


















Informatics Graphs are Tough

• Very different from graphs in scientific computing!
G h   b  – Graphs can be enormous

– Power-law distribution of the number of neighbors
– Small world property – no long pathsSmall world property no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications 
provides only limited insight

Six degrees of Kevin Bacon
Source: Seokhee Hong
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provides only limited insight.



Architecture

• Challenges:
– Runtime is dominated by 

l

• Desired Features:
• Low latency / high 

b d idthlatency
• Random accesses to 

global address space
• Perhaps many at once

bandwidth
– For small messages!

• Latency tolerant
• Light weight synchronization p y

– Essentially no 
computation to hide 
memory costs
A  tt  i  d t  

• Light-weight synchronization 
mechanisms

• Global address space
– No graph partitioning required– Access pattern is data 

dependent
• Prefetching unlikely to help
• Usually only want small 

No graph partitioning required
– Avoid memory-consuming 

profusion of ghost-nodes
– No local/global numbering 

conversionsUsually only want small 
part of cache line

– Potentially abysmal 
locality at all levels of 
memory hierarchy

conversions

• One machine with these 
properties is the Cray MTA-2
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memory hierarchy – And its successor, the Cray 
XMT (“Eldorado”)



How Does the MTA Work?

• Latency tolerance via massive multi-threading
E h  h  h d  t f  128 th d– Each processor has hardware support for 128 threads

– Context switch in a single tick
– Global address space,  hashed to reduce hot-spots
– No cache or local memory   Context switch on memory request– No cache or local memory.  Context switch on memory request.
– Multiple outstanding loads

• Remote memory request does not stall processor
– Other streams work while your request gets fulfilledOther streams work while your request gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Flexibly supports dynamic load balancingFlexibly supports dynamic load balancing
• Notes:

– MTA-2 is 7 years old
– Clock rate is 220 MHz
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– Largest machine is 40 processors



NSF Computing Research Infrastructure:
Development of a Research Infrastructure for Multithreaded 
C ti g C itComputing Community
Using Cray Eldorado Platform 

• The Cray XMT system serves as an ideal platform for the 
research and development of algorithms  data sets  research and development of algorithms, data sets, 
libraries, languages, tools, and simulators for applications 
that benefit from large numbers of threads, massively 
data intensive, sparse-graph problems that are difficult to 
parallelize using conventional message-passing on p g g p g
clusters.

– A shared community resource capable of efficiently running, in 
experimental and production modes, complex programs with 
thousands of threads in shared memory;
Assembling software infrastructure for developing and – Assembling software infrastructure for developing and 
measuring performance of programs running on the hardware; 
and 

– Building stronger ties between the people themselves, creating 
ways for researchers at the partner institutions to collaborate 
and communicate their findings to the broader communityand communicate their findings to the broader community.

FACULTY
David A. Bader, PI (CSE)

Collaborators include: Univ of Notre Dame, Univ. of 
Delaware, UC Santa Barbara, CalTech, UC Berkeley, 

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0708307 

Jeffrey Vetter, co-PI (CSE)
y

Sandia National Laboratories 

23David A. Bader



SNAP:
Small-world Network Analysis and PartitioningSmall world Network Analysis and Partitioning

• An open-source parallel graph framework for analyzing 
small-world interaction networkssmall world interaction networks

• Parallel algorithms optimized for shared memory manycore, 
SMP and multithreaded systems

Compact graph Optimized p g p
representation

p
graph kernels

Network Analysis
Techniques

24

Interaction data

David A. Bader



SNAP Framework

• We have designed fast parallel algorithms and efficient 
implementations for several graph theoretic problemsp g p p
– Graph representation
– Graph kernels: List ranking, Connected Components [ICPP05], 

Spanning tree [JPDC06], MST [IPDPS04], Graph traversal [ICPP06], g
Shortest paths [ALENEX07, MTAAP07]

– Algorithms: Centrality analysis [ICPP06], community identification 
[Madduri/Bader 07]

