
A Survey of Formal Methods in Self-Adaptive Systems

Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, Tanvir Ahmad
Department of Computer Science

Linnaeus University
Växjö, Sweden

danny.weyns@lnu.se

ABSTRACT
One major challenge in self-adaptive systems is to assure the re-
quired quality properties. Formal methods provide the means to
rigorously specify and reason about the behaviors of self-adaptive
systems, both at design time and runtime. To the best of our knowl-
edge, no systematic study has been performed on the use of formal
methods in self-adaptive systems. As a result, there is no clear
view on what methods have been used to verify self-adaptive sys-
tems, and what support these methods offer to software develop-
ers. As such insight is important for researchers and engineers,
we performed a systematic literature review covering 12 main soft-
ware engineering venues and 4 journals, resulting in 75 papers used
for data collection. The study shows that the attention for self-
adaptive software systems is gradually increasing, but the number
of studies that employ formal methods remains low. The main fo-
cus of formalization is on modeling and reasoning. Model check-
ing and theorem proving have gained limited attention. The main
concerns of interest in formalization of self-adaptation are effi-
ciency/performance and reliability. Important adaptation concerns,
such as security and scalability, are hardly considered. To verify the
concerns of interest, a set of new properties are defined, such as in-
terference freedom, responsiveness, mismatch, and loss-tolerance.
A relevant part of the studies use formal methods at runtime, but
the use is limited to modeling and analysis. Formal methods can be
applied to other runtime activities of self-adaptation, and there is a
need for light-weight tools to support runtime verification.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture; D.2.4
[Software Engineering]: Software/Program Verification—formal
methods

General Terms
Theory, verification, documentation

Keywords
Self-adaptive systems, systematic literature review

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-12 June 27-29, 2012 Montreal, QC, CANADA.
Editors: B. C. Desai, S. Mudur, E. Vassev
Copyright 2012 ACM 978-1-4503-1084-0/12/06 ...$15.00.

1. INTRODUCTION
Self-adaptation has been widely recognized as an effective ap-

proach to deal with the increasing complexity and dynamicity
of modern software systems [67, 53, 58]. A self-adaptive sys-
tem comprises two parts: the managed system (also called sys-
tem layer [42], managed resources [53], core function [71], base-
level subsystem [91]) that deals with the domain functionality, and
the managing system (or architecture layer [42], autonomic man-
ager [53], adaptation engine [71], reflective subsystem [91]) that
deals with the adaptations of the managed system to achieve partic-
ular quality objectives. The key underlying idea of self-adaptation
is complexity management through separation of concerns. One
major challenge in self-adaptive systems is to provide guarantees
about the required quality properties. Formal methods provide the
means to rigorously specify and verify the behavior of self-adaptive
systems. Formal methods have been applied during system devel-
opment, but also during runtime to provide guarantees about the
required properties of self-adaptive systems [61, 94, 83, 91, 81].

In 2004, Bradbury et al. [15] surveyed 14 formal specification
approaches for self-adaption based on graphs, process algebras, and
logic formalisms. The survey evaluated the ability of each approach
to specify self-managing systems, and concluded that existing ap-
proaches need to be enhanced to address issues regarding expres-
siveness and scalability. [35, 50, 71, 31, 34] summarize achieve-
ments of the field and outline challenges for future work, including
challenges with respect to the application of formal methods for
verification and validation of self-adaptive systems.

These studies provide insight in the potential use of formal meth-
ods in self-adaptive systems. However, to the best of our knowl-
edge, no systematic study has been performed on the actual use of
formal methods in self-adaptive systems. As a result, there is no
clear view on what methods have been used to specify and verify
self-adaptive systems, and what support these methods actually of-
fer to software developers. However, such an insight is important
for researchers and engineers.

The overall objective of this paper is to identify which formal
methods have been used in self-adaptive systems and for what pur-
pose these methods have been used. We also aim to assess for
what type of self-adaptive applications formal methods have been
applied, and which tools authors have used. To that end, we have
performed a systematic literature review. From the study, we de-
rive conclusions concerning state of the art formal methods in self-
adaptive systems, and suggest ideas for future research. All the ma-
terial that was used for the study together with the extracted data is
available at http://homepage.lnu.se/staff/daweaa/SLR-FMSAS.htm.

Paper Overview. In section 2 we give an overview of the method
we used in our study. In section 3 we explain study planning. We
explain the research questions we address, define search strategy

67

Figure 1: Overview of the systematic review process (adapted
from [17]).

and scope, and summarize the data items that were collected. In
section 4 we present the data extracted from the primary studies
(i.e., the selected studies after filtering), and interpret this data an-
swering the research questions. Section 5 discusses limitations of
our study. We conclude with a discussion of opportunities for fu-
ture research in section 6.

2. RESEARCH METHOD
Our study followed the principles of a systematic literature re-

view [55], which is a well-defined approach to identify, evaluate
and interpret all relevant studies regarding a particular research
question, topic area or phenomenon of interest. Figure 1 shows
an overview of the three-phased method we applied in the study.

Four researchers were involved in the literature study. In re-
view planning (Phase 1), the review protocol was defined, which
includes the definition of research questions, the search strategy
and scope, and the data items that had to be collected. The protocol
was defined interactively by the team of reviewers. The research
questions express the research topics of interest in this literature
review. The scope of the review was based on the identification
of the main workshops, conferences, and journals in the field. As
search strategy, we combined automatic with manual search. Au-
tomatic search was defined as a two-step process for which two
search strings were defined. The first string aims to select the stud-
ies on self-adaptive systems, and the second string aims to filter the
studies on formal methods. For the manual search, inclusion and
exclusion criteria were defined. Next, data items were identified
and for each item a set of options was defined. The definition of
data items was based on information derived from literature sources
and from experiences with a preceding literature review [89]. For
some of the data items, additional options were introduced during
the review process, in particular for the set of languages used for

modeling systems and specifying properties, and the set of tools.
The protocol was crosschecked by an external reviewer and the
feedback was used to make small adaptations.

Subsequently, the four researchers conducted the review
(Phase 2). Studies were automatically selected based on the search
criteria defined in Phase 1. One reviewer was responsible for auto-
matic search. Manual search was performed by two researchers that
checked each paper independently based on inclusion/exclusion
criteria, to select the studies for answering the research questions
of the study. Conflicts were resolved and if no consensus could be
reached, the other researchers were involved to come to a decision.
Once the primary studies were selected, the data items were col-
lected by the four reviewers, which was obviously a manual pro-
cess. Collected data items were crosschecked and in case of dis-
agreement, conflicts were resolved. Finally, the data derived from
the the primary studies was collated and summarized to answer the
research questions.

One of the reviewers coordinated the writing of this review report
(Phase 3), in close consultation with the other reviewers.

3. PLANNING REVIEW
During planning, the protocol for the review is defined, which

includes three main steps: specify research questions, define search
strategy and scope, and define data items.

3.1 Research Questions
We formulated the general goal of the study through Goal-

Question-Metric (GQM) perspectives (purpose, issue, object, view-
point) [8]:

Purpose: Understand and characterize

Issue: the use of formal methods

Object: in self-adaptive software systems

Viewpoint: from a researcher’s and engineer’s viewpoint.

