require building models for new algorithms
A Shock capturing methodology (hyperviscosity vs p-refinement)

Euler-to-Lagrange interpolation algorithm (accuracy vs efficiency)

Lagrange-to-Euler back-coupling algorithm

Crystal router vs other data-communication for computational particles

Immersed boundary vs immersed interface vs ghost fluid

> v v

Architectural Options T require models for each algorithm/arch. pair
A GPU-CPU implementation of Lagrangian particles
A GPU-CPU workload partition

Other Design Space Options
A Domain partitioning (pencil vs sheets vs blocks)
A Focusing computational power to where needed

Developed in collaboration with CMT  -nek development team
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UFIoRB: Qur M&S Approacit Behavioral Emulation

A How may we study Exascalebefore the age of Exascal€&’
Analytical studiesi systems are too complicated

> >

Software simulation T simulations are too slow at scale

>

Functional emulation i systems too massive and complex
A Prototype device 1 future technology, does not exist
A Prototype system i future technology, does not exist
A Many pros and cons with various methods

A We believe behavioral emulation is most promising in terms of balance of DSE
goals (accuracy, speed, and scalability, as well as versatility)

A Scope and contribution of this paper:
A Develop methods and confidence in BE

A Prototype and validate BEO models and simulation framework which is
essential before optimizing framework for speed and scale

Gaininsight into abstraction and representation of application behavior
A Demonstrate the use of BE for early design space exploration

\"""Q_Q-i'B‘--\IM_()rkshop on-HluCoCo%Calocated with ISC), Frankfurt, Germadyne 23, 2016 S 7



-4 - _—
IR Qutline

A Our M&S approacly Behavioral Emulation
¢ Overview and Workflow of Behavioral Emulation

CCMT

2016-Workshop on-HMluCoCo®Caolocated with ISC), Frankfurt, Germadyne 23, 2016



UFriokivh Key Features of Behavioral Emulation (BE)

Coarse-grained Modeling Multi-scale Simulation
- High-level application models capture basic - Divide simulation based on system hierarchy
blocks and communication pattems into micro-, meso-, and macro-scale
- Behavioral, not detailed execution, - Lower levels are blads boxes

architecture models Behavioral to higher levels

Emulation

- System is modeled as a group of - Use the same simulation
interacting component models called framewor for performance, reliability,
Behavioral Emulation Objects (BEDs) and powerfenergy models

Component-based Modeling Multi-objective Simulation

A Component-based simulation

A Fundamental constructs called BE Objects (BEOSs) act as surrogates

A BEOs characterize & represent behavior of app, device, node, & system objects as
fabrics of interconnected ArchBEOs(with AppBEOS$

A Multi-scale simulation
A Hierarchical method based upon experimentation, abstraction, exploration

A Multi-objective simulation
A Performance, power, reliability, and other environmental factors
A Our challenge is to develop a scalable high-performance software
N. Kumar, A. George, H. Lam, G. Stitt, S. HammoffstbrExtierdeasdaer
Systems using Behavioral Emul ationo, Wor kshop oModShWo201&) i ng
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- CoDesign Usindggehavioral Emulation

BEO design and calibration HW/ SW co-design

CMT-nek

team cati AppBEO =
— »  (application Alternat E  CMT-nek
source code description) ernate =
algorithms g team
manual / o N CS t
automated Simulation validation iterative m eam
Instrumented _ Coar_se -grained
source code :: Simulation Platforms I
o) : uQ
. . +—= - Discrete event . .
Simulation o simukbtion framework Simulation team
results E Cucom SW emmulator > predictions
Existing machines OR il -FPGA Accelemtion I
Fine-grained simulators m >
validation T T S
T iterative o
. l UQ team T : 2 CS team
Notional a
Calibration l ArchBEO architectures 2
data > (hardware m

description)

* BEO i Behavioral Emulation Object

10
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* Outline

A Modeling
¢ What are we modeling? What are the independent parameters?
¢ Building the models and model representations!
¢ Measurements (what does our data look like?)
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e Application Models:AppBEOs

A Representation of applications that simulator can understand
A AppBEOsare list of instructions processed by ProcBEOs

A Small and simple description allows easy development

A Developer does not need to worry about creating working application code
A Intermediate format is compiled separately for each simulation platform

AppBEO (high -level description)

/I Define group as nodes 0-3

VAR commGrp=0:3

/I Broadcast matrix A
(dataSize=64*64/2) to group
Bcast(int32,2048,0,commGrp)

/I Barrier sync

Barrier(commGrp)

/I Scatter 1/4 of matrix B
(dataSize=(64*64)/(4*2)) to each node
Scatter(int32,512,0,commGrp)

/I Perform dot product of vector size 64
of int32

DotProduct(int32,64)

/I Gather solutions from matrices
(dataSize=(64*64)/(4*2))
Gather(int32,512,commGrp)

Done

Intermediate format

send 111299711
recv 4

send 2 2 129971 1
recv 8

send 1313811
recv 12

send 16 1 32420 1
recv 17

send 18 2 32420 1
recv 19

send 20 3 32420 1
recv 21

advt 5753856

Human Readable Intermediate Format (debug mode)

