
Design for Sustainability = Runtime Adaptation ⋃ Evolution

Danny Weyns, Mauro Caporuscio, Bahtijar Vogel, Arianit Kurti
Deptartment of Computer Science

Linnaeus University
Växjö SE-351 95, Sweden

Contact: danny.weyns@lnu.se; mauro.caporuscio@lnu.se

ABSTRACT
Continuous change changes everything; it introduces various
uncertainties, which may harm the sustainability of software
systems. We argue that integrating runtime adaptation and
evolution is crucial for the sustainability of software sys-
tems. Realising this integration calls for a radical change
in the way software is developed and operated. Our posi-
tion is that we need to Design for Sustainability. To that
end, we present: (i) the AdEpS model (Adaptation and Evo-
lution processes for Sustainability) to handle and mitigate
uncertainties by means of integrating runtime adaptation
and evolution, and (ii) a set of engineering principles to de-
sign software systems that facilitate the application of the
AdEpS model to build sustainable software.

1. INTRODUCTION
In ecology, sustainability refers to the ability of biological

systems to remain diverse and productive, i.e., sustainability
is the endurance of systems and processes. Sustainability is
a systemic concept that includes a set of dimensions [3]: In-
dividual and Social sustainability, Economic sustainability,
Environmental sustainability, and Technical sustainability.
While individual, social, economic, and environmental sus-
tainability are well-established concepts, technical sustain-
ability, referring to “the longevity of information, systems,
and infrastructure and their adequate evolution with chang-
ing surrounding conditions”, is an emerging topic, mainly
related to the continuous and fast evolution of technologies.

Modern software systems – such as cyber-physical systems,
cloud and service-oriented systems – are realised by means
of dynamic composition of autonomous and heterogeneous
resources that interact with each other to provide users
with rich functionalities. Since these systems operate under
highly dynamic conditions where both the entities and their
interconnections are subject to continuous change, the tradi-
tional stability assumptions made on systems’ design are no
longer valid. The dynamic operating conditions introduce
uncertainty, which may harm the longevity of the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
Copyright 2015 ACM 978-1-4503-3393-1/15/09
DOI: http://dx.doi.org/10.1145/2797433.2797497 ...$15.00.

Uncertainty can lead to “incomplete, blurred, inaccurate,
unreliable, inconclusive, or potentially false” results [30, 28].
Indeed, uncertainty spans many different dimensions, such
as context, goals, models, functional and quality properties.
When uncertainty is the rule rather than the exception, man-
aging it becomes a crucial factor for the longevity and thus
the sustainability of software systems. In other words, a
software system is sustainable if it is resilient to uncertainty.

Developing sustainable software systems is challenging, as
uncertainty permeates virtually all stages of the software
system, from goals elicitation to design, validation and in
particular runtime. This raises a set of groundbreaking chal-
lenges that call for radically changing the way software is
developed, validated and operated. Software engineering
students have been taught for decades the driving princi-
ples of design for reuse. However, we argue that handling
the continuous change of software and realising sustainable
systems require a shift in perspective by putting adapta-
tion and evolution as driving principles in software design.
Whereas adaptation refers to the ability of mitigating un-
certainty in order to keep satisfying the goals, evolution
refers to the ability of accommodating uncertainty in or-
der to handle goal changes. Phrasing it differently: reuse
puts the stable parts of software central, but the dominating
parts of modern software systems are the changing parts;
this change requires new engineering principles.

So far, adaptation and evolution have mainly been tack-
led independently by focusing on runtime and development
time issues, respectively. However, the increasing need for
business continuity requires modern software systems to be
continuously available, which blurs the traditional separa-
tion between runtime and development time: uncertainty
must be handled when the information becomes available
while the system is running. To that end, we argue in this
paper for a radically new approach to engineer software that
we coin: Design for Sustainability. We underpin our argu-
mentation with: (i) the AdEpS model (Adaptation and Evo-
lution processes for Sustainability) to handle and mitigate
uncertainties by means of integrating runtime adaptation
and evolution, and (ii) a set of engineering principles to de-
sign software systems that facilitate the application of the
AdEpS model to build sustainable software.