The general research question translates to four concrete research
questions:

RQ0: Which are the trends in applying formal methods in
self-adaptive systems?

RQ1: Which formal methods have been used in self-adaptive
systems?

RQ2: For which adaptation concerns have formal methods
been used?

RQ3: How have formal methods been used to deal with con-
cerns of self-adaptive systems?

With RQ0, we want to get insight in the use of formal methods by
researchers on self-adaptive systems both in time and space. RQ1
is motivated by the need to get insight in what kind of formal meth-
ods have been used for self-adaptive systems. This question aims
to assess which languages have been used for modeling systems,
verifying properties, and which tools have been used for this. With
RQ2, we aim to understand why formal methods have been used
in self-adaptive systems. Concretely, we aim to assess for which
concerns formal methods have been used (reliability, performance,
functional correctness of adaptations, etc.), which properties have
been verified for that (safety, liveness, etc.), and for which type of
applications these methods have been used. Finally, RQ3 aims to
access how formal methods have been used to provide guarantees
about concerns in self-adaptive systems (reasoning, model check-
ing, at design time, runtime, etc.).

68

3.2 Search Scope and Strategy
The scope of the search is defined in two dimensions: time and

space. Regarding time, we searched studies published from Jan.
2000 until Dec. 2011. 2000 was used as starting year since self-
adaptive systems became subject of active research around that
time. Regarding space, we included the primary venues for pub-
lishing research results on self-adaptive systems, as well as the ma-
jor conferences and journals on software engineering. The selected
venues are listed in Table 1. The Rank is based on the Australian
Research Council ranking (www.arc.gov.au/era/era_2010/).

Table 1: Searched conferences and journals
ID Venue Rank
ASE International Conference on Automated

Software Engineering
A

Adaptive Adaptive and Self-adaptive Systems and
Applications

n/a

DEAS Design and Evolution of Autonomic Ap-
plication Software

n/a

FSE Foundations of Software Engineering A
ICAC International Conference on Autonomic

Computing
B

ICSE International Conference on Software En-
gineering

A

ICSM International Conference on Software
Maintenance

A

ISSTA International Symposium on Software
Testing and Analysis

A

SASO Self-Adaptive and Self-Organizing Sys-
tems

n/a

SEAMS Software Engineering for Adaptive and
Self-Managing Systems

n/a

WICSA Working International Conference on
Software Architecture

A

WOSS Workshop on Self-Healing n/a

JSS Journal of Systems and Software A
TAAS Transactions on Autonomous and Adap-

tive Systems
n/a

TOSEM Transactions on Software Engineering and
Methodology

A*

TSE Transactions on Software Engineering A*

Our search strategy combines automatic with manual search.
Automatic search comprised of two steps: first we selected the
studies that are relevant for self-adaptive systems, and then we fil-
tered the studies that use formal methods. We used the following
search string in the first step:

((Title:adaptive OR Title:adaptation OR Title:self
OR Title:autonomic OR Title:autonomous) OR
(Abstract:adaptive OR Abstract:adaptation OR
Abstract:self OR Abstract:autonomic OR Ab-
stract:autonomous))

The keywords provide the main terms that different communities
use to refer to self-adaptive systems. We applied pilot searches on
the set of studies from SEAMS, ICAC and TAAS to ensure that the
keywords provide the right scope.

In the second step, we used the following search string:

"Transition system" OR automata OR Markov
OR Petri OR "state machine" OR calculus OR al-
gebra OR grammar OR CSP OR "temporal
logic" OR LTL OR "tree logic" OR CTL OR "first
order logic" OR "reaction rule" OR probabilis-
tic OR stochastic OR "graph rewriting" OR "graph
representation"

This set of keywords defines key terms that refer to the use of
formal methods. We derived the terms from four sources: Baier and
Katoen’s book on model checking [4], the survey of Bradbury et al.
on formal methods in self-adaptive systems [15], Villegas’ paper in
quality evaluation of self-adaptive systems [84], and Tamura et al.’s
recent roadmap paper on verification of self-adaptive systems [81].
For the second filtering, we again applied pilot searches to ensure
that the keywords provide the right scope of studies.

We further refined the studies resulting from automatic search
using a manual search step. The goal of this step is to identify the
primary studies that are directly related to the research questions.
To that end, we defined the following inclusion/exclusion criteria:

• Inclusion criterion 1: The study formalizes (at least a part
of) the system as well as properties of the system. Rationale:
we might have included studies which employ some formal
terms, but do not actually employ formal methods for a par-
ticular purpose related to self-adaptation.

• Inclusion criterion 2: The study separates the domain logic
and the adaptation logic, that is, the mechanisms to realize
adaptation are not (or only partially) interwoven with the reg-
ular functionality. Rationale: the focus of our study is on
self-adaptive systems that separate the adaptation concerns
from the domain functionality.

• Exclusion criterion 1: A study that is an editorial, abstract
or a short paper. Rationale: these studies do not provide a
reasonable amount of information.

• Exclusion criterion 2: A study that focuses on formal tech-
niques themselves, rather than on the use of formal methods
for self-adaptation concerns. Rationale: these studies do not
provide information regarding the research questions.

A study was selected when it met both inclusion criteria and elimi-
nated if it met any of the exclusion criterion.

3.3 Data Items
Items were defined to collect the necessary data from the studies

to answer the research questions. For each primary study, the data
items shown in Table 2 were collected. Each study was read in
detail by two reviewers, each reviewer extracting the data in a form.
This data were used during a discussion to resolve conflicts and
reach consensus for the data items. This discussion involved the
other reviewers when no agreement could be reached. Note that
the lists of options of some of the data items were extended during
the review.

The data items author(s), and title (F1-F2) were used for docu-
mentation. Year (F3) and Venue (F4) are used for answering RQ0.

For modeling language (F5) we defined the following options:
regular algebra (basic math, equations, set theory, etc.), state ma-
chines, transition systems, automata, Markov models (inc. Markov
chains, Markov decision processes, etc.), process calculi (CSP,
π-calculus, etc.), Petri nets, graphs, Z notation, ADL (formally
founded architecture description languages). This list was extended
while the data was collected.

69

Table 2: Data collection form
Item Field Research question
F1 Author(s) Documentation
F2 Title Documentation
F3 Year RQ0
F4 Venue RQ0
F5 Modeling language RQ1
F6 Property specifica-

tion/verification
RQ1

F7 Concerns subject of formal veri-
fication

RQ2

F8 Verified properties RQ3
F9 Use of formalization RQ3
F10 Offline vs. runtime use of formal

methods
RQ3

F11 Tools used for modeling and ver-
ification

RQ1

F12 Types of software systems RQ2

Property specification/verification (F6) options are: modeling
language (the same language is used for modeling the system
and specifying properties), first-order logic (FOL), linear tempo-
ral logic (LTL), computation tree logic (CTL), timed computation
tree logic (TCTL), probabilistic computation tree logic (PCTL),
and graph grammar. This initial list was extended while data was
collected from the studies.

