
GIS and MAS tight coupling
for Spatial Load Forecasting

Ander Pijoan, Oihane Kamara Esteban,
Cruz E. Borges, and Yoseba K. Penya

Deusto Institute of Technology – DeustoTech Energy,
University of Deusto, Avda. Universidades 24, 48007 – Bilbao, Spain

{ander.pijoan,oihane.esteban,cruz.borges,yoseba.penya}@deusto.es

Abstract. We present here an agent-based system tightly coupled to
geographic information systems (GIS). Our objective is to simulate the
growth of a city in order to foresee the evolution of the electrical demand
in a given zone. The agents are deployed over a GIS-based Multi-Agent
System platform where the geographical components have been abstracted
from the agent system to the environment. The configuration model
uses geographical information to improve the agents’ connection and
perception of the surrounding environment and based on their choices,
we forecast urban evolution and derive the expected increment in electric
consumption. We have validated our approach with real data and discuss
here our conclusions.
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1 Introduction

Agent-based modelling (ABM) is experimenting a notable boost in new fields
lately due to its versatility and ability to model and simulate human behaviour
in very diverse disciplines, as seen in [15,6]. Paradoxically, though ABM is a
well-known and intensively used tool in related areas, Spatial Load Forecasting
(SLF) remains terra incognita for this paradigm.

SLF is a crucial task for the majority of stakeholders in the electric sector,
since it is in charge of calculating the evolution of future energy demand in a
certain zone. So far, the only attempt to bring together ABM and SLF is, to our
notice, [2]. Still, ABM must be coupled tighter to Information Systems (GIS) in
order to top forecasting’s quality.

We advance the state of the art by describing our experience in integrating
an ABM in a GIS along with Volunteer Geographic Information (VGI) in order
to obtain an improved SLF system. The remainder of the paper is divided as
follows. Section 2 gives a brief overview about the main concepts presented in
the research. Section 3 describes both the architecture and logic schema of the
application. Section 4 discusses the results obtained. And, finally, Section 5 draws
the conclusions of the paper and the future work.
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2 World-of-interest

2.1 Long Term Load Forecasting

One of the biggest challenges electrical distribution companies face is the growth in
the demand for electrical power. The analysis of these phenomena is crucial since
an improper estimation may lead to the saturation of electrical facilities and loss of
power supply, along with the consequent economic loss and social distress. Under
current economic conditions, this problematic boosts exponentially: distribution
companies aim at getting the most out of the existing infrastructures, especially
when their renovation can be really expensive. Thus, load forecasts are extremely
important for energy suppliers, Transmission System Operators (TSOs), financial
institutions, and other participants in electric energy generation, distribution,
and retail.

In this venue, there is a special type of forecasting that deserves a closer look
due to its economic importance: Spatial Load Forecasting (SLF). SLF applied
to LTLF uses a model built on GIS to get together data related to electric
distribution, land use and development indicators. In this way, area engineers
are able to predict, years in advance, large load additions to the electric system,
helping them determine whether the current infrastructure should be upgraded
or extended. Failing to do so leads to the inability to cope with load peaks,
appearance of brownouts, blackouts and, generally, low-quality supply. The key
to this end is to be able to foresee changes in the consumption behaviour of the
clients.

The concept of long-term load forecasting involves social, economic, policy
and technical issues, to which we must add the limited information and the
difficulty to operate with the scarce existing data [23]. Related to long-term load
forecasting, horizontal demand growth is also closely linked to urban evolution. In
fact, the main forecasting models derive from the fields of geography and sociology.
Nowadays, these models are being merged with others stemming from artificial
intelligence, integrating the best qualities of both areas: artificial intelligence
provides the learning ability and the capacity to adjust existing data, while social
and spatial models define the natural behaviour inherent to the problem at hand.
The technical literature shows a wide range of methodologies and models for LTLF.
Generally, they can be classified in two broad categories: parametric methods and
artificial-intelligence-based methods. Parametric load forecasting methods can be
classified into three further main approaches: time series, prediction methods, and
regression methods [1]. In turn, artificial intelligence methods comprise neural
networks [18], genetic algorithms [13] support vector machines [16], and fuzzy
logic [7]. Model parameters are estimated using statistical techniques on historical
data of the load and the factors that influence such consumption.