This paper is structured as follows. Section 2 describes
the AdEpS model that integrates runtime adaptation and
evolution. In Section 3, we define a set of engineering prin-
ciples to design software systems that adhere to the AdEpS
model. Finally, we reflect on design for sustainability and its
realisation, and wrap up with open challenges in Section 4.

2. THE ADEPS MODEL
Almost two decades ago, Oreizy et al. [27] proposed a com-

prehensive and integrated model that aimed at handling the
challenges of adaptation and evolution at run time. Central
to this seminal work are two interacting processes, one to
handle adaptation, the other one to handle evolution. The
Oreizy model takes an architectural perspective on handing
change1 for monitoring, planning, evaluating, coordinating,
and implementing reconfigurations. In their FOSE 2007 pa-
per, Kramer and Magee [23] confirmed that software archi-
tecture provides a suitable abstraction to deal with change
at runtime, which is nowadays widely accepted [7, 9]. Since
the introduction of Oreizy’s model, research has yielded a
set of principle insights in handling change. Figure 1 en-
hances Oreizy’s model, integrating these insights. We call
this the AdEpS model (Adaptation and Evolution processes
for Sustainability).

• First, we have learned that changing software involves
four distinct activities: monitor, analyze, plan, and
enact. These four activities are explicitly modeled in
the AdEpS model, both for adaptation and evolution.

• Second, over the years, the importance of uncertainty
in dealing with change has become manifest. The
AdEpS model explicitly handles different types of un-
certainty.

• Third, different to the original model of Oreizy, the
AdEpS model provides explicit representations of the
resources on which the change processes work: (i) the
architecture description and the system implementa-
tion for evolution, and (ii) the runtime model and run-
ning system for adaptation.

We explain now the two interacting change processes that
constitute the AdEpS model in more detail and highlight
their interactions.

2.1 Adaptation Management
The aim of Adaptation Management (see Figure 1) is to

preserve system goals, regarding of dynamics in the system,
or the context in which it executes. The central resources
of adaptation management are the running system and a
runtime architecture model2. Adaptation management is
usually performed in an automatic way, possibly supported
by humans in the loop. Adaptation management monitors
the running system and its execution context, updating a
runtime architecture model. This model is analysed and
when system goals are violated, a plan is selected (or gener-
ated) and enacted to adapt the running system accordingly.
Such adaptations can range from changing a single parame-
ter value up to changing the architecture configuration. Fig-
ure 1 shows different sources of uncertainties involved in
adaptation management. The context in which the system
executes may be subject of uncertainty; e.g., the availabil-
ity of resources may dynamically change in ways that are
difficult to predict. The runtime architecture model may be
subject to uncertainties; e.g., the model may only provide
a probability of the response time of a particular compo-
nent. Monitoring may suffer of uncertainty; e.g., measuring

1With change, we refer both to adaptation and evolution.
2The architecture model may include representations of the
running system, the context, goals, plans, etc. [34].

Figure 1: AdEpS model: integrated adaptation and
evolution for sustainable software systems

a physical distance may be subject to noise. Change enact-
ment may be subject to uncertainty; e.g., the time to change
a service may be different as expected. Finally, there may
be uncertainty with respect to the adaptation itself; e.g., the
analysis of a problem based on a model abstraction of the
real situation may imply inaccuracies.