Concerns subject of formal verification (F7) refers to the self-
adaptive aspects of interest of formalization. The options (based on
IEEE 9126 and ISO/IEC 25012) are:

• reliability (fault tolerance, recoverability): capability of soft-
ware to maintain its level of performance under stated condi-
tions for a stated period of time

• availability: the degree to which the software is in a function-
ing condition, i.e. capable to perform its intended functions

• usability (ease of learning, communicativeness): effort
needed to use the system

• efficiency/performance (time behavior, resource utilization):
efficiency of the software by using the appropriate resources
under stated conditions and in a specific context of use

• maintainability (analyzability, changeability, stability, testa-
bility): effort needed to make specified modifications

• portability: ability of software to be transferred from one en-
vironment to another

• security: ability of the system to protect against misuse

• accuracy: the extent to which the software realizes the in-
tended behavior in a specific context of use

• flexibility in use: capability of the software to provide quality
in the widest range of contexts of use, incl. dealing with
unanticipated change and uncertainty

• functionality of the self-adaptive system

• other.

Verified properties (F8) refers to the concrete properties that
are subject of reasoning or verification. The options are safety
(“nothing bad should happen”), liveness (“something good will
happen eventually”), deadlock (components sharing the same re-
source are effectively preventing each other from accessing the re-
source), reachability (there is a finite path for reaching a certain set
of states), stability (the behavior stays within well defined bound-
aries), and functional correctness (the system behavior complies
to a specification). Besides these traditional properties for verifi-
cation, we extended the list with additional properties during data
collection as defined by the authors of the studies.

The options for use of formalization (F9) are: modeling, rea-
soning, model checking, proving, and other. Options for the
time when formal methods are used (F10) are: offline (formal
methods are applied during development or maintenance activi-
ties) and runtime (formal methods are used by the system itself
at runtime). For tools used for formal modeling and verification
(F11), we started from the following set of popular tools SPIN
(general tool for verifying the correctness of distributed software
models, spinroot.com/spin), PRISM (probabilistic symbolic model
checker, www.prismmodelchecker.org), Uppaal (integrated tool en-
vironment for real-time systems modeled as networks of timed au-
tomata, www.uppaal.org), LTSA (tool for analyzing labelled tran-
sition systems, www.doc.ic.ac.uk/ltsa), CZT (tools for formal mod-
eling in the Z, czt.sourceforge.net). During data collection, this list
of options was further extended.

Finally, based on a sample of the studies we identified the fol-
lowing options for types of software systems (F12) for which self-
adaption is used: parallel computing (grid, parallel computing,
cloud computing, etc.), service-based systems (webservices, busi-
ness applications, e-commerce, etc.), client-server systems (web
applications, application server systems, etc.), embedded systems
(automotive systems, mobile applications, robotic systems, etc.)
and other.

4. RESULTS
We now give an overview of the study results based on the re-

search questions we defined for our study.

RQ0: Which are the trends in applying formal methods to self-
adaptive systems?

Trends are derived from the year (F3) and venue (F4). From the
6353 studies in total, 1027 were selected after applying the first
search string (i.e., potential studies related to self-adaptation). Ap-
plying the second search string resulted in 489 studies (i.e., poten-
tial studies related for formal methods). From these, 75 studies
were selected for final review during manual search. The list of
selected studies is added in Appendix A.

Fig. 2 shows the number of studies on formal methods in self-
adaptation over time. While the absolute numbers are remarkably
low, there is a clear progression in the number of studies that use
formal methods. 2005 is clearly a pivotal year, which is obviously
connected with the creation of ICAC, SEAMS, and TAAS around
that time.

We also looked at relative numbers. Between 2000 and 2005
on average 6% of the total number of studies focused on self-
adaptation, while this number increased to 17% in the period 2006
- 2011. Within the studies that focus on self-adaptation, between
2000 and 2005, on average, 3% use formal methods, while this
number increased to 8% between 2006 and 2011.

Fig. 3 shows the number of studies on formal methods in self-
adaptation per venue. SEAMS represents 20.0% of the studies,
ICAC 12.0%, and SASO 6.6%. 14.7% of the studies are published

70

0

2

4

6

8

10

12

14

16

2000 2002 2004 2006 2008 2010

Number of studies with formalization of
self-adaptive systems F3

Figure 2: Overview of the studies on formal methods in self-
adaptation over time

SEAMS

SASO

WICSA

WOSS

FSE

JSS

DEAS

ICSE

TSE

ASE

Adaptive

TAAS

ICAC

0 2 4 6 8 10 12 14 16

Formal papers per venue F4

Figure 3: Overview of the studies on formal methods in self-
adaptation per venue

in JSS, 10.7% in TSE and 8.0% in TAAS. Note that none of studies
on self-adaptive systems of ISSTA, ICSM and TOSEM use formal
methods (from 4, 19, and 8 studies on self-adaptation respectively).
The top software engineering conferences FSE, ICSE, and ASE
represent 17.3% of the studies.

In summary, we notice a good coverage of research results from
different conferences and journals as well as increasing attention

for the use of formal methods in self-adaptive systems over time.
Nevertheless, the absolute numbers give a strong indication that
there is a dearth of approaches that employ formal methods for as-
suring that self-adaptive software systems satisfy user requirements
and meet their expected quality attributes. [81] argues that adoption
of self-adaptation by industry is still limited due to a lack of valida-
tion and verification methods. The results of our study confirm that
research and development in assurance techniques is a necessity to
unlock the potential of self-adaptation beyond academic settings.

RQ1: Which methods have been used in self-adaptive systems?
To answer this question, we used data extracted from modeling

languages (F5), property specification/verification (F6), and tools
used for modeling and verification (F11).

Fig. 4 shows the distribution of the modeling languages used for
formalization.

regular algebra

transition systems

automata

state machines

Markov models

graphs

process algebra

Petri nets

ADL

goal models

Z

queuing networks

fuzzy sets

other

0 5 10 15 20 25

Modeling Language F5

Figure 4: Modeling languages used for formalization

The main observation is that regular algebra is by far the most
popular modeling language (27.6% of the studies). The use of tra-
ditional formal modeling languages such as transistion systems, au-
tomata, state machines, Markov models, graphs, and process alge-
bras is about equally distributed (each representing 6 to 10%). We
could not identify any trend in the use of the different modeling
languages over time.

Fig. 5 shows the distribution of the property specification lan-
guages used for formalization.

The majority of the studies (42.7%) formulate the properties of
interest in the modeling language they use for modeling. In particu-
lar, 87.5% of the studies that use algebra as modeling language use
the same language for property specification. 36.0% of the studies
use some logic as property specification language. Logic is com-
bined with different kind of modeling languages.

From the data derived from data item F11, we found that 40.0%
of the studies use tools for formal modeling or verification. 30.0%
of the studies that use tools employ it for model checking (actu-
ally all studies that do model checking use a tool). The remaining
studies that use tools employ them for modeling systems, and only
one study uses a tool for proving. The most used tools are PRISM
(3 studies), SPIN, LTSA, CZT, and ACME studio (each 2 studies).

71

modeling language

rules/constraints

FOL

LTL

CTL

PCTL

graph grammar

other

0 5 10 15 20 25 30 35

Property specification/verification F6

Figure 5: Property specification languages used for formaliza-
tion

However, no standard tools have been emerged for formal model-
ing and verification of self-adaptive systems.