2.2 GIS as an environment for MAS based SLF

The exponential improvement in the performance of computer systems has moti-
vated the development of tools that manipulate the geographical characteristics
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of an object and model them on a map. In this context, Geographic Informa-
tion Systems (GIS) offer an appropriate environment for the capture, storage
and management of both alphanumeric and geographic information. One of the
turning points of GIS is that they serve an important role as an integrating
technology, paving the way that drives to the world of Multi-Agent System (MAS)
and providing a much easier and tighter coupling.

In addition, within MAS technologies, the concept of environments has been
recognized as an important and explicit element which helps model dynamic real
world problems. [9] defines the structural parts of the environment that provide
the system with a logical definition and abstraction. [21] gives a definition of
environment in multi-agent systems, highlighting the exploitable design abstrac-
tion as a reference model that can serve as basis for environment engineering.
Furthermore, there is a lengthy amount of work on agent-based simulations using
GIS, whether it is a geographic phenomena or phenomena with an important
geographic component, ranging from several aspects of urban modelling [14,5] to
housing choice [11].

The MAS system presented hereby is able to simulate the variation in the
load of the transformers and electrical substations located on a certain city. To
this end, we have modelled the behaviour, evaluations and decisions a human
takes when choosing a new place to live. Our configuration is based on the
environmental approach proposed by Russel and Norvig [17,22] being:

Accessible The agents have access to the whole environment.
Non-deterministic A change in the state of the environment depends on the

management of threads by the Operating System on which the configuration
is deployed.

Dynamic The environment can change while the agent deliberated.
Discrete The number of percepts is limited and centralized.

In line with this model, the pseudo code can be described as follows:

Algorithm 1: Pseudocode for GIS-MAS Spatial Load Forecasting

procedure RUN-ENVIRONMENT(state, UPDATE-FN, agents, termination)
inputs: the initial state of the environment
while !termination(state) do

for agent in agents do
PERCEPT[agent] = Get-List-Greenfields(agent, state)

end
for agent in agents do

ACTION1[agent] = Evaluate-Greenfields[PERCEPT(agent)]
ACTION2[agent] = Assign-Greenfield[ACTION1(agent)]

end
state = UPDATE-FN(actions, agent, state)

end

Therefore, our model comprises two different types of agents:
Environment: The environment entities emulate the plots where a new building

can be constructed. Every entity in this category has a list of properties
representing the characteristics of the surrounding neighbourhood, such as
the distances di to several public facilities (e.g. green zones, public transports,
parking spaces, and the like). Table 1 shows a comprehensive list. Moreover,
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these entities are also aware of the the electrical infrastructure that feeds their
needs (in case new settlements do not require the installation of a new one).

Table 1. Factors considered.

Factor Infrastructures considered

HEALTH Hospitals, clinics
EDUCATION Schools, colleges, kindergartens, universities

SPORTS Public swimming pools, pitch, stadiums
CULTURAL Art centres, theatres, community centres, conference centres, muse-

ums, libraries, cinemas
FOOD SHOPS Food and convenience shops, department stores, supermarkets

Agent system: These agents emulate the people looking for a new house. Since
every person has different preferences about the presence of (or distance to) a
particular public facility, we have encoded them in a vector ai that describes
how important each infrastructure is to a particular agent i. Moreover, agents
have an individual budget limit and a degree of greediness depending on which,
they will query a different number of environment entities. Further, we have
identified three primary target groups sharing a common preference pattern:
Elderlies, Families and Singles. The accurate values of the preference vector
have been issued using a uniform random variable with the mean described in
Table 2 and a 10% of standard deviation.

Table 2. Agents types and their preferences.