– Applications: Protein-interaction networks [HiCOMB06], social 
network analysis [Madduri/Bader 07]

• We integrate these implementations into SNAP, with 
optimizations for small-world networks
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Case Study 1: Breadth-First Search (BFS)

• Sequential BFS:                
using a FIFO queue

• Recent algorithms and 

)( nmO +
BFS on Scale-free (SF-RMAT) graphs
(200 million vertices, 1 billion edges)Recent algorithms and 

implementations for 
handling large-scale graphs: 

– graph partitioning [Yoo et. al. 
2005]
external memory [M  t  l  s)

7
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Time
Speedup

( , g )

– external memory [Meyer et. al. 
2006]

• Our design is a fine-grained 
algorithm, suited for 
multithreaded architectures on
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– All vertices at a given level in 
the graph can be processed 
simultaneously, instead of 
just picking the vertex at the 
head of the queue
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– The adjacencies of each 
vertex can be inspected in 
parallel No. of processors
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Large-Scale Graph Results: 
Breadth-First Search

Multithreaded Random graph 2.3 s (p=40) Works well for 

Problem Graph Instance Result Comments

Breadth-First Search

Multithreaded 
(OUR RESULT)

Random graph
n=228 vertices
m=230 edges

2.3 s (p 40)
73.9 s (p=1)
Cray MTA-2

Works well for 
sparse real-world 
graphs

External Memory Random graph 8 9 HOURS State-of-the-art External Memory 
[Ajwani et al., 2006]

Random graph
n=228 vertices
m=230 edges

8.9 HOURS 
(MM_BFS_R)

State of the art 
external memory 
BFS

Multithreaded Random graph 4 53 s Largest arbitrary Multithreaded 
(OUR RESULT)

Random graph
Scale-free graph
n=400 M vertices
m=2 B edges

4.53 s
5.2 s
(p=40)
Cray MTA-2

Largest arbitrary 
BFS known results

edges C ay

Distributed 
Memory

[Yoo et al , 2005]

Random graphs
n=3B vertices
m=32B edges

4.7 sec on 
p=32K
IBM BG/L

Works only for Erdos-
Renyi random 
graphs.[Yoo et al., 2005] m 32B edges IBM BG/L graphs.

WORKS ONLY FOR SYNTHETIC GRAPHS
David A. Bader 27



Case Study 2: Social Network Analysis

• Centrality metrics: Quantitative measures to capture 
the importance of a node/vertex/actor in a graphthe importance of a node/vertex/actor in a graph
– Degree, Closeness, Stress, Betweenness

• Identifying central nodes in large complex networks • Identifying central nodes in large complex networks 
is the key metric in a number of applications:
– Biological networks, protein-protein interactionsBiological networks, protein protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management

David A. Bader 28

– Transportation networks



Our Contributions

• Graph-theoretic analysis of the Human protein 
i t ti  t k  i i  l  18 000 interaction network, comprising nearly 18,000 
proteins and 44,000 interactions.

[B d M dd i  HiCOMB 2007]– [Bader,Madduri; HiCOMB 2007]

• Parallel algorithms for analysis of large-scale 
i t ti  t kinteraction networks
– [Bader, Madduri; ICPP 2006]

C f• Comparison of the yeast and human protein 
interaction networks, over time.
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BC Multicore Algorithms

• Brandes [2003] proposed a faster sequential 
f Calgorithm for BC on sparse graphs

– time and          space for weighted )(nO)log( 2 nnmnO +
graphs

– time for unweighted graphs)(mnO

• We designed and implemented the first 
parallel algorithm:
– [Bader, Madduri; ICPP 2006]
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BC Computation: Parallel Performance
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BC Analysis: 
Protein-protein interactions

Human Genome core protein interactions
Degree vs. Betweenness Centrality

43 interactions
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Sony-Toshiba-IBM Center of Competence
for the Cell/B.E. at Georgia Techfor the Cell/B.E. at Georgia Tech