In summary, we notice that the majority of researchers employ
regular algebraic notations both for modeling and property speci-
fication of self-adaptive systems. The formal notations are mostly
used to provide a level of rigor in the explanations and discussion.
However, the use of formal methods for providing evidence of sys-
tem properties, e.g., by using model checking or theorem proving,
remains limited. We further notice that only a few researchers make
their models and study results publicly available. This indicates
that current research efforts on formal methods in self-adaptive sys-
tems are not well integrated. Finally, we observe that a number of
authors reuse tools that are developed for offline analysis to per-
form runtime analysis; a typical example is [21]. While this is
surely valid in the context of an academic case study, such an ap-
proach is often not appropriate from a practical point of view. This
observation indicates that there is a need for light-weight pluggable
tools that support formal verification at runtime.

RQ2: For which adaptation concerns have formal methods been
used?

To answer this question, we drew on data extracted from con-
cerns subject of formalization (F7), and application domains (F12).

Fig. 6 shows the data derived for concerns of formalization.
The distribution of the concerns of self-adaptation in this study

confirms the distribution we found in a previous study [89]
(the scope of that study was limited to SEAMS). Top con-
cerns of self-adaptation for which formalization is used are ef-
ficiency/performance (32.0%), reliability (26.7%), guaranteeing
functionality (22.7%), and flexibility (18.7%).

Fig. 7 shows the distribution of types of software systems for
which formal methods have been used.

About half of the software systems (46.7%) for which for-
mal methods have been used are embedded systems, followed by
service-based systems (26.7%).

The use of formal methods for self-adaptation in embedded sys-
tems relates to requirements on resource constraints and real time
behavior of these systems. Service-based systems have gained an
increasing attention during the last five years. In particular dy-
namic composition of services is an active area of research in self-
adaptive system, with particular attention for resolving behavioral
mismatches between services and dynamic selection of services
to guarantee service level agreements. Nevertheless, the data ex-

efficiency/performance

reliability

functionality

flexibility

usability

security

accuracy

availability

scalability

maintainability

portability

0 5 10 15 20 25

Concerns F7

Figure 6: Adaptation concerns

embedded

service-based

client-server

parallel computing

other

0 5 10 15 20 25 30 35 40

Type of software system F12

Figure 7: Types of software systems used for formalization

tracted for RQ2 shows that formal methods are hardly considered
for guaranteeing important concerns of modern software systems
such as security and scalability. Furthermore, data intensive do-
mains, such as telecommunication, and scientific domains such as
climate research and bioinformatics, have gained little attention.
These concerns and domains offer areas for future research on for-
mal methods and self-adaptation.

RQ3: How have formal methods been used to deal with concerns
of self-adaptive systems?

To answer this question, we used data from verified properties
(F8), type of verification (F9), and offline vs. runtime use of formal
methods (F10).

Fig. 8 shows the distribution of the properties that have been
verified in the studies.

Traditional properties, including safety (18.7%), liveness and
reachability (each 10.7%), and deadlock (8.0%) make up half of
the verified properties. However, the other half consists of a va-
riety of different properties, including consistency, fitness, deter-
minism, interference freedom, responsiveness, mismatch, and loss-
tolerance. This set of properties seems to be specific to the area
of self-adaptation. Further research is required to obtain a solid
understanding of the nature of these properties.

Fig. 9 shows the type of formal approach that are used in the
study.

72

safety

liveness

reachability

stability

deadlock

functional correctness

consistency

completeness

fitness

determinism

other

0 2 4 6 8 10 12 14 16

Verified properties F8

Figure 8: Verified properties of formalization

0

5

10

15

20

25

30

35

40

45

50

modeling reasoning model checking proving

Use of formalization F9

Figure 9: Formal approach used in the study

The majority of the studies use formal methods for reasoning
purpose, i.e., 60.0%. In particular, most authors use a formal speci-
fication to reason about the design of a self-adaptive system. Model
checking makes up 16.0% of the studies, and proving 14.7%. It is
remarkable to see that in total, only 23 studies employ formal meth-
ods to actually provide evidence for the self-adaptive concerns of
interest.

For data item F10, we found that 66.7% of the studies use formal
methods for offline activities, while 33.3% use formal methods at
runtime. Almost all studies use formal methods in one particular
phase in the life cycle. One exception that employs formal results
from design to check the implementation is [94].

As model checking is one of the prominent approaches to pro-
vide evidence for system properties, we analyzed the studies that
employ model checking techniques, including [21, 36, 7, 94, 48,
63, 20, 41, 40]. We also included the recent publication [24]. From
this analyzes, we derived an interesting model that maps the differ-

NORMAL BEHAVIOR ADAPTATION BEHAVIOR

INVALID BEHAVIOR

VALID BEHAVIOR

[6] - Livelock-free

[20] - Reachability
[20] - Adaptation Failure

[35] - Progress
[6] - Fairness, Reachability, Stability
[46] - Reachability
[19] - Completeness
[41] - Connector constraint

[64] - Liveness, ! Deadlock, ! Livelock

[35] - ! Safety

[35] - Liveness
[94] - Loss-tolerance
[19] - Correctness

[35] - Interference-freedom, Safety
[39] - Responsiveness

LEGEND

[35] - LivenessZone
Initial state
Final state

State Transition
[Ref.] - Property

UNDESIRED
BEHAVIOR

P1
P2

P5
P3

P6

P7

P8

P9

[35] - Safety
[23] - Reachability

P4

Figure 10: Zones in the state space that represent different be-
haviors of a self-adaptive system with properties of interest.

ent types of behaviors of self-adaptive systems to zones of the state
space. Fig. 10 shows an overview of the model.

In the zone normal behavior, the system is performing its regu-
lar domain functionality. In the zone undesired behavior, the sys-
tem requires adaptation for a concern of interest (e.g., a failure has
occurred). In the zone adaptive behavior, the system is adapting
itself to deal with the undesired behavior. Finally, the zone invalid
behavior corresponds to states where the system should never be
(e.g., the system is in a deadlock).

Properties of interest with respect to self-adaptation typically
map to transitions between different zones. For example, prop-
erty P1 in Fig. 10 checks whether invalid states can be reached
from a system’s normal behavior. One of the properties of P6
checks whether a system adapts correctly from undesired behavior
via adaptation behavior back to normal behavior. One of the prop-
erties of P9 checks interference freedom, i.e., it verifies whether
different adaptive behaviors do not interfere with one another.

5. LIMITATIONS OF THE STUDY
We have conducted a systematic literature review involving stud-

ies published in 16 venues from 2000 until 2011. As the set of
venues is limited, there is a threat to validity with respect to the
generalization of the conclusions of the study. We have anticipated
this threat by taking into account all the primary publication venues
for self-adaptive systems as well as the main conferences and jour-
nals on software engineering.

Another threat to validity is the existence of bias of the reviewers.
To reduce this bias, we have taken several measures. First, we have
established the protocol for the study during the planning phase.
The protocol defines in advance how the systematic review is to
be conducted, and this document was reviewed by an external re-
viewer. In addition, we have opted to let two reviewers perform the
manual search independently. Then the results were compared and
discussed in case of conflicts. To avoid bias in collecting data we

73

followed a similar approach. While this approach increases the va-
lidity of the results, it also significantly increased the review work.