Type HEALTH EDUCATION SPORTS CULTURAL FOOD AFFORD

ELDERLIES 1 0.2 0 0.7 0.8 e 1800
FAMILIES 0.9 1 0.7 0.3 0.5 e 1750
SINGLES 0.2 0.2 1 1 0.8 e 1700

When the agents have been loaded into the platform, they select the number
of environment entities that will be asked for information. The agent will then
select the plot that maximizes the following function f :

f(a, d) :=

−1 if plot price > agent budget∑
i∈I

ai
di

in other case,

where a is the preference vector of the agent, d is the distance vector of the
infrastructure and I are the categories in Table 1. Next, the agent will try to
buy this plot. In case some other agent has already bought it, the current agent
will try to acquire the next best one until the plots reach the minimum desired
quality set. Please note that it may be possible for an agent not to get a plot.
Finally, the load generated by the current agent is added to the corresponding
electrical infrastructure following the function l:

l(a, d) := Et + Ia · St ·A · Pc,
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where E is the previous load in that particular electrical infrastructure, Ia is the
electrical intensity of agent a (i.e. how much power will the new settlement need),
St is the simultaneity factor (see Section 3.1) of the loads in that particular
infrastructure, A is the area covered by this plot, and Pc is the power intensity
of the area, measured as:

Pc :=

|B300|
∑

c∈C300

pc

|C300|
∑

b∈B300

sb
,

where B300 is the set of buildings within 300 meter radius, C300 is the set of
clients within a 300 meters radius, | · | denotes the set cardinality, pc is the
contracted power by client c, and sb is the total surface of the building (measured
as the constructed area times the floor count).

3 Infrastructure

The system modelled uses very different frameworks in order to take advantage
of all the benefits each of them gives and make the platform fully functional and
scalable.

3.1 Data

Current datasets cover Ciudad Real, a Spanish middle-sized city with about 32
thousand power consuming clients and a surface of 400 km2. Electric infrastruc-
ture and clients’ measurements were provided by the corresponding utility (Gas
Natural Fenosa, a Spanish Distribution System Operator [DSO]) while buildings
and landuse data was obtained by conflating the Spanish cadastre records with
the VGI source OpenStreetMap [3]. Both datasets are stored in a PostgreSQL
relational database bolstered with the PostGIS geographical extension for manip-
ulating spatial data. Nevertheless, in order to extract more accurate conclusions,
we had to do some previous pre-calculations.

On the one hand, each plot was assigned all its near basic services and
properties. Local authorities define an area is accessible to citizens if it is within
a walking distance of 300 meters, which would take 5 minutes by foot. A spatial
query fetches all the facilities described in Table 1, calculates the straight-line
distance from the given plot and normalizes it to [0, 1].

One of the problems faced when working with developable land use, also known
as greenfields, is that, though not yet urbanized, some of these areas have already
been split into smaller parcels while others comprise a whole rustical zone. The
clipped greenfields give some clues about the type of buildings they may contain.
Without such information, it is hard to determine the type of construction and
therefore how many citizens the greenfield will house. In order to overcome this
problem we pre-calculated, using the spatial moving window smoothing [12],
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the type of possible building each greenfield could contain according to all
adjacent existing buildings within 300 meters. In addition, Spanish cadastre data
contains extra information about the number of floors or levels of the existing
buildings. Using the cadastrial reference (a unique identifier for all cadastre
cartography), this information can be linked to its respective spatial geometry,
therefore completing our GIS with third dimension data. The consequence of this
estimation may be an excess or lack in the real number of citizens assigned to
the greenfield, since the height and size of the real buildings may vary.

In addition, for a more precise distribution of new settlements, plots were
also given a price. Although the Spanish cadastre registers the price for each plot,
said information is private and is not provided in their open-data initiative. The
most detailed prices found were extracted from recent appraisals performed by
the appraiser Tasamadrid [20], which provides average prices per square meter
grouped by postcode.

Finally, each plot is assigned a transformer substation, which the new set-
tlements will connect to. The process is as follows: first a Voronoi diagram is
calculated from the set of transformer substations that have more than one client
attached (single-client transformers are owned individually, which means that
they are not accessible by the DSO). Then, the plot connects to the transformer
which area of influence intersects more with its own surface.