2.2 Evolution Management
The aim of Evolution Management (see Figure 1) is to

handle changes of system goals in the context of business
continuity; e.g., handle a new user requirement for a 24/7
system. The central resources of evolution management are
the system implementation and the architecture descrip-
tion. Evolution management is usually performed by hu-
mans, supported by tools. Evolution management can be
triggered in two principle ways, see Figure 2.3 First, adap-
tation management may trigger the need for evolution, that
is, when analysis discovers a problem for which no miti-
gation plan is available (the problem was not anticipated).
This scenario is illustrated in Figure 2(a). When no adap-
tation plan is available, evolution management will analyse
the request. This will result in a plan to update the soft-
ware architecture and the system implementation. The up-
date is then enacted to the running system and the runtime
architecture model. Second, the system goals may evolve
due to changing user requirements or other changes in the

3We describe the evolution scenarios conceptually. In prac-
tice, each step may include different activities, that are per-
formed automatically, semi-automatically, or manually.

Figure 2: Processes at Work

system or environment. This scenario is illustrated in Fig-
ure 2(b). When evolution management gets a request for
a goal change, the request will be analysed resulting in an
update plan. Subsequently, the architecture description and
the system implementation will be updated. The evolution
will then trigger an update of the running system and the
runtime architecture model. Evolution changes are typically
changing or adding new components, integrating platform
updates, etc. Evidently, evolution requires synchronization
between the adaptation and evolution processes. Evolution
may be subject to different uncertainties as shown in Fig-
ure 1. Besides uncertainties with respect to monitoring and
enacting (similar as explained above), a key uncertainty of
evolution management is goals uncertainty; a typical exam-
ple is a user requirement that was not anticipated before.

From this explanation, it becomes clear that handling run-
time adaptation and evolution for sustainability has a per-
vasive impact on the software. We argue that support for
adaptation and evolution should be accounted from the in-
ception of a software system. In the next section, we explain
engineering principles that underly design for sustainability.

3. ENGINEERING PRINCIPLES FOR DE-
SIGN FOR SUSTAINABILITY

The AdEpS model defines how a software system can han-
dle change through runtime adaptation and evolution in an
integrated way. We shift our focus now to realising software
systems that adhere to the AdEpS model, which is a foun-
dational and particularly challenging problem. It requires
at least that the system offers runtime support for moni-
toring its status (and the status of the execution context)
and enacting changes (both adaptations and evolution up-
dates). Subsequently, we discuss existing approaches to sup-
port runtime adaptation and evolution. We reflect on these

approaches and then present a set of engineering principles
to support software design for sustainability.

3.1 Existing Approaches to Support Runtime
Change

Figure 3 shows the typical progressing levels of maturity to
solve problems of software systems over time. Software engi-
neers typically start with solving specific problems in a spe-
cific way. When problems recur, the expertise is turned into
reusable solutions, for example in the form of frameworks or
libraries. In the next stage, engineers abstract from concrete
realisations and document design knowledge in the form of
architectural approaches to solve the problems, such as tac-
tics, patterns and reference solutions. Then, the knowledge
is often consolidated in stable middleware solutions, offering
developers programming abstractions and supporting infras-
tructure. Finally, language support is developed that pro-
vides an integrated solution to software developers.

In terms of the Figure 3, researchers and engineers have
explored solutions that enable runtime change (adaptation
and evolution) of software systems at different levels. We
illustrate this with a few examples.

Frameworks – Examples of frameworks are HotSwap [10]
that extends the Java VM with the ability to substitute
modified code in a running application through the debugger
API; Malabara et al. [24] propose an evolution system that
extends dynamic class loaders, supporting replacement of
class definitions. JDRUMS [1] allows the introduction of new
versions of existing Java classes on the fly while preserving
the internal state of objects.

FUSION [11] is an advanced framework for engineering
self-tuning software systems; one of its particular features
is that it supports learning run-time behaviors that were
unforeseen at design time.

Patterns, Tactics, Reference Approaches – An exam-

ple of patterns is provided in [36], where the authors doc-
ument a variety of patterns that support runtime adapta-
tion. One example is the information sharing pattern that
deals with the problem of adaptation in distributed systems
where each sub-system requires information about the state
of other sub-systems because a local adaptation may impact
these other sub-systems (e.g., on some quality attribute of
those operations). The information sharing pattern restricts
the interactions between sub-systems to exchange of moni-
tored information. The interactions are typically localised,
that is, sub-systems exchange information only with sub-
systems in their (physical or logical) context.