6. FUTURE RESEARCH DIRECTIONS
To conclude, we outline ideas for future research derived from

our study.
Formal methods in the field of self-adaptation are mainly used

for modeling and reasoning (read discussing) about properties of
interest. However, the full power of formal methods comes with
automation, in particular for model checking and theorem proving.
Tools are currently under-exploited and provide an opportunity to
further mature the field.

We notice that a relevant part of the studies use formal methods
at runtime. The main use of these methods is for modeling and
analysis. There is plenty of room for research on exploiting the use
of formal methods for other activities of self-adaptation. Futher-
more, there is a need for pluggable light-weight tools that support
efficient verification at runtime.

Particularly relevant for self-adaptive system is that work prod-
ucts of formalization are exploited throughout the software life cy-
cle. This enables the transfer of quality assurances of self-adaptive
systems obtained during design to the implementation and the run-
ning system, enhancing the validity of the required qualities [88].
Some studies that directly transfer formalization results over differ-
ent phases of the software life cycle are [28, 82, 94, 87].

Researchers and engineers use standard languages for formal
modeling and property specification. However, a set of new prop-
erties emerge that are subject of reasoning and verification, such
as consistency, fitness, determinism, interference freedom, respon-
siveness, mismatch, and loss-tolerance. These properties appear to
be specific to self-adaptation and are crucial to provide guarantees
about concerns of self-adaptive systems. Developing a solid un-
derstanding and underpinning of these properties is an important
subject for future research. The zone-based model presented in
this paper offers an interesting starting point to get a better under-
standing of the specific nature of model-checking of self-adaptive
systems.

We conclude with a final remark concerning the underpinning of
formal papers in the area of self-adaptive systems. In many studies,
authors introduce custom modeling language constructs. Often, the
mathematical underpinning and soundness of these languages is as-
sumed for granted (but usually not provided). This aspects requires
attention as mathematical underpinning is the foundation of any
formal method.

7. REFERENCES
[1] Y. Al-Nashif, A. Kumar, S. Hariri, Q. Guangzhi, L. Yi, and

F. Szidarovsky. Multi-level intrusion detection system
(ml-ids). In International Conference on Automatic
Computing, 2008.

[2] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and
M. Trubian. Resource management in the autonomic
service-oriented architecture. In International Conference on
Autonomic Computing, 2006.

[3] J. Gueyoung andK. Joshi, M. Hiltunen, R. Schlichting, and
C. Pu. Generating adaptation policies for multi-tier
applications in consolidated server environments. In
International Conference on Automatic Computing, 2008.

[4] C. Baier and J.P.Katoen. Principles of Model Checking. MIT
Press, 2008.

[5] D. Balasubramaniam, R. Morrison, K. Mickan, G. Kirby,
B. Warboys, I. Robertson, B. Snowdon, M. Greenwood, and

W. Seet. Support for feedback and change in self-adaptive
systems. In Workshop on Self-Healing systems, 2004.

[6] L. Baresi and L. Pasquale. Live goals for adaptive service
compositions. In Software Engineering for Adaptive and
Self-Managing Systems, 2010.

[7] B. Bartels and M. Kleine. A csp-based framework for the
specification, verification, and implementation of adaptive
systems. In Software Engineering for Adaptive and
Self-Managing Systems, 2011.

[8] V. Basili, G. Caldiera, and D. Rombach. Goal question
metric approach. In Encyclopedia of Soft. Engineering. 1994.

[9] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling.
Symbolic invariant verification for systems with dynamic
structural adaptation. In 28th International Conference on
Software Engineering, 2006.

[10] M. Ben, N. Georgantas, and V. Issarny. COCOA:
COnversation-based service COmposition in pervAsive
computing environments with QoS support. Journal of
Systems and Software, 80(12):1941–1955, 2007.

[11] J. Bisbal and B. Cheng. Resource-based approach to feature
interaction in adaptive software. In Workshop on
Self-Healing systems, 2004.

[12] K. Biyani and S. Kulkarni. Mixed-mode adaptation in
distributed systems: A case study. In Software Engineering
for Adaptive and Self-Managing Systems, 2007.

[13] R. Borges, A. d’Avila Garcez, and L. Lamb. Integrating
model verification and self-adaptation. In International
Conference on Automated Software Engineering, 2010.

[14] A. Bracciali, A. Brogi, and C. Canal. A formal approach to
component adaptation. Journal of Systems and Software,
74(1):45–54, 2005.

[15] J. Bradbury, J. Cordy, J. Dingel, and Wermelinger M. A
survey of self-management in dynamic software architecture
specifications. In Workshop on Self-Managed Systems, 2004.

[16] D. Breitgand, E. Henis, and O. Shehory. Automated and
adaptive threshold setting: Enabling technology for
autonomy and self-management. In International Conference
on Automatic Computing, 2005.

[17] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the systematic literature
review process within the software engineering domain.
Journal on Systems and Software, 80, 2007.

[18] G. Brown, B. Cheng, H. Goldsby, and J. Zhang.
Goal-oriented specification of adaptation requirements
engineering in adaptive systems. In Software Engineering for
Adaptive and Self-Managing Systems, 2006.

[19] O. Brukman, S. Dolev, and E. Kolodner. A self-stabilizing
autonomic recoverer for eventual Byzantine software.
Journal of Systems and Software, 81(12):2315–2327, 2008.

[20] A. Bucchiarone, C. Vattani P. Pelliccione, and O. Runge.
Self-repairing systems modeling and verification using agg.
Working IEEE/IFIP Conference on Software Architecture,
2009.

[21] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
and G. Tamburrelli. Dynamic qos management and
optimization in service-based systems. IEEE Transactions on
Software Engineering, 37(3):387–409, 2011.

[22] R. Calinescu and M. Kwiatkowska. Using quantitative
analysis to implement autonomic it systems. In 31st
International Conference on Software Engineering, 2009.

[23] J. Camara, C. Canal, and G. Salaun. Behavioural
self-adaptation of services in ubiquitous computing

74

environments. In Software Engineering for Adaptive and
Self-Managing Systems, 2009.

[24] J. Camara and R. de Lemos. Evaluation of resilience in
self-adaptive systems using probabilistic model-checking. In
Software Engineering for Adaptive and Self-Managing
Systems, 2012.

[25] C. Canal, P. Poizat, and G. Salaün. Model-based adaptation
of behavioral mismatching components. IEEE Transactions
on Software Engineering, 34(4):546–563, 2008.

[26] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
Context-aware reflective middleware system for mobile
applications. IEEE Transactions on Software Engineering,
29(10):929–945, 2003.

[27] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo
Presti, and R. Mirandola. Moses: A framework for qos
driven runtime adaptation of service-oriented systems. IEEE
Transactions on Software Engineering, 99, 2011.

[28] L. Cavallaro, E. Di Nitto, P. Pelliccione, M. Pradella, and
M. Tivoli. Synthesizing adapters for conversational
web-services from their wsdl interface. In Software
Engineering for Adaptive and Self-Managing Systems, 2010.