On the other hand, each transformer t was assigned a simultaneity factor St

using electric measures of already existing infrastructures and comparing them
with the power contracted by the clients. The real power used by electronic
equipments is often less than the rated power, so it is rare in reality that all loads
operate simultaneously. Since the electric grid and its elements need to be sized
in order to manage demand peaks, the simultaneity factor is time independent
and is calculated using the maximum power demand. It adjusts the theoretical
total consumption of the clients to realistic conditions and ratio of usage which
usually is around a 40%. However, the DSO’s dataset did not include power
measurements for the transformers. The lowest level of the electrical grid at
where we had real measures was at substation outputs. Therefore, we had to
calculate the simultaneity factor at this level, inheriting the simultaneity factor
to all the transformers connected to it. The formula used is:

St :=
rs∑

t∈Ts

∑
c∈Ct

pc
,

where rs denotes the maximum measure registered at the substations output s, Ts

denotes the set of transformers connected to that substation output, Ct denotes
the set of clients connected to transformer t and finally pc denotes the contracted
power of client c.

By combining this data, when an agent is assigned an available plot, the
system analyses the consumption of the neighbouring parcels and size of the
buildings in order to predict how much power this new settlement will need. Said
amount is then added to the total load of the transformer from which the plot
feeds.
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3.2 Implementation

Written in Python, SPADE is a free software multi-agent system platform based
on the instant messaging XMPP technology [8]. The most noticeable features
include support for virtual organizations, presence notifications, compliance with
the FIPA standard, P2P communication between agents, remote invocation of
services using the standard XML-RPC, inclusion of multiple knowledge-based
engines, such as XSB-Prolog, SWI-Prolog, Flora-2, ECLiPse-Prolog and SPARQL.

Although the implementation of agents in SPADE is quite straightforward, we
found some difficulties and drawbacks on the real experimentation. While SPADE
provides many utilities for the construction of the infrastructure, given that our
project does not need distributed agents, the heavy communication protocol that
SPADE deploys has become more of a limitation than a facility. As the amount
of agents starts to increase, operations like registration and intercommunication
between agents become slower. This makes big simulations very heavy or directly
unmanageable. Executions in a big server showed that the maximum amount
of agents SPADE could create, while being fully functional, was around 600,
including both agents and environment entities.

All the logic and data manipulation is done in a control program coded in
the Python. Thus, through inheritance of SPADE’s main classes, the agents are
provided with tools to access the platform basic functions. On one hand, several
types of agent can be registered on the Directory Facilitator, under the same
classification. This allows other agents to retrieve the name of agents of a certain
type. On the other hand, each type of agent defines a behaviour (execution flow)
to be carried out, whether it is cyclic (a behaviour that repeats itself either while
the agent is alive or until a certain condition is met), or one-shot (a behaviour
that takes place only once). An agent can have multiple behaviours, where each
behaviour defines which kind of messages the agent will receive along with the
coded logic to be executed in every case.

The program receives the simulation zone and the amount of different agents
to be created from the command line. Once all the information is gathered, it
starts fetching data from PostGIS, creating the agents and registering them
in SPADE platform. When the agents become alive, they start executing their
pertinent behaviours, which involve, sending and receiving messages, as well as
taking decisions based on their logic.

A more detailed explanation of the implementation can be consulted in [4].

4 Experimental Results

Despite the spatial data being only a snapshot of the city in 2013, all electric
power clients are geolocated and have a registration date. From this, we can
assume that the date of the building’s creation is the same as the first client
assigned to that particular building. Therefore, we get a complete historical map
of the evolution of the city and can determine which areas were inhabited through
years. Nevertheless, we cannot ensure when did the rural areas were zoned into
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greenfields as the status of the plots change by local laws and is not recorded in
public databases.