Mission: grow the community of Cell 
Broadband Engine users and developers

•Fall 2006: Georgia Tech wins competition for 
hosting the STI Center

•First publicly-available IBM QS20 Clustery

•200 attendees at 2007 STI Workshop

•Multicore curriculum and training•Multicore curriculum and training

•Demonstrated performance on
–Multimedia and gaming

S i tifi  ti–Scientific computing
–Medical applications
–Financial services

David A. Bader, Director

http://sti.cc.gatech.edu
David A. Bader 33



IBM QS20 “CellBuzz” Cluster

• The Georgia Tech Cell/B.E. cluster CellBuzz contains a 
publicly-accessible front-end cell-user.cc.gt.atl.ga.us and two 
Bl d C t '  t i i g 14 IBM Bl d C t  QS20 d lBladeCenter's containing 14 IBM BladeCenter QS20 dual-
Cell blades named cell01 through cell14. 

• An IBM BladeCenter QS20 blade features: 
– Two 3.2 GHz Cell BE processors p
– 1 GB XDRAM (512 MB per processor) 
– Blade-mounted 40 GB IDE hard disk drive 
– Two 1 Gb Ethernet (GbE) controllers that provide connectivity to 

the BladeCenter chassis midplane and BladeCenter GbE the BladeCenter chassis midplane and BladeCenter GbE 
switches 

– BladeCenter interface that offers Blade Power System and 
Sense Logic Control 
InfiniBand (IB) option  supporting up to two Mellanox IB 4x Host – InfiniBand (IB) option, supporting up to two Mellanox IB 4x Host 
Channel Adapters 

• Peak performance of 2.8 TFLOPS in a standard single-
chassis configuration, 

David A. Bader

– and over 17 TFLOPS may be possible in a standard 42U rack 
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Applications

• CellBuzz: Freely-available, open source libraries 
optimized for the Cell/B Eoptimized for the Cell/B.E.
http://sourceforge.net/projects/cellbuzz/

– ZLIB & GZIP: data compression& G data co p ess o
– FFT: fast Fourier transform
– RC5: encryption
– MPEG-2: video encoding and decoding
– JPEG2000: digital content processing

• Financial Modeling
– European and American Options Pricing

David A. Bader

– Risk Analysis
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Cell/B.E. Libraries: FFT and JPEG2000

• FFTC: Fastest Fourier Transform on the Cell/B.E.
– 1-Dimensional single precision DIF-FFT optimized – 1-Dimensional single precision DIF-FFT optimized 

for 1K-16K complex input samples
– Parallelize & optimize computation of a single FFT 

computation
D i  hi h f  h i ti  b i  i  – Design high performance synchronization barrier using 
inter-SPE communication

– Demonstrated superior performance of 18.6 GFlop/s for 8K 
complex input samples. Butterflies of  ordered DIF FFT

20

25

IBM Power5
AMD Opteron
Intel Pentium 4
FFTW on Cell
Our implementation (8 SPEs)
Intel Core Duo

FFTC

• JPEG2000 on the Cell/B.E.
– Optimize coding/decoding by data decomposition / data 

G
ig

aF
lo

p/
s

5

10

15alignment / vectorization
– Demonstrated average speedup of 3.1 over 

Intel 3.2 GHz Pentium-4

David A. Bader

Input size

1024 2048 4096 8192 16384
0The source code is freely available from our CellBuzz project in SourceForge 

http://sourceforge.net/projects/cellbuzz/
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Cell/B.E. Libraries: ZLIB and MPEG-2

• ZLIB Data compression & decompression library
– Vectorize compute intensive kernels and parallelize to run on multiple SPEs
– Extend the gzip header format while maintaining compatibility with legacy gzip

decompressors
– Demonstrated speedup of 2.9 over high-end Intel Pentium-4 system

• MPEG-2 Video Decoding
– First parallelization of a multimedia application on Cell/B.E.
– Demonstrated a speedup of 3 over Intel 3.2GHz Xeon.e o st ated a speedup o 3 o e te 3 G eo

David A. Bader

The source code is freely available from our CellBuzz project in SourceForge 
http://sourceforge.net/projects/cellbuzz/
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Cell/B.E. Apps: Financial Modeling
• Objective: Demonstrate a competitive edge of the Cell/B.E. for Financial 

Services.