In [35], the authors present an architectural approach for
online updating software product line products. The ap-
proach comprises of two complementary parts: (1) an up-
date viewpoint that defines the conventions for constructing
and using architecture views to deal with multiple update
concerns; and (2) a supporting framework that provides an
extensible infrastructure supporting integrators of a SPL.
The approach has been empirically validated for live up-
dates of products derived from an industrial SPL for logistic
systems [26].

In [29], the authors propose a pattern-oriented develop-
ment approach, where patterns are considered as the main
building blocks of the architecture and changes are applied
by means of patterns substitution, i.e., design evolution is
identified in terms of replacement of patterns by other pat-
terns. Another interesting approach is proposed in [2], where
the authors present the Evolution Style, which defines a fam-
ily of domain-specific architecture evolution paths that share
common properties and satisfy a common set of constraints.
The evolution style specifies the set of concepts needed to
define and analyse the software architecture evolution: (i)
the set of operators defining the evolution transitions, (ii)
the set of evolution path constraints defining whether a path
is allowed or not, and (iii) the set of evaluation functions
used to compare different evolution paths with respect to
quality metrics.

Middleware and Component Models – An example
of a middleware solution is SOCAM [15] (Service-Oriented
Context-Aware Middleware) that supports programmers
building and rapid prototyping of context-aware services
(i.e., services that use various context data such as envi-
ronment variables and data about computational elements
to adapt themselves to the changing context dynamically
and automatically). SOCAM offers support for acquiring,
discovering, interpreting and accessing various contexts to
build context-aware services.

The Hydrogen project aims at providing mobile devices
with a distributed middleware platform for context manage-
ment and acquisition [20]. Specifically, Hydrogen distributes
context servers on devices, which are enabled to share their
contexts with other devices in physical proximity. Hydro-
gen adopts an object-oriented context model that allows the
addition of new context types by specializing the generic
context superclass. The Contory [31] middleware is specif-
ically designed to accomplish efficient context management
on mobile devices. In order to make context management
flexible and adaptive, Contory integrates multiple context
provisioning strategies, namely internal sensors-based, ex-
ternal infrastructure-based, and distributed provisioning in
ad hoc networks.

An interesting example of a component model is Frac-

Figure 3: Typical progression of levels of maturity
for software system solutions

tal [5] that endows system components with arbitrary re-
flective capabilities. Components in this model can be en-
dowed with customised introspection and intercession ca-
pabilities that allow fine-grained probing and manipulation
of their internal structure. Another well-known component
model that supports runtime change is OSGi [25]. OSGi
defines a dynamic component system for Java, enabling de-
velopment of applications that are dynamically composed
of components. In OSGi components can be remotely in-
stalled, started, stopped, updated, and uninstalled on the
fly. OSGi is used in popular applications such as Eclipse
and Spring.

Language Support – An example of language support
is COP [19] (Context-oriented Programming), which treats
context explicitly, and provides mechanisms to dynamically
adapt behavior in reaction to changes in context at runtime.
To that end, COP provides explicit language constructs.

Another famous language example is Erlang [12], a func-
tional programming language and runtime system, designed
by Ericsson. Erlang supports runtime evolution at language-
level via the “Dynamic Software Updating” mechanism. In
particular, Erlang can keep two versions of a module in mem-
ory (new and old), and processes can concurrently run code
from both. A process will not move into the new version
until it makes an external call to its module. Erlang fo-
cusses on support for distributed, fault-tolerant, non-stop
applications.