We have defined different metrics in order to test the results obtained with
this model. The error can be split into two categories: spatial errors and effective
errors.
Spatial Errors: In this category we have errors related to the spatial component

of the forecast. Namely, we measure how many agents correctly select the
year a plot that is going to be built (hits), how many agents incorrectly select
the year a plot is going to be build (semihits) and how many agents have
completely failed by selecting a greenfield that even today has not been built
(fails). Namely, we have measured:

hits :=
1

4

2008∑
y=2005

ay

by
+ 1− ky

gy

2
, fails :=

1

4

2008∑
y=2005

ky

gy
+ 1− ay+fy

by

2

semihits :=
1

3

(
f2005 + f2006 + f2007

b2006 + b2007 + b2008
+

f2006 + f2007

b2007 + b2008
+

f2007

b2008

)
,

where ay denotes the number of agents that correctly select a plot that is built
on year y, ky denotes the number of agents that incorrectly set of a greenfield
on year y, fy denotes the number of agents that incorrectly set on a plot on
year y but the plot is going to be built on the following years, by denotes the
number of plots that have been built on year y and finally gy denotes the
number of greenfields on year y.
Moreover we have calculated the probability of obtaining the same result at
random (prob). Namely, this procedure measures the probability that our model
has not actually improved a random process. Using previous notation, this
probability agrees with the probability of ay matches on a binomial random
variable with by repetitions and probability

ny

by+gy
where ny denotes the number

of agents dispatched on year y. Namely, using the standard statistical notation
for probability:

prob := Pr
B
(
by,

ny
by+gy

)[X = ay].

Effective Errors: In this category we measure the load forecasting error. Tra-
ditionally, this error is calculated using the MAPE error [10]:

mape :=
1

4|S|
∑
s∈S

2008∑
y=2005

|rsy − psy|
rsy

,

where S denotes the set of substations, | · | denotes the set cardinality operator,
psy denotes the model’s forecast for the maximum load of substation s at year
y and rsy denotes the real one.
Please note that this value will be very high as there are a lot of cases where
the clients have not been connected to the nearest transformer due to technical
issues impossible to model. In order to mitigate this problem, we could measure
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the error at substation level but this would blur the results and hinder the
possibility to identify zones where the model does not apply. Moreover, the
calculation of this value is quite complex due to the number of database queries
that need to be performed which, in turn, increases the execution time of
every simulation. The results obtained confirm the previous statement since
the variance of the measurement between simulations is high.

For each independent year which electrical growth we want to forecast, the
validation process creates a historical map that describes the status of the
buildings of the city. In addition, it creates several distributions of agents in order
to contrast the process outcome with the real settlements:

Environment: The validation process identifies the buildings that were regis-
tered as such from a given year on and marks them as available greenfields,
considering the date the building was created is the same as the oldest settle-
ment registered on said building.

Agent System: All the scenarios will create the same amount of agents as new
settlements that appeared on that year. The main difference will be the amount
of agents of each type created in every case.

Greediness: We have validated the system considering agents with and without
greediness. The best results are given by the experiments that do not consider
agent’s greediness because being aware of the whole environment avoids agents
getting stuck on a local maxima.

Plots price: The unitary price of the plots is calculated using recent appraisals
performed by the appraiser Tasamadrid, but there is no accurate way of
knowing prices of previous years. For these validations the agents’ affordable
price has been increased, so they are able to choose the best available greenfield
found without being limited by its price.

The experiments run intend to validate the forecasting ability of the system for
one year ahead forecasts. This means that each result is evaluated independently,
and the outcome is not considered for the following evaluation. The results of
the experiments can be seen on Table 3.

Table 3. Experimental results for the different agent type composition. Mean values
for years 2005–2008. All measures are in %.