/I Beast(int32,2048,0,commGrp)
send 111299711 Send broadcast to node 1

recv 4 Receive acknowledgement for broadcast from node
1

send 2 2 129971 1 Send broadcast to node 2

recv 8 Receive acknowledgement for broadcast from node
2

/I Barrier(commGrp)

send 1313811 Send barrier to node 1

recv 12 Received barrier from node O

[l Scatter(int32,512,0,commGrp)

send 16 1 32420 1 Scatter from master to node 1

recv 17 Receive acknowledgement for scatter from 1
send 18 2 32420 1 Scatter from master to node 2

recv 19 Receive acknowledgement for scatter from 2
send 20 3 32420 1 Scatter from master to node 3

recv 21 Receive acknowledgement for scatter from 3
/I DotProduct(int32,64)

advt 5753856 Advance timer for compute time in dot product
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UFiictia. Device Case Study: THE36

A Many-core processor from Tilera (then EZchip now Mellanox)

~

A 36 64-bit cores or tiles with local L1 and shared L2 caches
A 6x6 2D mesh interconnect called iMesh

A Non-blocking switches
A One out of five networks is user accessible (User Dynamic Network)
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Device under study
(TILE-Gx36)

Eehavioral Emulation with
interacting BEOs

CCMT

*Spectral Element Solver
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o Example: ProcBEO for THIx36*

Pseudecode for ProcBEO

A Mimic behavior of TIBEX36 device T nit g
¢ Read and decodAppBEQOnstructions i ( Clonrflé; icr|1?tCk)+t{_ir2t} }
¢ Resolve computes (determine performance) if( compute_dot_product ) { é }
f Tt
¢ Update local clock 'Tlscatterjyel
¢ Assign communication instructions @ommBEO
Iteratively refine &
8 487 .47 calibrate model
;g 1971;i4:8 Model Predicted
ot 3:509'27 Train interpolation modg execufion.fime i g exgcutlon
128 6,965.78 P time
256 13,877.84 B
512 27,703.63 rror
1024 5_5’%01'93 Radial Basis Functio Table Lookup threshold?
TILEGx36training data
(testbedbenchmarking) for K-Nearest Neighbor _
dot-product parameters: o9 ——
data_size,int64, locainem Linear Interpolator 200 10,855.59
300 16,255.47
Testdata 700 37,915.54

Interpolation techniques

D. Rudolphand G. Stitt. 6 An i nt ebagedapmoadchtomulti-p ar amet er

(different than training data)

perfor mance

model i ni

In IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP), July 2015

2016‘ Workshop on-MluCoCo$Calocated with ISC), Frankfurt, Germe

Jyne 23, 2016
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UFisih. procBEQO Calibration (THBX36)

~

A Example data from Tilera testbed _ _ _
- : : : Gradient calculation of one pixel
A Data have varying dimension x-gradient computation time = 931ns

. ) ) ) ) -gradient computation time = 952ns
A Zero-dimensional: Pixel Gradient y9 P

A One-dimensional: Dot Product

A Multi-dimensional: Matrix Multiply 2D Matrix Multiply
(MxN and NxN)
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UFiisi. Exyample: CommBEO fidvlesh

A Mimic Tilera IMesh network behavior

A Topology, routing policy, arbitration, etc.
Pseudoecode for CommBEO

if ( input_buffer  !=empty) {

. read event ;

Neighbors 205 3,117.355 | forward(" x_dir -, y_dir );
Side-to-Side 245 2,608.717 }
Corners 30 2,129.44

IMeshone-way latencies and throughput

Topology: 2D mesh
Routing policy: dim - order
Routing policy: cut - through
X-X 1 X-dir latency: testbed data
Y-dir latency: testbed data
y-y 1 Arbitration: round - robin
X-y 1
Switching time Network configuration parameters

for TILEGx36iMesh

TILEGx36iMesh benchmarking data

orkshop on-EluCoCo$Colocated with ISC), Frankfurt, Germadyne 23, 2016 16
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URHOHES CommBEO CalibratiomMesh)

A CommBEOQOsrequire both quantitative and qualitative parameter values
A Qualitative parameters (left) are used to mimic movement of packets in

network
A Quantitative parameters (right) help in estimating communication time
A Some Quantitative parameters are functions of independent variables (e.g., latency)
A Others are fixed information about the network (e.g., hop time)
Roundtrip latency o _
140 Switching Time
Network configuration parameters 120 Direction  Time (ns)
‘@’ 100 ) 1
A Topology2D mesh S X-X
A Mesh size6x6 £ 60 y-y 1
A Routing policydim-order ‘é 40 Xy L
A Routing policystore and forward S 20
A Arbitration: round-robin g 0 Hop T 1
0] Ime: 1LNS
L S S O \/\96 \?)QQ @QQ ';\QQ \9@ P
transfer size (3it words)

CCMT
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UFiioki - Additional notes onModeling Data

Temporal differenceover 1 minute (Rank 0)

A Potentially some factors to
account for in collecting source
data to build BE models

A Vulcan & Cab are two large
machines at LLNL

A Observations

A Vulcan is much more consistent
than Cab for each of these cases

Vulcan has less variation across
different allocations compared to
Cab for 10 random node
allocations (0.106% vs 2.66%)

Temporal differenceover 1 hour (Rank 0)
20
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Deviation from Mean Value (%)

(Not plotted on right) 0 200 400 600 800 1000

Iteration Index (4 Seconds Between Each)

A Issues manifest on a per-machine
basis; needs

T 2
A Careful benchmarking practices § 1 l | \ H l l “
A UQ input to improve models § il 1| 't ‘M||I'J s I 'iml |H|L'r|
€ 1
Red: Cab E L
CCMT Blue: Vulcan § .
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