3.2 Engineering Principles
The example approaches discussed in the previous section

demonstrate that a variety of solutions to support runtime
change have been developed over the years. While different
solutions provide different levels of maturity, most of them
focus on particular facets of “support for runtime change” or
apply to particular families of applications. To enable han-
dling runtime adaptation and evolution in a systematic way
(i.e., develop software systems that adhere to the AdEpS
model), we argue for a paradigm shift in the way we realise
software systems. In particular, we argue that sustainabil-
ity requires that software systems are designed and devel-
oped to accommodate runtime adaptation and evolution as
a primary concern, rather than an add-on. We call this “De-

sign for Sustainability.” We have identified three primary
engineering principles that underly design for sustainabil-
ity: variability & meta-variability, probing, and controlled
change. We discuss them now more in detail. For each prin-
ciple, we outline innovative ideas for realisation at the level
of component models and languages.

Design for variability & meta-variability – Variabil-
ity is interpreted as planned or anticipated change that is
pervasive throughout the software lifecycle [13]. The clas-
sic way to realise variability is by instrumenting software
systems with appropriate variability mechanisms that al-
low for guided evolution [32]. However, when considering
sustainable software systems, variants are needed to realise
re-configurations of the system at runtime [4]. The need
for variability handling at runtime has been recognised as a
key challenge in the domain of Dynamic Software Product
Lines [16].

While traditional variability mechanisms may provide
pragmatic solutions to this problem, with design for vari-
ability we refer to systematic approaches to endow software
systems with variability as an integrated property. Such so-
lutions can have different levels of maturity (see Figure 3).
For example, a component model may be defined that offers
abstractions allowing designers to mark particular elements
as variants and add variation points to bind/unbind vari-
ants on the fly. Similarly, a programming language may
offer language constructs that allow programmers to define
parts of the code as variants on the one hand and allow bind-
ing/unbinding these variants dynamically at certain points
in the code on the other hand.

In addition to support variability as a first-class concern,
it is also essential to consider meta-variability, i.e., first-class
support for runtime changes of the variability mechanisms
themselves. Meta-variability is essential to handle uncer-
tainty with regard to unanticipated changes. So far little
research has been done on supporting meta-variability at
runtime; an example is [17].

Design for probing – Probing refers to the ability of col-
lecting data about the system’s runtime behavior and the
context in which it executes. The traditional way of probing
of software systems is to instrument the code with facilities
to collect data from the running system and its execution
context. A classic example at the level of frameworks is a
gauge as supported by Rainbow [14]. An example at lan-
guage level are aspects that allow weaving code into the
system to track its behaviour. In [6], such aspect probes are
used to continuously evaluate the performance of the sys-
tem. In general, extracting particular types of information
through probing is know to be complex and invasive, for
example to support robustness to errors and intrusions.

With design for probing we argue for systematic ap-
proaches to endow engineering approaches for software sys-
tems with integrated facilities for probing their behaviour,
taking into account monitoring uncertainty. For example, a
component model (Figure 3) may allow designers to define
particular elements of the system as monitor-able. The sup-
porting infrastructure should then allow the adaptation or
evolution software (see the AdEpS model) to collect the data
at runtime from these monitor-able elements. At a program-
ming language level, a language may offer constructs that
allow to declare the runtime behaviour of particular parts of
the code as observable. The execution environment should
then allow to track the behaviour at runtime and allow client

code to get access to the monitored data. First-class support
for probing can offer a variety of features to handle monitor
uncertainties, such as the ability of monitoring stochastic
behaviour, filtering noise, etc.

Design for controlled change – In order to handle
change, software systems should be build such that they al-
low enacting changes. A number of solid solutions exist that
provide facilities for changing the running software as we dis-
cussed above. Nevertheless, effecting changes is often done
in an ad-hoc fashion. In [8], the authors highlight the com-
plexity of enacting change and stress the need for coordinat-
ing the adaptation process of software systems. The authors
emphasise the importance of the connection between effect-
ing change and dealing with the variability associated with
the adaptation process. The authors of [18] argue for the
heritage of product lines that provides solid (and practica-
bly) proven engineering foundations, which have been tested
in numerous applications. Variability in product lines might
relate not only to the variation and evolution of a single
system (or its architecture) but to the unifying product line
architecture of a myriad of instances of deployed systems,
for example in mobile devices and similar deployments, each
with different deployment context and configuration options.
Such systems have a long life time and need for frequent up-
date over their lifetime, especially when critical functions
are increasingly software-defined.