[29] Luca Cavallaro and Elisabetta Di Nitto. An approach to adapt
service requests to actual service interfaces. In Software
Engineering for Adaptive and Self-Managing Systems, 2008.

[30] T. Chaari, D. Ejigu, F. Laforest, and V.M. Scuturici. A
comprehensive approach to model and use context for
adapting applications in pervasive environments. Journal of
Systems and Software, 80(12):1973–1992, 2007.

[31] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle.
Software engineering for self-adaptive systems: A research
roadmap. In Software Engineering for Self-Adaptive Systems.
LNCS vol. 5525, Springer, 2009.

[32] S.N. Chuang and A. Chan. Dynamic qos adaptation for
mobile middleware. IEEE Transactions on Software
Engineering, 34(6):738–752, 2008.

[33] F. Cuadrado, J. Duenas, and R. Garcia-Carmona. An
autonomous engine for services configuration and
deployment. IEEE Transactions on Software Engineering,
38:520–536, 2012.

[34] R. de Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson,
M. Litoiu, B. Schmerl, G. Tamura, N. Villegas, T. Vogel,
D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs,
K. Goeschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai,
J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,
C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith, J.P.
Sousa, L. Tahvildari, K. Wong, and J. Wuttke. Software
engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems
II. LNCS, Springer, 2012.

[35] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli. A survey of autonomic communications.
Transactions on Autonomous and Adaptive Systems,
1:223–259, 2006.

[36] A. Ebnenasir. Designing run-time fault-tolerance using

dynamic updates. In Software Engineering for Adaptive and
Self-Managing Systems, 2007.

[37] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli.
Model evolution by run-time parameter adaptation. In 31st
International Conference on Software Engineering, 2009.

[38] N. Esfahani, E. Kouroshfar, and S. Malek. Taming
uncertainty in self-adaptive software. In International
Symposium on Foundations of Software Engineering, 2011.

[39] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. Self-adaptive
software meets control theory: A preliminary approach
supporting reliability requirements. In International
Conference on Automated Software Engineering, 2011.

[40] J. Fox. A formal orchestration model for dynamically
adaptable services with cows. In International Conference on
Adaptive and Self-Adaptive Systems and Applications, 2011.

[41] D. Garlan and B. Schmerl. Model-based adaptation for
self-healing systems. In Workshop on Self-Healing systems,
2002.

[42] David Garlan, S.W. Cheng, A. Cheng Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE Computer,
37:46–54, 2004.

[43] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte. Self-stabilizing
robot formations over unreliable networks. ACM
Transactions on Autonomous and Adaptive Systems,
4(3):17:1–17:29, 2009.

[44] M. Güdemann, F. Nafz, F. Ortmeier, H. Seebach, and
W. Reif. A specification and construction paradigm for
organic computing systems. In International Conference on
Self-Adaptive and Self-Organizing Systems, 2008.

[45] J. Guofei, C. Haifeng, and K. Yoshihira. Discovering likely
invariants of distributed transaction systems for autonomic
system management. In International Conference on
Autonomic Computing, 2006.

[46] R. Haesevoets, D. Weyns, T. Holvoet, and W. Joosen. A
formal model for self-adaptive and self-healing
organizations. In Software Engineering for Adaptive and
Self-Managing Systems, 2009.

[47] K. Hansen, W. Zhang, and M. Ingstrup. Towards
self-managed executable petri nets. In International
Conference on Self-Adaptive and Self-Organizing Systems,
2008.

[48] W. Heaven, D. Sykes, J. Magee, and J. Kramer. Software
engineering for adaptive and self-managing systems. chapter
A case study in goal-driven architectural adaptation. 2009.

[49] D. Herbert, V. Sundaram, Y.H. Lu, S. Bagchi, and Z. Li.
Adaptive correctness monitoring for wireless sensor
networks using hierarchical distributed run-time invariant
checking. ACM Transactions on Autonomous and Adaptive
Systems, 2(3), 2007.

[50] M. Huebscher and J. McCann. A survey of autonomic
computing: degrees, models, and applications. ACM
Computer Surveys, 40:7:1–7:28, 2008.

[51] A. Joolia, T. Batista, G. Coulson, and A. Gomes. Mapping
adl specifications to an efficient and reconfigurable runtime
component platform. In 5th Working IEEE/IFIP Conference
on Software Architecture, 2005.

[52] M. Karlsson and M. Covell. Dynamic black-box
performance model estimation for self-tuning regulators. In
International Conference on Automatic Computing, 2005.

[53] J.O. Kephart and D.M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

75

[54] M. Kim, J. Jeong, and S. Park. From product lines to
self-managed systems: an architecture-based runtime
reconfiguration framework. In Design and Evolution of
Autonomic Application Software, 2005.

[55] B. Kitchenham and S. Charters. Guidelines for performing
systematic literature reviews in software engineering. (EBSE
2007-001, Keele and Durham University), 2007.

[56] S. Ko, I. Gupta, and Y. Jo. A new class of nature-inspired
algorithms for self-adaptive peer-to-peer computing. ACM
Transactions on Autonomous and Adaptive Systems,
3(3):11:1–11:34, 2008.

[57] L. Konig and H. Schmeck. A completely evolvable
genotype-phenotype mapping for evolutionary robotics. In
International Conference on Self-Adaptive and
Self-Organizing Systems, 2009.

[58] J. Kramer and J. Magee. Self-managed systems: An
architectural challenge. Future of Software Engineering,
2007.

[59] A. Lapouchnian, W. Robinson, V. Souza, and J. Mylopoulos.
Awareness requirements for adaptive systems. Software
Engineering for Adaptive and Self-Managing Systems, 2011.

[60] Z. Lei and N. Georganas. Adaptive video transcoding and
streaming over wireless channels. Journal of Systems and
Software, 75(3):253–270, 2005.

[61] J. Magee and T. Maibaum. Towards specification, modelling
and analysis of fault tolerance in self managed systems. In
Software Engineering for Adaptive and Self-Managing
Systems, 2006.

[62] S.S. Manvi and P. Venkataram. An agent based adaptive
bandwidth allocation scheme for multimedia applications.
Journal of Systems and Software, 75(3):305–318, 2005.

[63] R. Mateescu, P. Poizat, and G. Salaün. Behavioral adaptation
of component compositions based on process algebra
encodings. In International Conference on Automated
Software Engineering, 2007.

[64] R. Mateescu, P. Poizat, and G. Salaun. Adaptation of service
protocols using process algebra and on-the-fly reduction
techniques. IEEE Transactions on Software Engineering, 99,
2011.

[65] B. Morin, O. Barais, G. Nain, and J.M. Jezequel. Taming
dynamically adaptive systems using models and aspects. In
31st International Conference on Software Engineering,
2009.

[66] R. Nou, S. Kounev, F. Julià, and J. Torres. Autonomic QoS
control in enterprise Grid environments using online
simulation. Journal of Systems and Software, 82(3):486–502,
2009.

[67] P. Oreizy, N. Medvidovic, and R. Taylor. Architecture-based
runtime software evolution. In 20th International Conference
on Software engineering. IEEE, 1998.