• European Option Pricing. Black - Scholes equation:

)()()()( tdWtSdttStdS σμ +=

• Collateralized Debt Obligation (CDO) pricing
– Gaussian Copula, Monte Carlo simulation

Special 
Purpose 
Vehicle
(SPV)

Originating
Bank

Senior
30-70%

Mezzanine

Assets sold to
the SPV

Principal &
interest

Lo
ssC
as

h

Detachment
point - d

• Optimize various 

(SPV) Mezzanine
5-30%
Equity
0-5%

Cash Funding

L Attachment
point - a

David A. Bader

– random number generators : Mersenne Twister, Hammersley sequence, LCG.
– normalization techniques : Box Mueller Polar/Cartesian, Low Distortion Map.
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Cell/B.E. Apps: Financial Modeling/ pp g
Performance Analysis : Random Number Generation

Over 3 Billion 
random numbers 
per second from a 
single Cell/B.E.

* The performance results on the Intel AMD and IBM PowerPC processors are from:

David A. Bader

* The performance results on the Intel, AMD and IBM PowerPC processors are from:
M. Saito and M. Matsumoto. Simple and Fast MT: A Two times faster new variant of  Mersenne twister. In Proc. 
7th Intl. Conference on Monte Carlo Methods in Scientific Computing, Germany, 2006.
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Cell/B.E. Apps: Financial Modeling/ pp g
Performance Analysis : European Option pricing

[1] V. Podlozhnyuk. Monte Carlo Option pricing. (NVIDIA CUDA) White paper, v1.0, June, 2007.
[2] IBM Corporation The Cell project at IBM Research White paper

1.5x over optimized CUDA implementation for NVIDIA G80.
2x over optimized implementation for RapidMind on Cell.

D bl i i ill b ti l

[2] IBM Corporation. The Cell project at IBM Research. White paper.

David A. Bader

Double precision will be essential
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Case Study: Irregular Scientific Applications

• Cell/B.E. performs well for applications with 
predictable memory access patterns 
[Williams et al., 2006]

• We demonstrate that the Cell/B.E. /
architecture also performs well for 
applications that exhibit irregular memory pp g y
access patterns
– Non-contiguous accesses to global data 

David A. Bader

Non contiguous accesses to global data 
structures with low degrees of locality
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Manycore Challenge: List Ranking

• Challenge: Given a linked list stored in memory, find the 
distance from each node to the headd sta ce o eac ode to t e ead

– Sequential approach is trivial (2 lines of code, linear time)
– Linear speedup with the number of processors in theory (PRAM)
– No speedup has ever been reported using MPIp p p g

• Rationale: List ranking is the basis for many irregular parallel 
algorithms, and is representative of many client applicationsg p y pp

David A. Bader 42



List Ranking Examples

Ordered List

Ranks 1 2 3 4 5 6 7 8 9 10 11 12Ranks 1     2     3      4     5      6     7      8     9     10    11    12

Random List

Ranks 1 8 7 2 9 3 6 10 4 5 12 11

David A. Bader 43



Parallel List Ranking Algorithms

• SMP algorithm [Helman & JaJa, 1999]
– Partition the input list into s sublists  by randomly choosing s sublist Partition the input list into s sublists, by randomly choosing s sublist 

head nodes, one from each memory block of n/(s − 1) nodes.
– Traverse each sublist computing the prefix sum of each node within 

the sublists  the sublists. 
– Calculate prefix sums of the sublist head nodes. 
– Traverse the sublists again, summing the prefix sum values of each 

node with the value of its sublist head node  node with the value of its sublist head node. 