In addition to the means for effecting change, systems
should also provide facilities for controlling the change, so
that system consistency is preserved both during and after
the change enactment. Shutting down and restarting the
system is not an option for systems that require business
continuity. To that end, to guarantee consistency and avoid
disruption of service, the system should be placed in a “qui-
escence state” – i.e., a state where the system is both passive
and has no outstanding transactions which it must accept
and service – before the run-time adaptation/evolution is
performed [22]. However, although quiescence (or more re-
laxed, tranquility [33]) is a desirable property, it is difficult to
achieve, since quiescent states are not proven to be reachable
in bounded time. In addition, changing a software element
may require the transfer of state before and after the change
and handle interfering behaviour during the change.

Design for controlled change argues for integrated engi-
neering approaches that support enacting change of software
systems in a consistent manner, taking into account poten-
tial uncertainties of effecting changes. Consistent enacting
change of a running software system is in general a very
complicated challenge. At the level of a component model,
designers may be offered the facilities to define which ele-
ments of the system are effect-able and how the change can
be enacted. Typically, declared variants are candidates for
enactment, while variation points provide the means to en-
act the change. To guarantee consistency of adaptation, the
underlying execution platform needs to support quiescence
and state transfer. Supporting consistent change enactment
at the programming level is an extremely challenging prob-
lem. The key problems are the need for high-level program-
ming abstractions to define: what and how change can be
enacted, defining quiescent states, and handling state trans-
fer if necessary. Furthermore, the underlying execution plat-
form should assure that declared variants are replaced in a
safe state and state transfers are handled properly when a
change is enacted. Last but not least, first-class support for

enacting change should offer support for handling uncertain-
ties of effecting changes. Examples of such features are time
windows to effect changes, mechanisms for acknowledging
successful (or failed) change actions, etc.

4. CONCLUSIONS AND REFLECTIONS
ON DESIGN FOR SUSTAINABILITY

In this position paper, we have argued that integrating
runtime adaptation and evolution is crucial for the sustain-
ability of software systems. To handle the continues change
of software in a systematic way, we have made a case for a
radical new approach to build and operate software that we
coined “design for sustainability.” This approach comprises
two complementary (i) the AdEpS model that describes the
two integrated processes to handle change, regarding of un-
certainties: adaptation management to preserve goals and
evolution management to deal with goal changes, and (ii)
three primary engineering principles to design software sys-
tems that adhere to the AdEps model: design for variability
& meta-variability, design for probing, and design for con-
trolled change. For each principle, we have indicated inno-
vative ideas for realisation at the level of component models
and languages.

Design for sustainability shifts the traditional engineering
focus from the stable, reusable parts of software systems to
the changing parts that are subject to various uncertainties.
Evidently, we have to be careful that we do not swing the
pendulum too far. Realising the vision of design for sustain-
ability will be a complex adventure. We conclude this paper
with a number of reflections:

• How to realise the seamless integration of runtime
adaptation and evolution, that is, how to implement
the AdEpS model?

• How to transfer the abstract engineering principles of
design for sustainability to a practical realisation?

• What are the implications and tradeoffs of applying
the engineering principles of design for sustainability?

• What assurances can be provided for such complex
systems that operate in an ocean of uncertainties?

An important challenge along the path of realising the
engineering approach proposed in this paper is the need for
evaluation, empirical work, and gathering evidence. This
applies to the realisation of both the AdEpS model and the
engineering principles to design software systems that ad-
here to the AdEpS model. In our ongoing line of research on
ActivFORMS [21], we focus currently on the realisation of
the AdEpS model. The approach currently assumes that the
underlying managed system provides facilities for monitor-
ing and consistent adaptation. In ActivFORMS, the logic
to handle adaptation management is realised by means of
formally specified executable models. The models can be
verified offline. The models are then connected with the
managed system through probes and connectors and are di-
rectly executed by a virtual machine. Evolution manage-
ment is realised on top of adaptation management. Evolu-
tion management allows system administrators to track the
behaviour of the system, continue verification at runtime,
and evolve the adaptation models on the fly when needed.