Model Results

Elderly Families Young hits semihits fails prob

100 0 0 51.95 17.47 48.05 5.72
0 100 0 54.20 17.08 45.80 6.29
0 0 100 53.64 19.03 46.36 6.73
33 33 33 48.71 16.89 51.29 5.56
66 33 0 48.06 17.78 51.94 6.27
66 0 33 49.68 19.11 50.32 6.74
33 66 0 46.70 18.58 53.30 7.27
0 66 33 49.90 18.33 50.10 6.74
0 33 66 48.63 17.43 51.37 5.89
33 0 66 46.55 17.91 53.45 6.33
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These results show how different agent types distributions affect the accuracy
of the prediction delivered by our model. As the typical housebuyers in Spain
are families, it is expected that models with a high percentage of families agents
perform better than the rest of distributions. The results confirm that hypothesis.
The best agent mix consists on only agents of Family type while in the mixed
cases, the cases with high percentage of Family agents perform at least as well
as the other. Although prob column is consistently over 5 % please note that
this is not a p-value; even more, note that this is not a statistical model but
a forecasting model [19]. This column should be interpreted in the following
terms: as we have presented 10 experiments and the probability of the model
being a random process is, in the worst case, around 7 %, therefore, only the
results of one of the experiments could be due to chance while the rest of them
are due to the model correctly emulating human behaviour. For that reason,
we can conclude that the model gets right the 70 % of the greenfields assigned
(hit+semihits).

Qualitatively, we can see that the solutions follows the logic imposed by
the vector of preferences in the settlement of the agents. As can be seen in
Fig. 1, agents of type Elderly and Families prefer areas close to hospitals and
supermarket, while Young agents prefer those close to leisure and sport centres.

Fig. 1. Example result of simulation.

5 Conclusions

Even though Spatial Load Forecasting is a sound approach, it has some limitations.
It does not replace the experience and knowledge of network and area engineers.
However, it allows to perform simulations that would otherwise be difficult to
recreate. In our case, we found limitations on the chosen middleware, since it is
more oriented towards small scaled and distributed problems. We believe that an
ad-hoc implementation as well as the use of another middleware can be more
of an advantage if the system requirements are well defined. The development
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proposed needed a greater amount of computing power to make data calculations
and to support a great number of agents than robust communication protocols.

However, splitting the area into smaller parts has facilitated the pertinent
calculus as our type of problem allowed such division. This affects both the per-
formance of the system and the granularity of the results. Even when determining
prices, it is easier to calculate and gather a greater amount of data about certains
parts of the city instead of the whole area.

On a different note, new open-data movements offer a whole new perspective
for projects and developments. These project has benefited from both the opening
of data from public administrations, such as Spanish cadastre, and Volunteer
Geographic Information like OpenStreetMap. Although some of these datasets
need a preprocessing stage, they give added value to the significance of the results.

The future work in this area will involve increasing the forecasting horizon to
a five-year prediction and reassigning some of the clients to their corresponding
transformer substation. Over the years, the resizing of the power grid and other
technical issues have resulted in new settlements being connected to infrastruc-
tures to which they do not originally belong. This affects the quality of the results,
due to the impossibility to model each particular case. Finally, we are looking
forward to adding an evolutionary algorithm in order to train the model with
the optimal parameters.
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Actas de las vii Jornadas de SIG Libre, Girona 6–8 marzo, España. Servicio de
SIG y Teledetección - SIGTE - de la Universitat de Girona, 2013.

4. C. E. Borges, O. K. Esteban, A. Pijoan, and Y. K. Penya. Multi-Agent GIS System
for Improved Spatial Load Forecasting (Demonstration). In A. Lomuscio, P. Scerri,
A. Bazzan, and M. Huhns, editors, Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014), Paris (France),
5 − 9th May 2014. ACM.



12 Pijoan et al.

5. A. Crooks, C. Castle, and M. Batty. Key challenges in agent-based modelling for
geo-spatial simulation. Computers, Environment and Urban Systems, 32:417–30,
2008.

6. A. Crooks and A. Heppenstall. Introduction to agent-based modelling. In A. J.
Heppenstall, A. T. Crooks, L. M. See, and M. Batty, editors, Agent-Based Models
of Geographical Systems, pages 85–105. Springer Netherlands, 2012.

7. M. Farahat. Long-term industrial load forecasting and planning using neural
networks technique and fuzzy inference method. In Universities Power Engineering
Conference, 2004. UPEC 2004. 39th International, volume 1, pages 368–372. IEEE,
2004.
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