• Multithreaded Algorithm [Bader, Cong, Feo, 2005]

• Efficient list ranking is an open problem on distributed memory 
machines

David A. Bader

machines
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A Generic Latency-hiding technique

• Cell/B.E. supports non-blocking memory transfers

• Requires identification of another level of parallelism within 
each SPE.

• Concept of software-managed-threads (SM-Threads)
– SPE computation is distributed among these threads
– SM-Threads are scheduled according to Round Robin policy.

• Instruction level profiling to determine the minimum number 
of SM-Threads needed to hide latency.

David A. Bader

– Tradeoff between latency and number of SM-threads. 
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Illustration of the technique

SPE 1 SPE 2 SPE i SPE p

SPE 
computation

SPE computation
divided among 
SM-Threads. 

Round robin policy to schedule 
the threads

David A. Bader 46
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List Ranking on the Cell/B.E.

• Step 1: Pick s head nodes in the list at random, assign 
them to the SPEs
– each SPE will traverse s/p sublists.

• Step 2: Each SPE has s/p independent SM-threads, 
di id b DMA li t t fdivide among b DMA list transfers. 
– Follow round robin policy. After issuing a DMA request we move 

to the next SM-thread in sequential order, so that SPU gets 
computation from other SM-threads.computation from other SM threads.

– No DMA stall latency if we have sufficient number of SM-threads 

• Step 3: Compute the rank of each sublist head nodeStep 3: Compute the rank of each sublist head node 
using the PPE. 

In practice step 2 dominates the running time

David A. Bader

In practice step 2 dominates the running time.

47



Illustration of Step 2
Linked list for which list
ranking is to be done
Colored nodes here are
allocated to SPE(i)

View from SPE(i), it has
s/p sublist head nodes to 
traverse concurrently

2 4
This array is used to store 
sublists in contiguous area 
of memory. When this gets 
full, we transfer it back to
h i

2
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Experimental Setup

• Manual Loop unrolling, branch hints, multi-buffering. 

• Two Classes of lists
– Ordered: Places each node in the list according to its rank
– Random: Places successive elements randomly in the array.

• Instruction level profiling done using Cell SDK 2.1

• We used a IBM QS20 dual-cell blade (two 3.2 GHz Cell/B.E. 
processors)
– Only one chip is used for this study and performance analysis

• Performance compared with
– Woodcrest (Intel Xeon 5150)

I t l 3 2 GH  X

David A. Bader

– Intel 3.2 GHz Xeon
– PPE-only implementation
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Performance Analysis:
Running Time (PPE only vs PPE+SPE’s)Running Time (PPE-only vs PPE+SPE s)
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Performance Comparison of sequential implementation on PPE to our parallel implementation
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p q p p p
of List ranking on Cell for Ordered (Left) and Random (Right) lists



Performance Comparison

David A. Bader 51



Summary: Irregular Algorithms
• We present generic Cell latency hiding and work partitioning 

techniques to improve the performance of irregular algorithms.
Can be used in many graph theoretic applications– Can be used in many graph theoretic applications.

• Using these techniques we design and optimize a fast parallel g q g p p
implementation of list ranking on the Cell. 
– Using instruction level profiling we determine the amount of concurrency 

needed for hiding memory latency.

• 2.5 times faster than an optimized parallel implementation on a dual 
core Woodcrest (Intel Xeon 5150)
– 4.6 times faster than single core. 

• Overall speedup of 8.34 over an efficient PPE-only sequential 
implementation.
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Conclusions

• “High-Performance Computing” is broadening to 
include data-centric computinginclude data centric computing
– Impact to emerging areas such as life sciences and 

informatics

• Several architectural features reduce the 
programmer’s burden and enable high-performance 
large-scale applications with irregular data large-scale applications with irregular data 
structures

• Manycore programming needs new paradigmsy p g g p g
• Massive graph analysis solves real-world challenges
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