The approach has been evaluated for several application do-
mains with different degrees of criticality, including a robotic
system, mobile learning applications, and a service-based
medical application to support elderly. We refer the inter-
ested reader to the ActivFORMS website.4

The challenges to deal with continues change of software
are huge; applying ad-hoc engineering practice is risky, for
sure in the long term. We have argued that we have to
change the way we design and build software if we want to
deal with the continuous change and uncertainties of soft-
ware in a sustainable way. We offer design for sustainability
as a proposal to open the discussion.

5. REFERENCES
[1] J. Andersson and T. Ritzau. Dynamic code update in

JDRUMS. In Workshop on Software Engineering for
Wearable and Pervasive Computing, 2000.

[2] J. M. Barnes, D. Garlan, and B. Schmerl. Evolution
styles: Foundations and models for software
architecture evolution. Softw. Syst. Model.,
13(2):649–678, May 2014.

[3] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook,
M. Mahaux, B. Penzenstadler, G. Rodŕıguez-Navas,
C. Salinesi, N. Seyff, C. C. Venters, C. Calero, S. A.
Koçak, and S. Betz. The karlskrona manifesto for
sustainability design. CoRR, abs/1410.6968, 2014.

[4] J. Bosch, R. Capilla, and R. Hilliard. Trends in
systems and software variability [guest editors’
introduction]. Software, IEEE, 32(3):44–51, May 2015.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The fractal component model and
its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, Sept. 2006.

[6] M. Caporuscio, A. D. Marco, and P. Inverardi.
Model-based system reconfiguration for dynamic
performance management. Journal of Systems and
Software, 80(4):455 – 473, 2007.

[7] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle. Software engineering for self-adaptive
systems: A second research roadmap. In Software
Engineering for Self-Adaptive Systems II, volume 7475
of Lecture Notes in Computer Science. Springer, 2009.

[8] C. E. da Silva and R. de Lemos. Using dynamic
workflows for coordinating self-adaptation of software
systems. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2009, Vancouver, BC, Canada, May 18-19,
2009, pages 86–95. IEEE, 2009.

[9] R. de Lemos, H. Giese, H. Muller, M. Shaw,
J. Andersson, M. Litoiu, B. Schmerl, G. Tamura,
N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K. Goschka,

4
http://homepage.lnu.se/staff/daweaa/ActivFORMS.htm

A. Gorla, V. Grassi, P. Inverardi, G. Karsai,
J. Kramer, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos,
O. Nierstrasz, M. Pezze, C. Prehofer, W. Sch Lfer,
R. Schlichting, D. Smith, J. P. Sousa, L. Tahvildari,
K. Wong, and J. Wuttke. Software engineering for
self-adaptive systems: A second research roadmap. In
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013.

[10] M. Dmitriev. Towards flexible and safe technology for
runtime evolution of java language applications. In
Proc. of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, 2001.

[11] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: A
framework for engineering self-tuning self-adaptive
software systems. In Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE ’10, 2010.

[12] Ericsson Computer Science Laboratory. Erlang.
http://www.erlang.org/.

[13] M. Galster, D. Weyns, D. Tofan, B. Michalik, and
P. Avgeriou. Variability in software systems - a
systematic literature review. Software Engineering,
IEEE Transactions on, 40(3):282–306, March 2014.

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, Oct. 2004.

[15] T. Gu, H. K. Pung, and D. Q. Zhang. A
service-oriented middleware for building context-aware
services. Journal of Network and Computer
Applications, 28(1):1 – 18, 2005.

[16] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.
Dynamic software product lines. Computer,
41(4):93–95, April 2008.