[68] P. Pelliccione, M. Tivoli, A. Bucchiarone, and A. Polini. An
architectural approach to the correct and automatic assembly
of evolving component-based systems. Journal of Systems
and Software, 81(12):2237–2251, 2008.

[69] H. Raja and O. Scholz. A case study on self-sufficiency of
individual robotic modules in an arena with limited energy
resources. In International Conference on Adaptive and
Self-Adaptive Systems and Applications, 2011.

[70] C. Roblee and G. Cybenko. Implementing large-scale
autonomic server monitoring using process query systems. In
International Conference on Automatic Computing, 2005.

[71] M. Salehie and L. Tahvildari. Self-adaptive software:

Landscape and research challenges. Transactions on
Autonomous and Adaptive Systems, 4:14:1–14:42, 2009.

[72] M. Sama, S. Elbaum, F. Raimondi, D. Rosenblum, and
Z. Wang. Context-aware adaptive applications: Fault patterns
and their automated identification. IEEE Transactions on
Software Engineering, 36(5):644–661, 2010.

[73] M. Sama, D. Rosenblum, Z. Wang, and S. Elbaum.
Model-based fault detection in context-aware adaptive
applications. In International Symposium on Foundations of
Software Engineering, 2008.

[74] T. Seceleanu and D. Garlan. Developing adaptive systems
with synchronized architectures. Journal of Systems and
Software, 79(11):1514–1526, 2006.

[75] S. Seshia. Autonomic reactive systems via online learning. In
International Conference on Autonomic Computing, 2007.

[76] H. Shan, G. Jiang, and K. Yoshihira. Extracting overlay
invariants of distributed systems for autonomic system
management. In International Conference on Self-Adaptive
and Self-Organizing Systems, 2010.

[77] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai. Autonomic
computing control of composed web services. In Software
Engineering for Adaptive and Self-Managing Systems, 2010.

[78] Y. Steven, G. Indranil, and J. Yookyung. Novel
mathematics-inspired algorithms for self-adaptive
peer-to-peer computing. In International Conference on
Self-Adaptive and Self-Organizing Systems, 2007.

[79] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals
to components: a combined approach to self-management. In
Software Engineering for Adaptive and Self-Managing
Systems, 2008.

[80] D. Tacconi, D. Miorandi, I. Carreras, F. D. Pellegrini, and
I. Chlamtac. Cooperative evolution of services in ubiquitous
computing environments. ACM Transactions on Autonomous
and Adaptive Systems, 6(3):20:1–20:24, 2011.

[81] G. Tamura, N.M. Villegas, H. Muller, J.P. Sousa, B. Becker,
G. Karsai, S. Mankovskii, M. Pezze, W. Schafer,
L. Tahvildari, and K. Wong. Towards practical runtime
verification and validation of self-adaptive software systems.
Software Engineering for Self-Adaptive Systems II, Springer,
2012.

[82] L. Tan. Model-based self-monitoring embedded programs
with temporal logic specifications. In International
Conference on Automated Software Engineering, 2005.

[83] E. Vassev and M. Hinchey. ASSL: A software engineering
approach to autonomic computing. Computer, 42(6):90–93,
2009.

[84] N. Villegas, H. Müller, G. Tamura, L. Duchien, and
R. Casallas. A framework for evaluating quality-driven
self-adaptive software systems. In Software Engineering for
Adaptive and Self-Managing Systems, 2011.

[85] X. Wang, Z. Du, Y. Chen, and S. Li. Virtualization-based
autonomic resource management for multi-tier Web
applications in shared data center. Journal of Systems and
Software, 81(9):1591–1608, 2008.

[86] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe. An
automated formal approach to managing dynamic
reconfiguration. 2006.

[87] M. Wermelinger, A. Lopes, and J. Fiadeiro. A graph based
architectural (re)configuration language. In International
Symposium on Foundations of Software Engineering, 2001.

[88] D. Weyns. Towards an integrated approach for validating

76

qualities of self-adaptive systems. ISSTA Workshop on
Dynamic Analysis, 2012.

[89] D. Weyns, U. Iftikhar, S. Malek, and J. Andersson. Claims
and supporting evidence for self-adaptive systems. Software
Engineering for Adaptive and Self-Managing Systems, 2012.

[90] D. Weyns, S. Malek, and J. Andersson. Forms: a formal
reference model for self-adaptation. In International
Conference on Automatic Computing, 2010.

[91] D. Weyns, S. Malek, and J. Andersson. Forms: Unifying
reference model for formal specification of distributed
self-adaptive systems. ACM Transactions on Autonomous
and Adaptive Systems, 7(1), 2012.

[92] C. Ye, S. Cheung, and W. Chan. Process evolution with
atomicity consistency. In Software Engineering for Adaptive

and Self-Managing Systems, 2007.
[93] Z. Yu, J. Tsai, and T. Weigert. An adaptive automatically

tuning intrusion detection system. ACM Transactions on
Autonomous and Adaptive Systems, 3(3):10:1–10:25, 2008.

[94] J. Zhang and B. Cheng. Model-based development of
dynamically adaptive software. In 28th International
Conference on Software Engineering, 2006.

[95] J. Zhang and B. Cheng. Using temporal logic to specify
adaptive program semantics. Journal of Systems and
Software, 79(10):1361–1369, 2006.

[96] Z. Zhang and H. Shen. M-aid: An adaptive middleware built
upon anomaly detectors for intrusion detection and rational
response. ACM Transactions on Autonomous and Adaptive
Systems, 4(4):24:1–24:35, 2009.

77

Appendix A

ID Year Title Author
SEAMS [79] 2008 From Goals To Components: A Combined Approach To Self-Management Sykes et al.
SEAMS [23] 2009 Behavioural Self-Adaptation of Services in Ubiquitous Computing Environments Camara et al.
SEAMS [46] 2009 A Formal Model for Self-Adaptive and Self-Healing Organizations Haesevoets et al.
SEAMS [6] 2010 Live Goals for Adaptive Service Compositions Baresi & Pasquale
SEAMS [28] 2010 Synthesizing adapters for conversational web-services from their WSDL interface Cavallaro et al.
SEAMS [77] 2010 Autonomic Computing Control of Composed Web Services Solomon et al.
SEAMS [59] 2011 Awareness Requirements for Adaptive Systems Souza
SEAMS [7] 2011 A CSP-based Framework for the Specification, Verification, and Implementation of

Adaptive Systems
Bartels & Kleine

SEAMS [48] 2009 A Case Study in Goal-Driven Architectural Adaptation Heaven et al.
SEAMS [18] 2006 Goal-oriented Specification of Adaptation Requirements Engineering in Adaptive Sys-

tems
Brown et al.

SEAMS [61] 2006 Towards Specification, Modelling and Analysis of Fault Tolerance in Self Managed Sys-
tems

Magee & Maibaum

SEAMS [12] 2007 Mixed-Mode Adaptation in Distributed Systems: A Case Study Biyani & Kulkarni
SEAMS [36] 2007 Designing Run-Time Fault-Tolerance Using Dynamic Updates Ebnenasir
SEAMS [92] 2007 Process Evolution with Atomicity Consistency Ye & Chan
SEAMS [29] 2008 An Approach to Adapt Service Requests to Actual Service Interfaces Cavallaro & Nitto
SASO [76] 2010 Extracting Overlay Invariants of Distributed Systems for Autonomic System Manage-

ment
Shan et al.