[17] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet,
K. Schelfthout, and W. Van Betsbrugge. Adding
variants on-the-fly: Modeling meta-variability in
dynamic software product lines. In Proceedings of the
Third International Workshop on Dynamic Software
Product Lines (DSPL SPLC 2009), pages 18–27, 2009.

[18] M. Hinchey, S. Park, and K. Schmid. Building
dynamic software product lines. Computer,
45(10):22–26, Oct 2012.

[19] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125 – 151, 2008.

[20] T. Hofer, W. Schwinger, M. Pichler,
G. Leonhartsberger, J. Altmann, and
W. Retschitzegger. Context-awareness on mobile
devices - the hydrogen approach. In HICSS, 2003.

[21] M. U. Iftikhar and D. Weyns. Activforms: Active
formal models for self-adaptation. In Proceedings of
the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, pages 125–134, New York, NY, USA,
2014. ACM.

[22] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16(11):1293–1306, Nov. 1990.

[23] J. Kramer and J. Magee. Self-managed systems: An

architectural challenge. In 2007 Future of Software
Engineering, FOSE ’07, pages 259–268, 2007.

[24] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic java
classes. In Proc. of the 14th European Conference on
Object-Oriented Programming, 2000.

[25] J. McAffer, P. VanderLei, and S. Archer. OSGi and
Equinox: Creating Highly Modular Java Systems.
Addison Wesley, 2010.

[26] B. Michalik, D. Weyns, N. Boucke, and A. Helleboogh.
Supporting online updates of software product lines:
A controlled experiment. In Empirical Software
Engineering and Measurement (ESEM), 2011.

[27] P. Oreizy, M. M. Golick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An architecture-based
approach to self-adaptive software. IEEE Intelligent
Systems, 14(3):54–62, 1999.

[28] D. Perez-Palacin and R. Mirandola. Uncertainties in
the modeling of self-adaptive systems: A taxonomy
and an example of availability evaluation. In
Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14,
pages 3–14, 2014.

[29] D. Ram and M. Rajasree. Enabling design evolution
in software through pattern oriented approach. In
D. Konstantas, M. Léonard, Y. Pigneur, and S. Patel,
editors, Object-Oriented Information Systems, volume
2817 of Lecture Notes in Computer Science, pages
179–190. Springer Berlin Heidelberg, 2003.

[30] J. C. Refsgaard, J. P. van der Sluijs, A. L. Højberg,
and P. A. Vanrolleghem. Uncertainty in the
environmental modelling process - a framework and
guidance. Environ. Model. Softw., 22(11):1543–1556,
Nov. 2007.

[31] O. Riva. Contory: A middleware for the provisioning
of context information on smart phones. In
Middleware, pages 219–239, 2006.

[32] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy
of variability realization techniques: Research articles.
Softw. Pract. Exper., 35(8):705–754, July 2005.

[33] Y. Vandewoude, P. Ebraert, Y. Berbers, and
T. D’Hondt. Tranquility: A low disruptive alternative
to quiescence for ensuring safe dynamic updates.
IEEE Trans. Softw. Eng., 33(12):856–868, 2007.

[34] D. Weyns, S. Malek, and J. Andersson. Forms:
Unifying reference model for formal specification of
distributed self-adaptive systems. ACM Trans. Auton.
Adapt. Syst., 7(1):8:1–8:61, May 2012.

[35] D. Weyns, B. Michalik, A. Helleboogh, and N. Boucke.
An architectural approach to support online updates
of software product lines. In Proceedings of the 2011
Ninth Working IEEE/IFIP Conference on Software
Architecture, WICSA ’11, pages 204–213, Washington,
DC, USA, 2011. IEEE Computer Society.

[36] D. Weyns, B. Schmerl, V. Grassi, S. Malek,
R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. Goschka. On patterns for
decentralized control in self-adaptive systems. In
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science,
pages 76–107. Springer, 2013.