SASO [47] 2008 Towards Self-Managed Executable Petri Nets Hansen et al.
SASO [44] 2008 A Specification and Construction Paradigm for Organic Computing Systems Güdemann et al.
SASO [78] 2007 Novel Mathematics-Inspired Algorithms for Self-Adaptive Peer-to-Peer Computing Ko et al.
SASO [57] 2009 A Completely Evolvable Genotype-Phenotype Mapping for Evolutionary Robotics König & Schmeck
WICSA [51] 2005 Mapping ADL Specifications to an Efficient and Reconfigurable Runtime Component

Platform
Joolia et al.

WICSA [20] 2009 Self-Repairing Systems Modeling & Verification using AGG Bucchiarone et al.
WOSS [5] 2004 Support for Feedback and Change in Self-adaptive Systems Balasubramaniam et

al.
WOSS [41] 2002 Model-based Adaptation for Self-Healing Systems Garlan & Schmerl
WOSS [11] 2004 Resource-based Approach to Feature Interaction in Adaptive Software Bisbal & Cheng
FSE [73] 2008 Model-Based Fault Detection in Context-Aware Adaptive Applications Sama et al.
FSE [38] 2011 Taming Uncertainty in Self-Adaptive Software Esfahani et al.
FSE [87] 2001 A Graph Based Architectural (Re)configuration Language Wermelinger et al.
JSS [66] 2009 Autonomic QoS control in enterprise Grid environments using online simulation Nou et al.
JSS [74] 2006 Developing adaptive systems with synchronized architectures Seceleanu & Garlan
JSS [14] 2005 A formal approach to component adaptation Bracciali et al.
JSS [95] 2006 Using temporal logic to specify adaptive program semantics Zhang & Cheng
JSS [68] 2008 An architectural approach to the correct and automatic assembly of evolving component-

based systems
Pelliccione et al.

JSS [19] 2008 A self-stabilizing autonomic recoverer for eventual Byzantine software Brukman et al.
JSS [85] 2008 Virtualization-based autonomic resource management for multi-tier Web applications in

shared data center
Wang et al.

JSS [10] 2007 COCOA: COnversation-based service COmposition in pervAsive computing environ-
ments with QoS support

Mokhtar et al.

JSS [62] 2005 An agent based adaptive bandwidth allocation scheme for multimedia applications Manvi & Venkataram
JSS [60] 2005 Adaptive video transcoding and streaming over wireless channels Z. Lei & Georganas
JSS [30] 2007 A comprehensive approach to model and use context for adapting applications in perva-

sive environments
Chaari et al.

78

ID Year Title Author
DEAS [54] 2005 From Product Lines to Self-Managed Systems: An Architecture-Based Runtime Recon-

figuration Framework
Kim et al.

ICSE [37] 2009 Model Evolution by Run-Time Parameter Adaptation Epifani
ICSE [22] 2009 Using Quantitative Analysis to Implement Autonomic IT Systems Calinescu &

Kwiatkowska
ICSE [65] 2009 Taming Dynamically Adaptive Systems Using Models and Aspects Morin et al.
ICSE [9] 2006 Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation Becker et al.
ICSE [94] 2006 Model-Based Development of Dynamically Adaptive Software Zhang & Cheng
TSE [26] 2003 CARISMA: Context-Aware Reflective mIddleware System for Mobile Applications Capra et al.
TSE [64] 2011 Adaptation of Service Protocols using Process Algebra and On-the-Fly Reduction Tech-

niques
Mateescu et al.

TSE [32] 2008 Dynamic QoS Adaptation for Mobile Middleware Chuang et al.
TSE [21] 2011 Dynamic QoS Management and Optimization in Service-Based Systems Calinescu et al.
TSE [33] 2011 An Autonomous Engine for Services Configuration and Deployment Cuadrado et al.
TSE [25] 2008 Model-Based Adaptation of Behavioral Mismatching Components Canal et al.
TSE [72] 2010 Context-Aware Adaptive Applications: Fault Patterns and Their Automated Identification Sama et al.
TSE [27] 2011 MOSES: a Framework for QoS Driven Runtime Adaptation of Service-oriented Systems Cardellini et al.
ASE [63] 2007 Behavioral Adaptation of Component Compositions based on Process Algebra Encodings Mateescu et al.
ASE [39] 2011 Self-Adaptive Software Meets Control Theory: A Preliminary Approach Supporting Re-

liability Requirements
Filieri et al.

ASE [13] 2010 Integrating Model Verification and Self-Adaptation Borges et al.
ASE [82] 2005 Model-Based Self-Monitoring Embedded Programs With Temporal Logic Specifications Tan
ASE [86] 2006 An Automated Formal Approach to Managing Dynamic Reconfiguration I. Warren et al.
Adaptive [69] 2011 A Case Study on Self-Sufficiency of Individual Robotic Modules in an Arena With Lim-

ited Energy Resources
R. Humza & Scholz

Adaptive [40] 2011 A Formal Orchestration Model for Dynamically Adaptable Services with COWS Fox
TAAS [56] 2008 A New Class of Nature-Inspired Algorithms for Self-Adaptive Peer-to-Peer Computing Ko & Gupta
TAAS [96] 2009 M-AID: An Adaptive Middleware Built Upon Anomaly Detectors for Intrusion Detection

and Rational Response
Zhang

TAAS [43] 2009 Self-Stabilizing Robot Formations over Unreliable Networks Gilbert et al.
TAAS [93] 2008 An Adaptive Automatically Tuning Intrusion Detection System Yu & Tsai
TAAS [49] 2007 Adaptive Correctness Monitoring for Wireless Sensor Networks Using Hierarchical Dis-

tributed Run-Time Invariant Checking
Herbert et al.

TAAS [80] 2011 Cooperative Evolution of Services in Ubiquitous Computing Environments Tacconi
ICAC [45] 2006 Discovering Likely Invariants of Distributed Transaction Systems for Autonomic System

Management
Jiang

ICAC [2] 2006 Resource Management in the Autonomic Service-Oriented Architecture Almeida et al.
ICAC [70] 2005 Implementing Large-Scale Autonomic Server Monitoring Using Process Query Systems Roblee et al.
ICAC [52] 2005 Dynamic Black-Box Performance Model Estimation for Self-Tuning Regulators Karlsson & Covell
ICAC [75] 2007 Autonomic Reactive Systems via Online Learning Seshia
ICAC [90] 2010 FORMS: a FOrmal Reference Model for Self-adaptation Weyns et al.
ICAC [16] 2005 Automated and Adaptive Threshold Setting: Enabling Technology for Autonomy and

Self-Management
D. Breitgand et al.

ICAC [1] 2008 Multi-Level Intrusion Detection System (ML-IDS) Al-Nashif et al.
ICAC [3] 2008 Generating Adaptation Policies for Multi-Tier Applications in Consolidated Server Envi-

ronments
Jung et al.

79

